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Abstract: Aortic dissection (AD) is a kind of acute and rapidly progressing 
cardiovascular disease. In this work, we build a CTA image library with 88 CT cases, 43 
cases of aortic dissection and 45 cases of health. An aortic dissection detection method 
based on CTA images is proposed. ROI is extracted based on binarization and 
morphology opening operation. The deep learning networks (InceptionV3, ResNet50, and 
DenseNet) are applied after the preprocessing of the datasets. Recall, F1-score, Matthews 
correlation coefficient (MCC) and other performance indexes are investigated. It is 
shown that the deep learning methods have much better performance than the traditional 
method. And among those deep learning methods, DenseNet121 can exceed other 
networks such as ResNet50 and InceptionV3. 
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1 Introduction 
Aortic dissection (AD) is a kind of dangerous cardiovascular disease with rapid onset, 
rapid progress and high clinical mortality rate. It originates from the intimal tears formed 
by the intima and medial layers of the aortic wall. Driven by the aortic pressure, the blood 
in the aortic directly penetrates the middle layer of the aortic through the intimal tear, 
resulting in the formation of middle layer separation. With the change of disease 
spectrum, the incidence of aortic dissection is increasing year by year. 
Multi-slice CT angiography (CTA) is a non-invasive angiographic technique based on 
multi-slice spiral CT scanning imaging, which aims at displaying blood vessels in 
different parts of the body by injecting a contrast agent into blood vessels. It can not only 
provide morphological information on lumen changes, but also can show pathological 
conditions for wall lesions. It has the advantages of the fast, accurate, non-invasive, safe, 
repeatable, wide field of vision, high temporal and spatial resolution. At the same time, 
there are multiple reconstruction methods and post-processing functions available. 
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Therefore, CTA has been widely used for the diagnosis of aortic dissection and is 
currently the preferred method of examination for aortic dissection diagnosis and follow-
up. However, since the aortic dissection usually has a large range of lesions, each patient 
will have 300-500 CTA images. The analysis of the aortic CTA images and the release of 
the final report need to spend several hours for a radiologist with many years of 
experience. At the same time, since the manual reading is based on the doctor’s personal 
experience, the accuracy is difficult to be quantified and ensured. And misdiagnosis and 
missed diagnosis are easily caused by a doctor’s mistake and fatigue. 
In recent years, the medical image-assisted diagnosis has become one of the most popular 
directions in the field of artificial intelligence medical treatment. Traditional machine 
learning methods cannot effectively mine the rich information contained in medical images. 
However, deep learning builds hierarchical models by simulating the human brain. It has 
the powerful ability of automatic feature extraction and complex model construction with 
high efficiency. It can express features and extract features from the bottom to the top level 
from the raw data of the pixel level, providing a new way to solve the new problems faced 
by medical image recognition. Therefore, deep learning methods, especially convolutional 
neural networks (CNN), has become a hot spot in medical image analysis. Kooi et al. used 
CNN for the identification of malignant lesions in the breast, which resulted in a more 
accurate recognition rate than traditional computer-aided methods [Kooi, Litjens, Van et al. 
(2017)]. Grinsven et al. proposed an improved CNN model for detecting bleeding lesions in 
color fundus images [Grinsven, Ginneken, Hoyng et al. (2016)]. Dou et al. used 3D CNN to 
extract more representative advanced features from MRI images, thus enabled automatic 
detection of brain microbleeds with detection accuracy above 90% [Dou, Chen, Yu et al. 
(2016)]. Sirinukunwattana et al. used spatially constrained convolutional neural networks 
(SC-CNN) to detect and classify colorectal adenocarcinoma cells, and used proximity 
integrated prediction methods to obtain better classification effects than classical feature 
classification methods [Sirinukunwattana, Raza, Tsang et al. (2016)]. Zreik et al. proposed 
a CTA-based diagnosis of coronary artery stenosis, which can achieve higher specificity 
[Zreik, Lessmann, Hamersvelt et al. (2018)]. 
However, the research of automatic detection of aortic dissection is still relatively racking. 
Gayhart et al. built an automatic detection method for aortic dissection and penetrating 
aortic ulcer (PAU) based on contrast-enhanced CT Scan, which is mainly based on the 
analysis of shape characteristics of the aortic artery and aortic arch. It can achieve a 
sensitivity of 0.8218 and a specificity of 0.9907 for aortic dissection detection. But it was 
only applied to 9 cases of CT data. At the same time, the shapes of the aortic artery and 
aortic arch are deformed due to the variation of scanning angle in some CT cases, which 
may lead to wrong judgement [Gayhart and Arisawa (2013)]. Zheng et al. used General 
Hough Transform (GHT) to detect the shape of the aorta and used K-means clustering to 
position the aorta initially. Bayesian tracking method was applied to track the aorta vessel. 
This method was verified on 24 CT datasets and shew encouraging performance. But this 
paper only focused on the aorta detection and the detection of aortic dissection was not 
involved [Zheng, Carr and Ge (2013)]. Dehghan et al. proposed an automatic detection 
method of aortic dissection based on segmentation refinement, flap detection and shape 
analysis, which was tested on a data set of 37 contrast-enhanced CT volumes. The results 
show an accuracy of 83.8%, a sensitivity of 84.6% and a specificity of 83.3% [Dehghan, 



Automatic Detection of Aortic Dissection Based on Morphology                         1203 

Wang, Syeda-Mahmood et al. (2017)]. It can be seen that the current automatic detection 
methods for aortic dissection are mainly based on traditional image analysis methods. 
The deep learning based methods have not yet been popularized. 
The main contributions of this work are as follows: firstly, we build a CTA image dataset 
with 88 CTA cases including 43 cases of aortic dissection and 45 cases of health. All 
these images come from the clinical data of the department of cardiovascular surgery in 
the Second Xiangya Hospital of Central South University in China. Two experienced 
cardiovascular experts are responsible for making label for the two class of the images: 
aortic dissection or normal. Secondly, we propose an aortic dissection detection method 
based on CTA images. The deep learning models were applied to the region of interests 
(ROI) of the datasets. Finally, we apply our method to the 88 CTA cases, which includes 
4840 slice images. The accuracy and sensitivity were investigated and compared between 
traditional image analysis methods and deep learning methods, which includes DenseNet, 
Resnet, and InceptionV3. 
The paper is organized as follows: Relevant medical background is introduced in Section 
2, and the proposed method is introduced in Section 3. Experimental results and 
comparisons are shown in Section 4. Finally, we conclude this paper in Section 5. 

2 Relevant background 
2.1 Aortic dissection detection basis 
Aortic dissection refers to the fact that blood in the aortic cavity enters the aortic media 
through the intimal tear of aortic intima, which separates the middle layer and extends 
along the long axis of the aorta to form a true and false lumen of the aortic wall. Fig. 1 
shows CTA images of a patient with aortic dissection. With the change of scanning 
position, the shape of the aorta also changes in CTA images. Fig. 1(a) shows dissection of 
the aortic arch and the yellow rounded part is the region of the aortic arch. Fig. 1(b) 
shows dissection of ascending and descending aorta, and the two yellow rounded parts 
are the regions of ascending and descending aorta separately. The main basis of our 
judgment is that interlayer appears in the yellow parts of the CTA images. 
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Figure 1: CTA images of aortic dissection: (a) Dissection of aortic arch (b) Dissection of 
ascending and descending aorta 
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2.2 Dataset establishment 
We collected CTA images from the clinical data of the department of cardiovascular 
surgery in the Second Xiangya Hospital of Central South University in China. With the 
consideration of morphological difference of aorta in different locations, such as aortic 
arch, ascending and descending aorta, the CTA images datasets are organized as 4 classes 
as shown in Tab. 1. There are 4840 slice images coming from 88 CTA cases, which 
includes 43 cases of aortic dissection and 45 normal cases. The number and proportion of 
each class are also listed in Tab. 1. 

Table 1: Dataset organization  

 Class type Description  Sample Number Proportion 
Class 0 Normal aortic arch 

 

709 14.65% 

Class 1 Normal ascending 
and descending 

arch 

 

1763 36.42% 

Class 2 Aortic arch with 
aortic dissection 

 

629 13.00% 

Class 3 Ascending and 
descending arch 

with aortic 
dissection 

 

1739 35.93% 

2.3 OSTU binarization 
The OSTU method [Otsu (1979)] is classical for the threshold selection in image 
binarization. It can achieve the optimal threshold by maximizing the separability of the 
resultant classes in gray levels.  
Assuming M0 and M1 are the foreground part and background part of the image 
separately. The probabilities of their occurrence are: 
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where L is the total gray levels of the image. Then the class mean levels can be represented as: 
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The class variances can be given by: 
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By maximizing the 2 ( )B kσ  , the optimal threshold can be achieved. 

3 Proposed method 
Our proposed method includes two main parts: ROI (Region of Interest) extraction and 
deep learning based detection, as shown in Fig. 2. 

3.1 ROI extraction 
For CTA images, the middle aorta part is the most important that need to be paid 
attention to, and it is also the main basis for aortic dissection. In order to reduce the 
impact of unrelated areas on diagnosis, we need to perform ROI extraction firstly. 
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Figure 2: The framework of the proposed method 
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3.1.1 Binarization  
A complete CTA image can be divided into two parts: the information area and the 
abdominal area. The information area usually includes the private information of the 
patient and the device information for CTA scanning, which has large area black 
background and will not affect detection. While in the abdominal area, the middle aortic 
portion usually exhibits a significantly larger grayscale due to the influence of the 
contrast agent. Therefore, binarization is used to divide the CTA image into foreground 
and background image. At the same time, the image part of the abdominal cavity is 
expected to be separated from the aorta as much as possible by binarization. 
However, sometimes the grayscale value of the abdominal cavity is similar to the aorta 
due to the insufficient contrast injection as shown in Fig. 3(a). It is difficult to extract the 
aorta part and exclude abdominal cavity part successfully. In fact, the abdominal cavity 
will be classified as foreground with the high possibility with the normal OSTU method, 
as shown in Fig. 3(b). During the image processing field, the adaptive threshold is usually 
used to adapt to the variety of image features [Li, Qin, Xiang et al. (2018)]. The adaptive 
OSTU binarization method was proposed and shew improvements of binarization results 
with the restoration of weak connections [Moghaddam and Cheriet (2010)]. Adaptive 
image contrast was also used for image binarization and achieve text recovery finally 
[Ingle and Kaur (2017)]. However, most of the current adaptive binarization methods 
mainly focus on restoration of degraded images. While during CTA images processing, 
our target is to extend the intra-variation and separate aorta part from the abdominal 
cavity part successfully.  Therefore, a blocking OSTU method is proposed. As shown in 
Fig. 3(c), the original image is divided to 8 8×  subblocks. The OSTU threshold is 
calculated based on every subblock separately. We choose the maximum value of the 
sub-block thresholds as the final threshold of binarization and the achieved binary image 
is shown as Fig. 3(d).  

         

(a)                                                                (b) 
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(c)                                                               (d)  

Figure 3: CTA images: (a)Original image with insufficient contrast injection (b) Binary 
image with normal OSTU threshold (c) Image divided to 8x8 subblock (d) Binary image 
with blocking OSTU threshold 

The blocking OSTU algorithm is described in Algorithm 1. 
Algorithm 1: Binarization based on blocking OSTU 
Input: original gray CTA image M 
Output: binary image B 
1: Divide M to 8 8×  subblocks M_1~M_64 
2: Calculate OSTU threshold for every subblock:  
3: for i=1:64 
4:          Thres(i)=OSTU_thres(M_i) 
5: End 
6: Threshold=max(Thres(i)) 
7: Achieve binary image B: 
8: for i=size(M) 
9:           if M_pixel(i) > Threshold 
10:                  B_pixel(i)=1 
11:         else 
12:                  B_pixel(i)=0 
13:         end 
14: end 
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3.1.2 Opening operation 
For the binary image, there are some noise spots and the interference of abdominal cavity 
still exists. We use the mathematical morphology opening operation as the next step to 
remove these effects. 
In mathematical morphology, usually, a set of transformations are used to describe the 
basic features or basic structure of an image. The most basic transformations are 
corrosion and expansion [Najman and Talbot (2013)]. Corrosion will reduce the range of 
the target area, which will cause the edge of the image to shrink in essence, and can be 
used to eliminate small and meaningless objects. It can be expressed as 

{ , ( ) }xyA B x y B A= ⊆                                                         (8) 

where A is the original image and B is the structural element that used to corrode A.  
The expansion will merge the background points contacted with the target area into the 
target object, which will expand the target boundary to the outside and enlarge the range 
of the target area. It can be used to fill some holes in the target area and eliminate the 
small particle noise contained in the target area. It can be expressed as: 

{ , ( ) }xyA B x y B A⊕ = ∩ ≠∅                                                                     (9) 

where A is the original image and B is the structure element that used to expand A.  
The opening operation is defined as the operation of expansion after corrosion, which can 
be represented as follows: 

( )A B A B B= ⊕                                                                     (10) 
where A is the original image and B is the structural element that used to transform A. 
Through opening operation, the isolated small dots and burrs that are smaller than the 
structural elements are removed. And the bridges and elongated laps are cut off to 
separate. At the same time, overall position and shape are unchanged. 

After Opening OperationBefore Opening Operation
 

Figure 4: Effect of opening operation 
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As shown in Fig. 4, after the opening operation, the part of the abdominal cavity has been 
completely removed from the binary image. 

3.1.2 ROI positioning 
In order to position the ROI actually, the area of connected components is calculated. If 
the area is smaller than a thres_n, it will be removed as noise spot. Then remained 
connected parts are considered as our interested parts.  
The centroid of every interested part is calculated. There are possibly more than one 
centroids. Therefore, assuming ( )x i  and ( )y i  are the row and column positions of the ith 
centroid, then we calculate the center of the ROI as follows: 

( )( ) ( )( )max min
_ c  

2
x i x i

x
+

=                                                   (11) 

( )( ) ( )( )max min
_ c  

2
y i y i

y
+

=                                           (12) 

where 1 i L≤ ≤ (L is the number of connected components remained), _ cx  and _ cy  are 
the row and column position of the ROI center separately. Then the ROI is extracted from 
the original CTA image, as shown in Fig. 5. 

ROI image

 

Figure 5: Positioning of ROI 

During the processing, there are some non-aortic components that are always present, 
such as superior vena cava and coronary artery, it is difficult to discriminate them from 
aorta using morphology methods since they have similar shapes and greyscale. But the 
ROI extraction still shows complete part of the aorta. We keep the accurate detect task to 
deep learning model in the next step. 

3.2 Detection based on DenseNet 
Since 2014, the performance of CNN has been improved greatly by using deeper and 
wider network structure. The Inception module was proposed [Szegedy, Liu, Jia et al. 
(2015)], which achieved the performance improvement of the network by using multiple 
convolutional kernels with different sizes. But this structure led to a large number of 
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module parameters. Later the InceptionV2 and IncepionV3 were proposed to further 
optimize the network performance [Szegedy, Vanhoucke, Ioffe et al. (2016)]. In the 
InceptionV2, two 3 3×  convolution kernels instead of 5 5×  convolution were used to 
reduce the number of parameters and establish more non-linear transformations, which 
strengthened the learning capability of CNN. At the same time, batch normalization (BN) 
was proposed for data regularization and speeded up the network training process. While 
in the InceptionV3, the idea of factorization into small convolutions was further utilized 
and reduced the phenomenon of over-fitting. 
In another hand, the increment of neural networks depth also increases the difficulty of 
network training. At the same time, traditional convolutional networks or fully connected 
networks will lose information more or less when transmitting information. Gradient 
disappearance or gradient explosion will also lead to the problem that deep networks 
cannot be trained successfully. Therefore, the idea of residual learning (ResNet) was put 
forward in 2015 [He, Zhang, Ren et al. (2015)], which solved this problem to a certain 
extent. By directly transferring input information to output through a bypass, the integrity 
of information was protected. The whole network only needs to learn the difference 
between input and output, which can simplify the learning goal and difficulty.  
While during the research of ResNet, it was found that that dropping some layers 
randomly at each step of the training process could significantly improve the 
generalization performance of ResNet. It means that the neural network is not necessarily 
a progressive hierarchical structure. A layer in the network may depend not only on the 
characteristics of the adjacent upper layer, but also on the characteristics of the earlier 
layer. In fact, removing several layers of the trained ResNet randomly would not impact 
the network prediction results greatly, which shows that ResNet has some redundancy, 
and only a few features are extracted from each layer of the network. Therefore, Densely 
connected convolutional network (DenseNet) was proposed by Huang et al. [Huang, Liu, 
Maaten et al. (2017)]. It connects every layer to all the other layers as a feed-forward, 
which increases direct connections to L(L+2)/2, as shown in Fig. 6. This structure can 
strengthen feature propagation and reuse features achieved from every layer. We use 
DenseNet121 to finish final detection of aortic dissection on our test set. 
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Figure 6: Structure of DenseNet121 

4 Experimental results and analysis 
The experiments are conducted with the Intel(R) Core (TM) i7-6500X CPU @ 2.50 GHz 
and 16.00 GB RAM. The Keras framework is applied for deep learning.  
Our dataset organization is described in Section 2, which includes 4840 slice images coming 
from 88 CTA cases. The number and proportion of each class are listed in Tab. 1. 60% of the 
images are used for training, 20% are used for validation and 20% are used for test. 
InceptionV3, ResNet50 and DenseNet121 are used for test and performance comparison. The 
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parameters for fine tuning are set the same for the three networks, which are listed in Tab. 2.  

Table 2: Parameters for fine tuning  

Batch Size Epoch Weight Decay Momentum Learning Rate 
4 30 0.0001 0.9 0.001 

Recall, F1-score and Matthews correlation coefficient (MCC) are used to evaluate our 
method, which are calculated as follows: 

TPREC
TP FN

=
+

                                                                   (13) 

21_ = PRE RECF score
PRE REC
× ×

+
                                                    (14) 

MCC=
( )( )( )( )

TP TN FP FN
TP FP TP FN TN FP TN FN

× − ×
+ + + +

                                  (15) 

where TP means the number of true positive, FP means the number of false positive, FN 
means the number of false negative and TN means the number of true negative. The 
comparison of InceptionV3, ResNet50 and DenseNet121 are shown in Fig. 7. It can be 
seen that DenseNet121 has the best performance of Recall, F1-score and MCC. It has far 
exceeded the performance of other method [Gayhart and Arisawa (2013)], which shew 
the sensitivity of 82.18%. But due to the difference of dataset and the ignorance of the 
aortic arch, the later method is not comparable with our method. Even though, our 
method still shows much better performance. 

 
Figure 7: Evaluation comparison 

In order to further investigate the difference of different networks, REC, PRE and 
F1_score for each category are further investigated. PRE is calculated by  

TPPRE
TP FP

=
+

                                                                         (16) 
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The results for each category are listed and compared in Tab. 3. It can be seen that 
ResNet50 shows best detection results for the CTA images of class 0, while DenseNet121 
shows relative better detection results for the CTA images of Class 1, Class 2 and Class 3. 

Table 3: Performance comparison for each class 

 PRE REC F1_score 

Class 0 
(Normal aortic arch) 

InceptionV3 0.96644 0.97297 0.96970 

ResNet50 0.97959 0.97297 0.97627 

DenseNet121 0.96622 0.96622 0.96622 

Class 1 
(Normal ascending and 

descending arch) 

InceptionV3 0.91948 0.98883 0.95289 

ResNet50 0.93122 0.98324 0.95652 

DenseNet121 0.94865 0.98045 0.96429 

Class 2 
(Aortic arch with 

dissection) 

InceptionV3 0.99248 0.96350 0.97778 

ResNet50 0.97122 0.98540 0.97826 

DenseNet121 0.97810 0.97810 0.97810 

Class 3 
(Ascending and 

descending arch with 
dissection) 

InceptionV3 0.98788 0.92090 0.95322 

ResNet50 0.98498 0.92655 0.95488 

DenseNet121 0.98538 0.95198 0.96839 

Since there are multiple categories in our dataset, the macro and micro average values are 
investigated to reflect the performance comprehensively, which are calculated as follows: 

1

1_
n

i
i

macro PRE PRE
n =

= ∑                                                  (17) 

1

1_
n

i
i

macro REC REC
n =

= ∑                                                     (18) 
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_ _
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macro PRE macro REC
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_ TPmicro PRE
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_ TPmicro REC
TP FN
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Automatic Detection of Aortic Dissection Based on Morphology                         1213 

Weighted average are further calculated by weighted the number of true instances for 
each category. The compressive results are shown in Tab. 4. 

Table 4: Comprehensive Performance comparison 

 PRE REC F1_score 

micro Average InceptionV3 0.95888 0.95888 0.95888 

ResNet50 0.96189    0.96189    0.96189    

DenseNet121  0.96790    0.96790    0.96790        

macro Average InceptionV3  0.96657 0.96155 0.96340 

ResNet50 0.96675    0.96704    0.96648        

DenseNet121 0.96959    0.96919    0.96925        

Weighted Average InceptionV3  0.96077 0.95888 0.95892 

ResNet50 0.96299    0.96189    0.96186        

DenseNet121 0.96835    0.96790    0.96793        

From Tab. 4, it can be seen that DenseNet121 has best compressive performance than 
InceptionV3 and ResNet50. 

5 Conclusions 
In this work, we build a CTA image library with 88 CT cases, 43 cases of aortic 
dissection and 45 cases of health. An aortic dissection detection method based on CTA 
images is proposed. ROI is extracted based on binarization and morphology opening 
operation. The deep learning model DenseNet121 is applied after the preprocessing of the 
datasets. The accuracy and sensitivity are investigated. It is shown that deep learning 
methods can achieve much better performance than the traditional method. And among 
these deep learning methods, DenseNet121 can exceed other networks such as ResNet50 
and InceptionV3. In the next step, we will try to increase the performance further and 
apply our method to the real application system. 
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