Computers, Materials & Continua CMC, vol.62, no.3, pp.1001-1023, 2020

Free Vibration Analysis of FG-CNTRC Cylindrical Pressure
Vessels Resting on Pasternak Foundation with Various
Boundary Conditions

Mohammad Arefi', Masoud Mohammadi', Ali Tabatabaeian' and Timon Rabczuk?®”

Abstract: This study focuses on vibration analysis of cylindrical pressure vessels
constructed by functionally graded carbon nanotube reinforced composites (FG-CNTRC).
The vessel is under internal pressure and surrounded by a Pasternak foundation. This
investigation was founded based on two-dimensional elastic analysis and used
Hamilton’s principle to drive the governing equations. The deformations and effective-
mechanical properties of the reinforced structure were elicited from the first-order shear
theory (FSDT) and rule of mixture, respectively. The main goal of this study is to show
the effects of various design parameters such as boundary conditions, reinforcement
distribution, foundation parameters, and aspect ratio on the free vibration characteristics
of the structure.

Keywords: FG-CNTRC cylindrical pressure vessel, first-ordershear deformation theory,
free vibration, Pasternak’s foundation, rule of mixture.

1 Introduction

Pressure vessels construct an essential part of industrial equipment. They are under high
levels of stresses and temperatures. Also, one of the expensive tools in an industrial unit
is the pressure vessel. These critical points caused researchers and companies to release
analyzing approaches and design guidelines for pressure vessels. More recently, one of
the popular subjects is to use of composite materials, especially functionally graded
materials (FGMs), for fabricating pressure vessels and other industrial equipment [Miao,
Chen, Wang et al. (2014)].

Functionally graded carbon nanotube reinforced composites (FG-CNTRCs) were
comprehensively analyzed for various functions. They showed a strong bending
performance and reducing effects on residual stresses [Arefi, Faegh and Loghman
(2016)]. All of these studies expressed that addition of carbon nanotubes into the base
material increases stiffness of the structure and decreases deflections.
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Keeping a far distance between working frequency and the natural frequency of industrial
equipment is acrucial issue, which was widely considered by engineers. Accordingly,
researchers widely focused on analyzing free vibration and forced vibration of industrial tools.

Many other researchers also considered vibration response of the composite materials in
various structures, and developed their investigations around vibration analysis of
cylindrical composites [SafarPour, Ghanbari and Ghadiri (2019); Zhao, Choe, Shuai et al.
(2019)], composite plates and beams [Tan, Nguyen-Thanh, Rabczuk et al. (2018);
Abualnour, Houari, Akgoz et al. (2017); Feng, Kitipornchai and Yang (2017); Kiani (2016);
Sayyad and Ghugal (2017)], FG-CNTRC panels [Mirzaei and Kiani (2016)], and
experimentally vibrational analysis on composite shells [Kalnins and Wieder (2017)].

A comprehensive literature review has been completed above. The literature review
indicates that although some important works about FG-CNTRC structures have been
published, there isa lack of work about two-dimensional free vibration responses of FG-
CNTRC cylindrical pressure vessels with various boundary conditions. In this paper,
first-order shear deformation theory is used to derive governing equations of motion. The
equations are solved using a method for various boundary conditions. The main outcome
of this paper is to clarify the influence of various distributions of reinforcement and
various boundary conditions on the vibration behavior of the system.

2 Problem definition
2.1 CNT distribution

Fig. (1) shows the geometry of CNTRC cylindrical shell. The CNT volume fraction
changes along the thickness to form a functionally graded structure. This study uses four
different distribution patterns which are presented in Eq. (1) and shown in Fig. (2).
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Figure 1: Geometry of CNTRC cylindrical shell
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where R, 1, h are the average radius, variable radius, and thickness, respectively. Also
Venr 1s a function of distribution of CNT for each specific pattern and Vi is the total
volume fraction across the shell thickness that can be obtained as follows.
Vi = Wen
CNT = Pen) _ (PN (2)
WCN+(pm) (pm)WCN

It should be noticed that Wy, pcn» Pm are respectively the weight fraction of the CNTs,
density of the CNTs, and density of the matrix.
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Figure 2: Different CNT distribution patterns

2.2 Effective material properties

The effective Young’s modulus of the FG-cylindrical shell could be obtained using rule
of mixture as [Asadi, Souri and Wang (2017)]:

E1y = i VenrESYT + Vi, E™ (3)
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n3 _ Venr |
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Venr + Vi =1 (6)
p =Venrp™" + Vo p™ ()
vip = Vinrviz | + Vo™ (8)

in which 14, 7,, and 3 are certain quantities that called efficiency parameters.E, G, and vare
Young’s modulus, shear modulus and Poisson’s ratio, respectively. V and p represent
volume fraction and density. Other effective mechanical properties are presented as follows:

E33 = Ep;
Gy3 = Gy )
V31 = V21
V32 = V21

3 Theoretical formulations
3.1 Displacement field

First-order shear deformation theory (FSDT)is proposed for describing deformations and
deflections as follows.

Ux) _ (u(x,t) {<Px (x, t)}
{Wz} - {w(x, t)} tz @, (x,t) (10)
where u,,, w, are the axial and radial components of displacement, respectively. u, w, @,.,
and ¢, are axial component, radial componentand rotational components of the middle
surface. the strain components are obtained as follows [Mohammadi, Bamdad, Alambaigi

et al. (2019¢)].
_Ouy Ou a,

T %x “ox  Cox
aw,
& = 97 =@y
X W, wH2zo, (11)
= r  R+z
du, Jdw, aw do
Voo =2 X = G b G S et g iy
\

Fig. 3 shows some necessary parameters of the problem.
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Figure 3: The schematic of a cylindrical pressure vessel resting on Pasternak’s foundation

The stress components of each can be obtained from the stress-strain relationship

Oy Q11 Q12 Q13 0 0 0 rex — a1 T
Ot Q21 Q22 Q3 O 0 0 ||&r — az,T
Oz _ Q31 Q32 (33 0 0 0 ||&e; —assT

Txt 0 0 0 Q44 0 0 Vxt (12)
Toz 0 0 0 0 Q5 O €24
Tty 0 0 0 0 0 Qs Yz
where:
_Enx — E2
Qi1 = T(l —Va3V32) , Q22 = T(l — V13V31)
33
Q33 = T (1 =va1v12)
Q44 = G23, Us5 = G13, Q6 = G12 (13)
E E
Q12 == (V21 + V31v23) , Q13 = -~ (V31 + v21V3,)
22
Qz3 = T(V3z + V12V31)

A=1 —vy15Vy1 — Va3V3p — V31V13 — 2V13V35V43

3.2 Fundamental equations

Hamilton’s principle leads us to the governing equations of motion [Al-Ajmi and
Benjeddou (2011); Lee, Lin and Chang (2016)].

8M = 6T — 86U +6W =0 (14)
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OU, OW and 6T are the variation of strain energy, virtual work and kinematic energy,
respectively and can be defined as follows.

5U = f 030 € AV = f[oxé e+ 0D € L+ 0,0 €y + TipOYildV (15)

sW = f [pi5w2|zz_ﬂ - Ff5w2|zzﬂ] dA (16)
2 2

where P; is the internal pressure and F is reaction of Pasternak’s foundation. In addition,
the other parameters are defined as:

62
Ff = kl (WZ:E) - kz W (szg)

2

_ h & h
) Wz=§—w+§goz=>dw+§6goz
(17)
02 0’w ho?p,s 926w ho%8¢,
—(W _h) = + = = + =
0x2\" z=; 0x? 2 0x? ox% 2 0x?
\
h 0’w  ho?e,
fr=h (W +§<Pz) ke 0x? +§ dx?
in which k;and k,are direct and shear parameters ofPasternak foundation.
1
T= Efp(uz + 92 + w?)dv
(18)

- 6T = f p (i 8, + Dy 8V, + W, 6W,)2m(R + z)dzdx

Substituting Eq. (11) into Egs. (15)-(18) gives the variation of strain energy, virtual work
and kinematic energy as follows.

a5 5Py 1
- 2 }+at {E [6w +26(pz]}+az{6(pz}

Ox {a_ P)
6U = [f * ¥ a8 98
+Tyy {6g0x + a_;/v + Z?(pz}

2nt(R + z)dzdx (19)
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Substituting Egs. (19-21) into Eq. (14) leads to:

aN .
5H=27Tf (Qt— a)’C‘Z+(1E-,+17)—W1)5W -
]
(Nt+NZ—a+(I6+18)+W2)6<pZ

And four fundamental equations are derived as:

[(ON .. oM . ]
( ax" — (L + 13)> Su — (Nxz — a—x" + (I, + 14)) 5o, —

dx

I
o

ey

(22)



Free Vibration Analysis of FG-CNTRC Cylindrical Pressure 1009

oN .
6u:axx_(ll+13)=0
oM .
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Using Egs. (23) and (12) results in four extended equations which have beenpresented in
Appendix.

The next step of solution procedure is choosing equations which can satisfy boundary
conditions. As our aim is investigation on different boundary conditions, specific
equations are proposed as following equations and Tab. 1.

(24)

b= Y bkt

m=1n=1

Tablel: The admissible function X, (x) for different boundary conditions

Boundary conditions Atx = 0,L X, (x)
Xn(0) = X3 (0) = 0
Xm(L) = Xp(L) = 0
Xn(0) = X1, (0) = 0
Xn(L) = X (L) = 0
Xn(0) = X3, (0) = 0
Xm(L) = Xpn(L) = 0
Xn(0) = X3/ (0) =0
Xn(L) = X3/ (L) =0

Simply-Simply Sin(Lx)

Clamped-Simply Sin(Lx)[Cos(Lx) — 1]
Clamped-Clamped Sin?(Lx)

Clamped-Free Cos?(Lx)[Sin?(Lx) + 1]

Substituting Eq. (24) into equations, which have been presented in Appendix, leads to an
equation as:
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[M{w} + [Al{w} = 0 (25)

where

Umn

=,

¢,

The natural frequencies can be obtained from the Eq. (25).

4 Numerical results and discussion

In this section, effects offour parameters including CNT distribution patterns, CNT
volume fractions, boundary conditions and Pasternak’s coefficients on the natural
frequency are investigated.

4.1Patterns effects

Shown in Fig. 4 is variation of fundamental natural frequencies of FG-CNTRC
cylindrical shell in terms of length to thickness ratio L/h for various distributions of
reinforcement (UD, FG-X and FG-V). The numerical results show that with increase of
length to thickness ratio (L/h), the fundamental natural frequenciesdecrease significantly.
It can be concluded that this decrease is due to decrease of stiffness of cylindrical shell.
In addition, this investigation shows that the highest values are obtained for FG-X
distribution while the lowest one is obtained for U-D.

Behaviors of second and third natural frequencies of FG-CNTRC cylindrical shell in
terms of length to thickness ratio (L/h) for various distributions of reinforcement (UD,
FG-X and FG-V) are presented in Figs. 5 and 6, respectively. The same conclusions for
Fig. 4 can be expressed for Figs. 5 and 6.
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Figure 4: Fundamental natural frequencies in terms of L/h for various distributions of
reinforcement
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Figure 5: Second natural frequencies in terms of L/h for various distributions of reinforcement
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Figure 6: Third natural frequencies in terms of L/h for various distributions of reinforcement

4.2 Boundary conditions effects

This section ispresented to investigate the influence of various boundary conditions on
the free vibration responses of FG-CNTRC cylindrical shell. Shown in Fig. 7 is variation
of fundamental natural frequencies of FG-CNTRC cylindrical shell in terms of length to
thickness ratio (L/h) for various boundary conditions (simply-simply, clamped-simply,
clamped-clamped).The numerical results indicate in addition to corresponding increase of
natural frequencies due to increase in L/h ratio, the highest values of natural frequencies
are reachedby CC boundary conditions while the lowest one is obtained for SS boundary
conditions. Figs. 8 and 9 show variation of second and third natural frequencies of FG-
CNTRC cylindrical shell in terms of length to thickness ratio (L/h) for various boundary
conditions (SS, CS, CC).
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Figure 7: Fundamental natural frequencies in terms of L/h for various boundary conditions
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Figure 8: Second natural frequencies in terms of L/h for various boundary conditions
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Figure 9: Third natural frequencies in terms of L/h for various boundary conditions
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4.3 CNTs volume fractions effects

In this section, the influence of various CNTs volume fractions of reinforcement on the
natural frequencies of FG-CNTRCs cylindrical pressure vessels is investigated. Shown in
Fig. 10 is variation of fundamental natural frequencies of FG-CNTRC cylindrical
pressure vessels in terms of length to thickness ratio (L/h) for various volume fractions of
carbon nanotube reinforcement. The numerical results indicate that the natural
frequencies increase significantly with increase of volume fraction of carbon nanotube
reinforcement (0.12, 0.17 and 0.28). One can be concluded that with increase of volume
fractions of carbon nanotube reinforcement, the stiffness of FG-CNTRCs cylindrical
pressure vesselsincreases and consequently the natural frequency increases significantly.
Shown in Figs. 11 and 12 are variation of second and third natural frequencies of FG-
CNTRC cylindrical pressure vesselsin terms of length to thickness ratio (L/h) for various
volume fractions of carbon nanotube reinforcement.
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Figure 10: Fundamental natural frequency in terms of L/h for various volume fractions of CNT

10*
SS"J

1 L L L L L I
“20 30 40 50 60 70 80 20 100
Lh

Figure 11: Second natural frequency in terms of L/h for various volume fractions of CNT
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Figure 12: Third natural frequency in terms of L/h for various volume fractions of CNT

4.4 Pasternak’s coefficients effects

Fig. 13 shows variation of fundamental natural frequencies of FG-CNTRC cylindrical
pressure vessels in terms of two parameters of Pasternak’s foundation. The numerical
results indicate that increase in Pasternak’s parametersincreases the stiffness of the
foundation, and increases the natural frequency.
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Figure 13: The effects of the K; and K, on the fundamental natural frequencies of the
FG-CNTRC cylindrical pressure vessels

5 Conclusion

Free vibration characteristics of FG-CNTRC cylindrical pressure vessels with various
boundary conditions were investigated in this paper based on Hamilton’s principle and
first-order shear deformation theory. Rule of mixture was used to calculate the effective
material properties of reinforced structure.The influences of various important parameters
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of the problem such as various boundary conditions, various volume fractions of
reinforcement, length to thickness ratio (L/h), and two parameters of Pasternak’s
foundation were studied.

Investigation on the influence of length to thickness ratio (L/h) indicates that with
increase of this dimensionless parameter, all natural frequencies of FG-CNTRC
cylindrical pressure vessels decrease significantly. One can be concluded that with
increase of this dimensionless parameter, the stiffness of reinforced structure decreases
and consequently the natural frequencies decrease significantly.

The influence of various patterns (UD, FG-X and FG-V) was studied on the natural
frequencies of cylindrical pressure vessel. The numerical results indicate that FG-X
distribution has higher stiffness that leads to highest natural frequencies. In addition,
the lowest natural frequencies are obtained for UD. Increasing of volume fraction of
reinforcement increases the stiffness of cylindrical shellthat leads to increase the
natural frequencies.

The influence of Pasternak’s parameters was studied on the free vibration characteristics
of FG-CNTRC cylindrical pressure vessels. The numerical results indicate that increase
of Pasternak’s parameters leads to increase the natural frequencies.
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