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Analytical and Numerical Investigation for the DMBBM Equation
Abdulghani Alharbi1, Mahmoud A. E. Abdelrahman1, 2, * and M. B. Almatrafi1

Abstract: The nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM)
equation is solved numerically using adaptive moving mesh PDEs (MMPDEs) method.
Indeed, the exact solution of the DMBBM equation is obtained by using the extended
Jacobian elliptic function expansion method. The current methods give a wider
applicability for handling nonlinear wave equations in engineering and mathematical
physics. The adaptive moving mesh method is compared with exact solution by numerical
examples, where the explicit solutions are known. The numerical results verify the accuracy
of the proposed method.

Keywords: DMBBM equation, Jacobian elliptic functions, moving mesh PDEs
(MMPDEs), moving adaptive scheme, solitary waves.

1 Introduction
Many important phenomena in natural science can be modelled by nonlinear partial
differential equations (NLPDEs). NLPDEs are widely used to describe complex
phenomena in various sciences, especially in nonlinear optics, solid state physics, fluid
mechanics, quantum mechanics, geochemistry, biology and so on, see Abdelrahman et
al. [Abdelrahman and Kunik (2014, 2015); Abdelrahman (2017a,b); Abdelrahman and
Sohaly (2017); Younis, Ali and Mahmood (2015); Bhrawy (2014); Dehghan, Abbaszadeh
and Mohebbi (2014b, 2015a)]. Therefore, the study of the travelling wave solutions
for NLPDEs plays an important role in the study of nonlinear science. Recently, many
powerful mathematical techniques, such as tanh-sech method [Malflieta and Hereman
(1996); Wazwaz (2004b)], Jacobi elliptic function method [Dai and Zhang (2006); Liu, Fu,
Liu et al. (2001)], (G

′

G )− expansion method [Wang, Zhang and Li (2008); Zhang, Tong and
Wang (2008)], exp-function method [He and Wu (2006); Aminikhad, Moosaei and Hajipour
(2009)], homotopy analysis method [Liao (2005)], sine-cosine method [Wazwaz (2005,
2004a)], homogeneous balance method [Fan and Zhang (1998); Wang (1996)], F-expansion
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method [Ren and Zhang (2006); Zhang, Wang, Wang et al. (2006)], extended tanh-method
[Fan (2000); Wazwaz (2007)], Riccati-Bernoulli sub-ODE method [Yang, Deng and Wei
(2005); Abdelrahman and Sohaly (2018)], modified trial equation method [Bulut, Yel and
Baskonus (2017); Kocak, Bulut and Yel (2014)] and so on, have been proposed for obtaining
exact solutions to the NLPDEs.
This paper is concerned with the (1+1)-dimensional nonlinear dispersive modified
Benjamin-Bona-Mahony (DMBBM) equation [Yusufoglu (2008)], in the form

ut + ux − αu2ux + uxxx = 0, (1)

where α is a non-zero constant. This equation describes an approximation for surface
long waves in nonlinear dispersive media. Moreover, it characterizes the hydro magnetic
waves in cold plasma, acoustic gravity waves in compressible fluids and acoustic waves in
inharmonic crystals [Yusufoglu (2008); Khan, Akbar and Islam (2014)].
We obtain the numerical solution of PDEs by approximating the PDEs on a mesh. We
divide the domain into a finite set of nodes to obtain a uniform mesh. It is well known that
some solutions have regions with rapid variations such as steep fronts, shock-like structures.
To resolve this kind of region, we need to use a massive number of points, which means the
step size, h = xi − xi−1, should be small enough for the entire domain. Computationally,
this is intensive and expensive. Therefore, we attempt to find an alternative approach to have
an adaptive mesh that manually puts more points in regions in which the solution changes
rapidly and fewer points elsewhere. Unfortunately, this is useful only in time-independent
problems. So, if the solution moves as the time moves, we must redistribute the mesh in
each time. Overcoming this kind of issue, we use the adaptive moving mesh methods,
which focus on the regions with rapid variations and moves the mesh as the solution moves
with time. The adaptive mesh intends to have an adequate quality of accuracy and efficiency
without using an excessive number of mesh points, as compared to a different method such
as uniform mesh method.
Dehghan et al. [Dehghan, Abbaszadeh and Mohebbi (2015b)] solved the two-dimensional
nonlinear generalized Benjamin-Bona-Mahony-Burgers, using interpolating element-free
Galerkin technique. Indeed, Dehghan et al. [Dehghan, Abbaszadeh and Mohebbi (2014a)]
considered the three-dimensional nonlinear generalized Benjamin-Bona-Mahony-Burgers
equation equation via the meshless method of radial basis functions. The results
given in Dehghan et al. [Dehghan, Abbaszadeh and Mohebbi (2015b, 2014a)] are so
efficient and robust. In this paper, we apply the extended Jacobian elliptic function
expansion method [Chen, Xu, Liu et al. (2003)] to construct the exact solutions for
the (1+1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM)
equation. The numerical part of this article will be investigated by using the r-adaptive
moving mesh method [Huang and Russell (2010); Budd, Huang and Russell (2009);
Liseikin (2009)], which works with a monitor function, sometimes referred to as a
mesh density function, and moving mesh partial differential equations (MMPDEs). The
procedure of this method is embodied in moving a fixed number of grid nodes into regions
in which the error of the solution is high. The monitor function fluctuates/moves according
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to the movement of a particular solution, such as a solution with large curvatures. On other
words, the mesh density function is distributed between the grid elements. It is important
to mention that an appropriate selection for the monitor function powerfully contributes to
a great performance of this method. Since the r-adaptive moving mesh method refines
the mesh, the internal layers are resolved more accurately. It is notable to notice that
the MMPDEs can be rewritten by a diffusion equation [Huang and Russell (2010); Budd,
Huang and Russell (2009)]. As a result, the MMPDEs can be simply executed within the
finite difference techniques. A massive number of natural problems (for instance, problems
occurred in fluid mechanics [Tang (2005); Yibao, Jeong and Kim (2014)], heat transfer
[Ceniceros and Hou (2001)] and meteorological [Walsh (2010); Budd, Cullen and Walsh
(2013)]) has been successfully solved by applying the r-adaptive techniques.
The organization of this article is given as follows. In Section 2, we give some new exact
solutions to the DMBBM equation, using extended Jacobian elliptic function expansion
method. In Section 3, we introduce the numerical solution for the DMBBM equation,
namely on a fixed mesh or on an adaptive mesh. Moreover, we give a comparison between
exact and numerical solutions. Section 4 is devoted to conclude this work.

2 The extended Jacobian elliptic function expansion method
Using the traveling wave transformation

u(x, t) = u(ξ), ξ = x− µt, (2)

where µ is a real constant, Eq. (1) transforms into the following ODEs:

u′′′ + (1− µ)u′ − αu2u′ = 0 . (3)

Integrating with respect to ξ and taking the constant of the integration by zero, we obtain
the following ODE:

3u′′ − αu3 + 3(1− µ)u = 0 . (4)

According to the extended Jacobian elliptic function expansion method [Chen, Xu, Liu et al.
(2003)], the solution of Eq. (4) can be expressed in the following form:

u = a0 + a1sn(ξ,m) + b1cn(ξ,m), (5)

where a0, a1 and b1 are constants determined later. From Eq. (5) we have

u′ = a1cn(ξ) dn(ξ,m)− b1sn(ξ,m) dn(ξ,m), (6)

u′′ = −m2sn(ξ,m) a1+2 a1sn(ξ,m)3m2+2m2sn(ξ,m)2cn(ξ,m) b1−a1sn(ξ,m)−b1cn(ξ,m).

(7)

Substituting Eqs. (5)-(7) into Eq. (4) and equating all the coefficients of sn3, sn2cn , sn2,
sncn , sn, cn, sn0 to zero, we obtain that:

6m2a1 − α
(
a31 − 3 a1b

2
1

)
= 0, (8)

6m2b1 − α
(
3 a21b1 − b31

)
= 0, (9)
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a0
(
a21 − b21

)
= 0, (10)

a0a1b1 = 0, (11)

−3a1m
2 − α

(
3 a20a1 + 3 a1b1

2
)
− 3µa1 = 0, (12)

α
(
3 a20b1 + b31

)
+ 3µ b1 = 0, (13)

−α
(
a30 + 3 a0b

2
1

)
+ 3(1− µ)a0 = 0. (14)

Solving the above system of equations yields the following cases:
Case 1.

a0 = 0, a1 = 0, b1 = ±
√

6
α mi, µ = 2m2.

Then, the first family of equation is

u1(x, t) = ±
√

6

α
m i cn(x− µt). (15)

As long as m→ 1, Eq. (15) is degenerated as follows:

u1(x, t) = ±
√

6

α
i sech(x− 2t). (16)

Case 2.

a0 = 0, a1 = ±
√

3
2α m, b1 = −

√
3
2α mi, µ = m2

2 .

Then, the second family of equation is

u2(x, t) = ±
√

3

2α
msn(x− µt)−

√
3

2α
m i cn(x− µt). (17)

As long as m→ 1, Eq. (19) is degenerated on the following form:

u2(x, t) = ±
√

3

2α
tanh(x− 1

2
t)− i

√
3

2α
msech(x− 1

2
t). (18)

Case 3.

a0 = 0, a1 = ±
√

3
2α m, b1 =

√
3
2α mi, µ = m2

2 .

Then, the second family of equation is

u3(x, t) = ±
√

3

2α
msn(x− µt) +

√
3

2α
m i cn(x− µt). (19)

As long as m→ 1, Eq. (19) is degenerated as the following form:

u3(x, t) = ±
√

3

2α
tanh(x− 1

2
t) + i

√
3

2α
sech(x− 1

2
t). (20)

Case 4.

a0 = 0, a1 = ±
√

6
α m, b1 = 0, µ = −m2.
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Then, the fourth family of equation is

u4(x, t) = ±
√

6

α
msn(x− µt). (21)

As long as m→ 1, Eq. (21) is degenerated as follows:

u4(x, t) = ±
√

6

α
tanh(x+ t). (22)

3 Numerical results
This section is mainly devoted to seek the numerical solution of Eq. (1), where (x, t) ∈
[a, b] × [0, Te]. Here, a and b are supposed to be the boundaries of the spatial domain and
Te denotes a particular time. As mentioned previously, the adaptive moving mesh and fixed
mesh techniques are employed to obtain the numerical results of Eq. (1). The corresponding
boundary conditions used in these methods are given as follows:

ux(a, t) = uxxx(a, t) = 0, ux(b, t) = uxxx(b, t) = 0, ∀ t ∈ [0, Te]. (23)

Furthermore, the corresponding initial condition is selected by calculating the exact solution
(Eq. (22)) at t = 0.

3.1 Numerical results of Eq. (1) on a fixed mesh

The physical domain is uniformly partitioned into N + 1 points by assuming that

xi = (i− 1)h, xi ∈ [a, b], 1 ≤ i ≤ N + 1,

where h = (b − a)/N. We also use the centred finite differences so as to discretise the
derivatives appeared in Eq. (1) as follows:

ut,i = −fi+1 − fi
h

,

fi =
ui+1 − 2ui + ui−1

h2
+ ui+ 1

2
− α

3
u3
i+ 1

2

,
(24)

where ui+ 1
2

= 0.5(ui+1 + ui), u
3
i+ 1

2

= 0.5(u3i+1 + u3i ) and i = 2, ..., N . The boundary
conditions presented in Eq. (23) are replaced with ut,1 = 0 and ut,N+1 = 0, and the initial
condition is selected by evaluating Eq. (22) at t = 0.

Fig. 1 illustrates how the uniform solution evolves with time. The parameters are taken
to be α = 3, µ = 1, a = −10, b = 10, N = 1000 and t is taken between t = 0 to
t = 5. Notice that the solution travels as the time progresses and does not evolve as can be
observed in this figure. It can be also noted that the numerical solution (solid green line), at
t = 5, is roughly identical to the exact solution (blue dashed line) obtained using Eq. (22)
at t = 5.
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Figure 1: Showing the time evolution of u(x, t) applying the scheme Eq. (24). The
parameter values are taken to be α = 3, µ = −1, a = −10, b = 10, N = 1000 and
t is taken between t = 0 to t = 5

3.2 Numerical results of Eq. (1) on an adaptive mesh

This subsection mostly focuses on finding the numerical results of Eq. (1) by employing
the adaptive moving mesh methods. The coordinate transformation is taken by

x = x(ξ, t) : [0, 1]→ [a, b], t > 0,

where x and ξ are assumed to be the spatial and computational coordinates, respectively.
Consequently, the solution u is obviously represented as follows:

u(x, t) = u(x(ξ, t), t). (25)

Hence, the moving mesh which is related to the solution appeared in Eq. (25) is illustrated
by Jh(ts) : xi(ξ) = x(ξi, t), i = 1, · · · , N + 1, and the end points of the physical
domain are described by x1 = a, xN+1 = b. Further, the regular grid evaluated on
the computational domain is shown as follows: J ch (t) : ξi = (i− 1)/N, i = 1, · · · , N + 1.
Applying the chain rule to Eq. (1) yields

ut,i −
ui+1 − ui−1
xi+1 − xi−1

xt =
−2

xi+1 − xi−1
(fi − fi−1) ,

fi =
2

xi+1 − xi−1

(
fi+1 − fi
xi+1 − xi

− fi − fi−1
xi − xi−1

)
+ ui+ 1

2
− α

3
u3
i+ 1

2

,
(26)

where ui+ 1
2

= 0.5(ui+1 + ui), u
3
i+ 1

2

= 0.5(u3i+1 + u3i ) and i = 2, ..., N . The boundary
conditions presented in Eq. (23) are replaced with ut,1 = 0 and ut,N+1 = 0, and the initial
condition is selected by evaluating Eq. (22) at t = 0. It should be pointed out that the
coordinate transformation x(ξ) is obtained by utilizing the MMPDEs and the MMPDE7
whose semi-discretisation is given by ( [Alharbi and Naire (2017, 2019); Alharbi (2016)])

MMPDE7 : xt,i =
1

2h2τqi
((xi+1 − xi)(qi+1 + qi)− (xi − xi−1)(qi + qi−1)), (27)
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Table 1: Presenting the errors, measured using L2 norm, and CPU time taken for both the
uniform mesh and adaptive mesh schemes. We used, here, MMPDE7 and the arc-length
monitor function. The parameters are given by α = 3, µ = −1, a = −10, b = 10,
τ = 10−2 and λ = 5

Measured Error (L2 norm) CPU time taken to reach t = 5
N (∆x) Uniform

mesh
Adaptive
moving
mesh

Uniform
mesh

Adaptive
moving
mesh

200 (0.1) 1.5× 10−2 2.8× 10−4 2.3× 10−1 s 4× 10−1 s
400 (0.05) 7.8× 10−3 6.7× 10−5 5.5× 10−1 s 7× 10−1 s
800 (0.025) 3.9× 10−3 1.66× 10−5 9× 10−1 s 1.28 s
1600 (0.0125) 2× 10−3 4.13× 10−6 1.65 s 3.06 s
3200 (0.00625) 9.9× 10−4 1.03× 10−6 5.07 s 8.56 s
6400 (0.003125) 4.9× 10−4 2.56× 10−7 14.4 s 20 s
8000 (0.0025) 3.9× 10−4 1.63× 10−7 16.5 s 42.56 s
10000 (0.002) 3.1× 10−4 1.05× 10−7 28.7 s 85.9 s

is also employed in this subsection. q(x, t) represents the mesh density function and τ is a
constant. The boundary conditions are given by xt,1 = 0 and xt,N+1 = 0. In addition, the
initial condition of the mesh is chosen by x(ξ, 0) = (i− 1)h, i = 1, 2, . . . , N + 1, where
h = (b− a)/N. The mesh density function is chosen as follows:

Arc-length monitor function : qi(x, u) =

√
1 + λ

(
ui+1 − ui−1
xi+1 − xi−1

)2

, (28)

where λ is considered to be a non-negative constant. Several forms of smoothing to the
mesh density function are used so as to support the uniform grid [Tang (2005); Ceniceros
and Hou (2001); Huang (2001)]. If the solution is not smooth enough, then the computed
monitor function can often cause a sudden change and make the computation stiffer. In
order to have a smoother mesh and make the mesh equation simpler to integrate, we use a
smoothing scheme such as the weighted averaging scheme proposed by Huang et al. [Huang
and Russell (2010)]. This scheme is formed as

q̂i = 0.25qi−1 + 0.5qi + 0.25qi+1,
q̂1 = 0.5 (q1 + q2) ,
q̂N+1 = 0.5 (qN + qN+1) .

(29)

The considered parameters are taken by α = 3, µ = −1, a = −10, b = 10, τ = 10−2 and
λ = 5. Eventually, we compare the schemes in terms of accuracy and convergence. To do
that, we obtain the exact solution (Eq. (22) ) and the numerical results to both the uniform
and the adaptive mesh schemes at t = 5.

Figs. 2(a)-2(c) present the time evolution of u(x, t), x(ξ, t), and q̂(x, t), respectively, using
the adaptive moving mesh with MMPDE7 Eq. (27) and the arc-length monitor function
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Figure 2: (a, b, c) The time evolution of u(x, t), x(ξ, t), and q̂(x, t), respectively, using
the adaptive moving mesh with MMPDE7 Eq. (27) and the arc-length monitor function Eq.
(28). The parameter values are α = 3, µ = −1, a = −10, b = 10, τ = 10−2 and λ = 5
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Figure 3: (a, b) show the time evolution of both the exact solution to Eq. (16) and
the numerical solution, respectively. We use the adaptive moving mesh scheme with the
arc-length monitor function Eq. (28) and MMPDE7 Eq. (27). Time is taken between t = 0
to t = 5. The parameter values used here are α = 3, µ = −1, a = −10, b = 10, τ = 10−2

and λ = 5

Figure 4: (c, d) illustrate the time evolution of both the adaptive mesh obtained by applying
MMPDE7 Eq. (27) and the arc-length monitor function Eq. (28), respectively, where
t = 0→ 5

Eq. (28). The parameter values are taken by α = 3, µ = −1, a = −10, b = 10.
The parameter of the MMPDE7 and the constant of the arc-length monitor function are
chosen by τ = 10−2 and λ = 5, respectively. From Fig. 2(b), we observe that the
mesh concentrates and moves to the steep front ahead and behind it. Fig. 2(b) shows
the arc-length monitor function related to the changes in the solution, where large values
of the monitor function result in the rose number of grids re-distributed in the steep front
region.
Figs. 3(a) and 3(b) display the time evolution of both the exact solution to Eq. (22) and
the numerical solution, respectively. We use the adaptive moving mesh scheme Eq. (26)
with the arc-length monitor function Eq. (28) and MMPDE7 Eq. (27), where t = 0 → 5.
The parameters values are given as follows: α = 3, µ = −1, a = −10 and b = 10. The
parameter of MMPDE7 and the associated constant of the arc-length monitor function are
taken by τ = 10−2 and λ = 5, respectively. It can be simply observed that the numerical
and exact solutions are roughly identical. Figs. 4(c) and 4(d) show the time evolution of
both the adaptive mesh obtained by applying MMPDE7 Eq. (27) and the arc-length monitor
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Figure 5: (a, b) show a summary of the errors’ columns presented in Tab. (1)

function Eq. (28), respectively. Time is chosen to move between 0 and 5. Remark that the
monitor function, appeared in Fig. 4(c), takes 1 everywhere except the area of the steep
front. Therefore, it controls the movement of the mesh points, illustrated in Fig. 4(d), so
that the region of the steep front takes more points than elsewhere.
Tab. 1 presents how the numerical solutions obtained using the above schemes are
convergent to the exact solution. The error is measured by obtaining the numerical results
for above schemes at t = 5. Figs. 5(a) and 5(b) demonstrate a brief description of the
errors’ columns, presented in Tab. 1. Notice that the adaptive moving mesh solution is
outstandingly accurate and concurrent to the exact solution than that obtained using the
uniform mesh scheme. For the CPU time taken, the uniform mesh and adaptive moving
mesh schemes take a very similar time to arrive at t = 5 for the same value of ∆x. Finally,
we can surely assume that the technique of the adaptive moving mesh is more accurate and
convergent than that of the uniform mesh scheme.

4 Conclusions
In this article, we have solved the DMBBM equation numerically using adaptive moving
mesh PDEs (MMPDEs) method. Moreover, it has shown that the extended Jacobian
elliptic function expansion technique can be used for building the wave solutions for the
DMBBM equation. The main advantage of this method is that it gives results in terms
of the Jacobi elliptic function which are more general. Indeed, these solutions may have
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significant applications in physics and applied mathematics. The comparison between the 
exact and numerical solutions are also investigated. The results of this work show 
how the adaptive moving mesh PDEs (MMPDEs) method is very powerful, robust and 
vital. Another interesting aspect of these results is that the proposed two methods used 
can be applied to other nonlinear equation in applied science.
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