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Abstract: With the advent of deep learning, self-driving schemes based on deep learning 
are becoming more and more popular. Robust perception-action models should learn 
from data with different scenarios and real behaviors, while current end-to-end model 
learning is generally limited to training of massive data, innovation of deep network 
architecture, and learning in-situ model in a simulation environment. Therefore, we 
introduce a new image style transfer method into data augmentation, and improve the 
diversity of limited data by changing the texture, contrast ratio and color of the image, 
and then it is extended to the scenarios that the model has been unobserved before. 
Inspired by rapid style transfer and artistic style neural algorithms, we propose an 
arbitrary style generation network architecture, including style transfer network, style 
learning network, style loss network and multivariate Gaussian distribution function. The 
style embedding vector is randomly sampled from the multivariate Gaussian distribution 
and linearly interpolated with the embedded vector predicted by the input image on the 
style learning network, which provides a set of normalization constants for the style 
transfer network, and finally realizes the diversity of the image style. In order to verify 
the effectiveness of the method, image classification and simulation experiments were 
performed separately. Finally, we built a small-sized smart car experiment platform, and 
apply the data augmentation technology based on image style transfer drive to the 
experiment of automatic driving for the first time. The experimental results show that: (1) 
The proposed scheme can improve the prediction accuracy of the end-to-end model and 
reduce the model’s error accumulation; (2) the method based on image style transfer 
provides a new scheme for data augmentation technology, and also provides a solution 
for the high cost that many deep models rely heavily on a large number of label data. 
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1 Introduction 
In recent years, with the rapid development of machine learning algorithms, it has 
become more and more important to apply artificial intelligence technology to solve 
problems in autonomous vehicles and unmanned aerial vehicle. However, due to the 
complicated driving environment and high cost of high-precision laser radar sensors, there 
are also many challenges in the realistic use of unmanned driving. The application of low-
cost vision cameras to solve control problems in self-driving has been one of the important 
research directions in the field of intelligent vehicles [Sotelo, Rodriguez, Magdalena et al. 
(2004); Urmson, Anhalt, Bagnell et al. (2008)]. Researchers apply machine learning 
methods to train agents (such as vehicles, unmanned aerial vehicles, game agents, etc.) to 
complete navigation tasks in an unknown environment [Bojarski, Del Testa, Dworakowski 
et al. (2016); Chen, Seff, Kornhauser et al. (2015); Koutník, Cuccu, Schmidhuber et al. 
(2013)]. ALVINN was the first one to prove that end-to-end learning had the ability to form 
an autopilot system. In the absence of an CNN (convolution neural network), they used a 
three-layer fully connected network by inputting monocular cameras and radar data, 
ultimately enabling vehicle to drive 400 meters along the road [Pomerleau (1989)]. 
Muller et al. built a smart car consisting of two cameras and other sensors, collected 
24,000 frames of labeled data generated by human-controlled vehicles, and fed the data 
into a six-layer CNN for training [Muller, Ben, Cosatto et al. (2006)]. The bench was 
tested on an unknown open terrain and successfully avoided obstacles such as trees and 
rocks. Bojarski et al. collected 72 hours of data through a camera placed in front of the 
car and trained the agent using Deep Neural Network (DNN), which finally led to 
autonomous driving in the parking lot [Bojarski, Del Testa, Dworakowski et al. (2016)]. 
Xu et al. advocated learning a general vehicle motion model from large-scale crowd 
video data and developing an end-to-end trainable architecture for observation from 
instantaneous monocular cameras and previous vehicle states [Xu, Gao, Yu et al. (2017)]. 
Kim et al. constructed a wide data set by collecting data under various road conditions, 
achieving robust control of the vehicle [Kim and Park (2017)].  
All of the above works are based on the collection of a large amount of data to achieve 
autonomous driving, which requires a lot of labor and time. Coincidentally, in the past 
research work, self-driving was also achieved by improving the neural network structure. 
In [Du, Guo and Simpson (2017)], Du et al. proposed a three-dimensional convolution 
model with residual connections and recursive LSTM layers using different deep learning 
techniques such as transfer learning, 3D-CNN, LSTM and RESNET. In the work of 
Viswanath et al., an embedded convolutional neural network (Jacintonet) structure was 
raised and its reliability was verified in the simulation environment [Viswanath, Nagori, 
Mody et al. (2018)]. Mahdavian et al. also put forward an end-to-end neural network 
architecture for training unconstrained autonomous vehicles in a simulation environment 
[Mahdavian and Martinez (2018)]. However, in our current research, it is clear that the 
robustness of the model trained with the previously collected data will be significantly 
reduced when the surrounding environment changes (light or roadside information 
changes, etc.) or road features are not obvious. Although the traditional data 
augmentation methods (such as horizontal flip, random clipping, scaling, rotation and 
elastic deformation, etc. [Krizhevsky, Sutskever and Hinton (2012)]) are used to augment 
the data, these can only make the model learn rotation and proportional invariance 
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[Bojarski, Del Testa, Dworakowski et al. (2016); Kim and Park (2017)]. When the 
texture, color and light in the environment change, the adaptability of the model will be 
greatly reduced [Jackson, Atapour-Abarghouei, Bonner et al. (2018)]. Our work is a new 
data augmentation technique based on image style transfer drive to augment limited data 
sets, and then obtain a robust end-to-end control model. 
Style transfer refers to a kind of image processing algorithm that modifies the visual style 
of an image while preserving the semantic content of the image. It can change the 
likelihood of distribution of low-level visual features in images, as proposed by Gates et 
al. [Gatys, Ecker and Bethge (2016)]. Tobin et al. [Tobin, Fong, Ray et al. (2017)] and 
Atapour & Breckon [Atapour-Abarghouei and Breckon (2018)] successfully promoted 
the graphics in the virtual environment to the real-world through style transfer. Early 
research methods modeled the parametric model of visual texture by constructing 
constraints to match the edge space statistics of visual patterns [Julesz (1962); Portilla 
and Simoncelli (2000); Freeman and Simoncelli (2011)]. In recent years, spatial image 
statistics collected from intermediate features of the image classifier have been shown to 
capture visual textures [Simonyan and Zisserman (2014); Gatys, Ecker and Bethge 
(2015)]. However, these methods have low flexibility, poor real-time performance, and 
high requirements for computer operations [Ghiasi, Lee, Kudlur et al. (2017)]. Dumoulin 
et al. have recently demonstrated that a transfer network of 32 different painting styles 
can be trained by using conditional normalization parameters [Dumoulin, Shlens and 
Kudlur (2016)]. Our work is to create an arbitrary style generation network that uses a 
novel style transfer method to disturb the color, texture and contrast ratio of the content 
image to achieve the purpose of randomization of the style, and finally augments to the 
scenarios that was not observed before the vision system. 
The rest of this paper is organized as follows: Section 2 describes the research work 
related to this work. Section 3 describes the proposed arbitrary style generation network 
architecture in detail. In the fourth section, Section 4.1 determines the appropriate image 
style intensity through image classification experiments, and verifies the effectiveness of 
our method by comparing with traditional image data augmentation techniques. The 
classification results of data augmentation techniques based on image style transfer drive 
on invisible domains are tested in Section 4.2. As for Section 4.3, simulation experiments 
are carried out in three different experimental environments. Finally, an experimental 
platform is set up and a real vehicle experiment is tested under four various sites. What 
follows in Section 5 is a brief conclusion of the process and outlook toward the full text. 
In summary, this article has made the following contributions: 
1. We propose a novel, fast and arbitrary image style transfer method, which can be used 
for image style randomization, and explore the possibility of applying it to image data 
augmentation. Based on the existing image classification network architecture, our 
method further improves the accuracy of image classification. 
2. We introduce a multivariate Gaussian distribution function, which provides random 
style embedding vectors for image style, and linearly interpolates with the vector 
predicted on the style learning network to control the style intensity. Finally, a set of 
random normalization constants is provided for the style transfer network. This breaks 
through the limitations of limited-style images and can quickly transform any given 
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content image to produce an infinite number of stylized images. 
3. Style-transferred images are used as data augmentation to provide a new approach for 
traditional image data augmentation techniques. We applied it to self-driving based on 
end-to-end learning for the first time, reducing the difficulty of collecting enough data 
and improving the performance of image-based deep learning algorithms. 

2 Related work 
2.1 Image style transfer 
Image style transfer is to transform the style of any other image to the input one by 
computer, but to keep the semantic content of the original image unchanged, that is, 
given a content image c and a style image s, the generated image g is similar to image c 
in content and similar to image s in style. It is assumed that each layer of the 
convolutional neural network outputs a number of feature maps in the form [nH, nW, nC], 
where nH, nW, and nC are the height, width, and number of channels of the feature map, 
respectively. The output of each layer is a 3-dimensional array. This paper uses al to 
represent the output of a layer of convolutional neural network. According to the study by 
Gatys et al., the image texture feature, i.e. style, can be extracted using the Gram matrix 
[Gatys, Ecker and Bethge (2016)]. The content loss of the content image c and the 
generated image g is: 
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= −                                                                                   (1) 

The style loss of the style image s and the generated image g is: 
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The total optimization goal can be indicated as: 

total content styleL L Lα β= +                                                                                                    (3) 

Among them, α and β are the weighting coefficients of the content loss and style loss in 
the total loss, and the two values are adjusted to obtain the generated map with different 
emphasis. G(al(s)) is the Gram matrix associated with the layer l activation function. 
The gradient descent method is used to optimize the image iteratively, which requires at 
least 1000 iterations [Gatys, Ecker and Bethge (2016)]. Even with GPU acceleration, it 
takes about 20 minutes, resulting in low computational efficiency [Ghiasi, Lee, Kudlur et 
al. (2017)]. Some researchers have solved this problem by establishing a secondary 
network [Johnson, Alahi and Li (2016); Li and Wand (2016); Ulyanov, Lebedev, Vedaldi 
et al. (2016)]. Although these methods increase the speed of calculation, the flexibility is 
very low. Since the neural network only learns a single style, if other styles are needed, 
the network must be retrained, which makes the robustness of the model worse. 
Yanai [Yanai (2017)] proposed a feedforward neural style migration network that 
matched the learned style embedding vector to the convolutional layer in the style 
transformer network and transferred invisible style. Ghiasi et al. [Ghiasi, Lee, Kudlur et 
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al. (2017)] designed a style prediction network specifically for predicting affine 
transformation parameters for each style image. The network requires large-scale style 
and content images for training, and eventually can be extended to any image style. 
However, this method has an obvious disadvantage, that is, the data-driven approach will 
inevitably lead to a stylization result that is very relevant to the type and number of 
training concentrated styles. 
In this paper, we being inspired by the flexibility, rapidity and style diversity of the 
method in Ghiasi et al. [Ghiasi, Lee, Kudlur et al. (2017); Yanai (2017)], the style 
prediction network inciption-v3 architecture in literature [Szegedy, Vanhoucke, Ioffe et al. 
(2016)] is fine-tuned, and the multivariate Gaussian distribution is added to provide the 
normalization constant of linear interpolation for style transfer networks. This provides a 
new solution for arbitrary image style transfer technique. 

2.2 Image data augmentation 
Image data augmentation is a method of deriving new data from raw data. Traditional 
image augmentation methods include horizontal flipping, random cropping, scaling, 
rotation, and elastic deformation [Krizhevsky, Sutskever and Hinton (2012)]. One of their 
functions is to improve the generalization ability of the model by increasing the amount 
of data, and the other is to increase the robustness of the model by adding noise data. For 
example, the literature [Claudiu Ciresan, Meier, Gambardella et al. (2010); Simard, 
Steinkraus and Platt (2003)] simulates the stroke changes caused by hand muscle 
oscillations by the elastic deformation method, and then augments the handwritten 
datasets MNIST. In the work of Bojarski et al., they provided data augmentation by 
adding two additional perspectives for simulating visual offset and correction control 
[Bojarski, Del Testa, Dworakowski et al. (2016)]. Similarly, Du et al. increased the offset 
of the steering angle by horizontally moving the camera to simulate the effect of the car 
on different locations on the road [Du, Guo and Simpson (2017)]. Then arbitrary vertical 
movement of the image was also to simulate the vehicle's operating conditions on uphill 
and downhill. At the same time, image color space conversion is used to simulate shadow 
and brightness changes in the external ambience. Finally, the generalization ability and 
robustness of the end-to-end control model to the unknown environment are improved. 
Self-driving with end-to-end learning methods relies heavily on datasets. The vision 
sensor is sensitive to the factors of camera distortion, light, background change, and 
disturbance in the environment, which ultimately lead to model failure. Fig. 1 shows the 
driving decision heatmap of the benchmark model in the simulator environment and the 
real-world scenarios. The model focuses on the high-lighting part of the picture, which 
provides a basis for controlling vehicle steering or acceleration and deceleration. As can 
be seen from the results of the simulator scenarios, the model makes decisions by 
identifying lane lines. In Real-world Scenario 1, the model not only identifies lane lines, 
but also makes decisions by identifying other objects in the environment, such as pillars 
and bright windows. In Scenario 2 and Scenario 3, due to the changes of light and 
external environment (pedestrian walking, billboards shift, etc.), the previously trained 
model recognizes the more prominent texture in the current environment, such as the 
reflection of smooth floor surface, billboards and flare, etc., and unable to identify clear 
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lane lines. Unfortunately, the benchmark model failed to make decisions by identifying 
lane lines. Even if the external environment changes, the lane lines that does not change 
is the key to achieving self-driving. Therefore, our main work is how to make the model 
re-focus the lane lines itself. 
From the analysis results of Fig. 1, it can be found that the models trained on specific 
data in specific areas are difficult to generalize to other scenarios that are not seen during 
learning. Therefore, our work seems to solve the domain adaptation problem, but data 
augmentation is not a domain adaptation, usually it is used to reduce overfitting and 
improve the generalization of unseen scenarios in the same domain [Gretton, Smola, 
Huang et al. (2009)]. A study by Geirhos et al. showed that models trained on ImageNet 
datasets were more dependent on image textures, but ResNet-50 trained on ImageNet 
with random textures could make CNNs depend on shapes rather than textures [Geirhos, 
Rubisch, Michaelis et al. (2018)]. Therefore, we propose a new image style transfer 
method that disrupts the texture and color of an image through a style transfer network. 
Then we explored the application of this image style migration-driven data augmentation 
technology in self-driving cars based on end-to-end learning. 

 
(a): Udacity’s Self-Driving Simulator Scenario 

 
(b): Real-World Scenario 1 
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(c): Real-World Scenario 2 

 
(d): Real-World Scenario 3 

Figure 1: Visualized heatmap of the benchmark model 

3 Data augmentation method based on image style transfer drive 
Early image style transfer methods were either slower in iteration [Portilla and Simoncelli 
(2000); Gatys, Ecker and Bethge (2015)] or only applicable to limited styles (poor 
flexibility) [Johnson, Alahi and Li (2016); Li and Wand (2016); Ulyanov, Vedaldi and 
Lempitsky (2016)]. Our method is inspired by the construction of the style transfer 
network in Ghiasi et al. [Ghiasi, Lee, Kudlur et al. (2017)] as the codec structure and the 
literature [Dumoulin, Shlens and Kudlur (2016)] to integrate the style image into 
normalization parameters, and proposes an image style transfer algorithm for data 
augmentation. It not only improves the flexibility of style transfer (the image style can be 
arbitrarily), but also improves the prediction accuracy of the steering angle of the self-
driving based on end-to-end control. 

3.1 Introduction to arbitrary style generation network architecture 
As shown in Fig. 2, our system consists of a style migration network T, a style learning 
network P, a proposed multivariate Gaussian distribution function G (A two-dimensional 
Gaussian distribution represents the G.), and a VGG-16 style loss network Ψ. The dashed 
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lines represent the process training the style transfer network T and the style learning 
network P on the Painter by Numbers Dataset and Describable Textures Dataset. The 
solid lines represent the random stylization process of the image. The specific details are 
as follows: 

+ + ++ +

Style image s

Style Learning 
Network P

Prediction 
Embedding 

Vector

P(c) G(µ,R)

Multivariate Gaussian 
Distribution Function

G

Style Transfer Network T Stylized image T(c,v)

VGG-16 Style Loss 
Network Ψ 

Content 
image c

Style Loss

Content Loss

v

Figure 2:  An overview of arbitrary style generation network. It includes a style learning 
network P, a proposed multivariate Gaussian distribution function G, a style transfer 
network T, and a VGG-16 style loss network Ψ. v is style embedding vector after linear 
combination of P(c) and G(µ,R) 

Multivariate Gaussian distribution function G. The style transfer network proposed by 
Ghiasi et al. needs to be trained by a large number of images (Painter By Numbers (PBN) 
dataset), and this data-driven approach inevitably leads to the style result is closely 
related to the type and quantity of style in the training dataset [Ghiasi, Lee, Kudlur et al. 
(2017)]. Based on this, we introduce a multivariate Gaussian distribution function to 
generate arbitrary style embedding vector G(µ,R), and the mean µ and covariance R of 
this distribution match the distribution of style embedding vector generated by the PBN 
datasets. Therefore, the style embedding vector G obtained by randomly sampling the 
multivariate Gaussian distribution is equivalent to selecting one image in the PBN dataset 
as the style image without the entire dataset, thus reducing the computational cost. Due to 
the randomness of the multivariate Gaussian distribution, it produces a myriad of styles 
image s that augment the content image c to arbitrary stylized image, which is then 
extended to previously unobserved styles, ultimately achieving image augmentation. 
Style learning network P. It mainly follows the Inception-v3 architecture [Szegedy, 
Vanhoucke, Ioffe et al. (2016)] and is employed to predict the embedding vector P(c) of a 
content image c. As a result, this guarantees that most of the styles on an image c remain 
the same. On the Mixed-6e layer, the mean value of each activation channel is calculated 
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and a 768-dimensional feature vector. Then, two fully connected layers are employed to 
predict final embedding vector. The first fully connected layer is constructed into 100 
units for the purpose of compression representation. Finally, the predicted embedding 
vector P(c) is linearly interpolated with the random style embedding vector G(µ,R) from 
the multivariate Gaussian distribution to provide a set of random normalization constants 
for the style transfer network T. The interpolated style embedding vector is v. where 
v=αG(µ, R)+(1-α)P(c) and 100v ∈ . 
Style transfer network T. It is a deep residual network, mainly following [Johnson, 
Alahi and Li (2016)], which is used to generate stylized images. The network includes 3 
downsampling layers, 5 residual blocks of 2 convolutional layers each, and 3 upsampling 
layers. This is a total of 16 convolutional layers, with the middle 10 layers having 128 
channels each and does not contain a pooling layer. In order to avoid the checkerboard 
phenomenon, the nearest neighbor interpolation is used in the upsampling, and then 
convolution calculation is performed. In order to avoid black blocks, the activation 
function of the last layer of convolutional layer is replaced by ReLU with Sigmoid 
[Dumoulin, Shlens and Kudlur (2016)]. 
In addition to the content image c, the input of the network requires a multi-Gaussian-
style embedding vector and a predictive embedding vector P(c) from the learning 
network P on the input image c to affect the style transfer network. This process is 
conditional instance normalization. Since the convolution weights in the style transfer 
network can be shared by multiple styles, the scaling parameter λ and the shift parameter 
δ are added to the network. That is, the renormalized feature map of the feature map x 
before normalization can be represented as: 

( )µλ δ
σ
−′ = +cxx                                                                                                            (4) 

where µc and σ are the mean and standard deviation on the spatial axis of the feature map 
x, and λ, δ are scalars obtained by embedding the style through the fully connected layer. 
Consequently, an arbitrary style transfer network T can be represented as Eq. (5). That is, 
the output x of the network T depends both on the content image c and on the linear 
combination v of P(c) and G(µ,R).  

( , )=x T c v                                                                                                                         (5) 

Style loss network Ψ. It is a VGG16 network consisting of content loss and style loss, 
respectively, for constraining Ltotal during neural network training. The content image c 
does not consider low-level information such as edge texture, and only selects one layer 
in the high-level information. The style loss calculates each large convolution layer and 
then calculates the Gram matrix. Next, the generated image x is compared with the 
feature map of the content image c and the style image s input into the network, 
respectively. Finally, the difference between the stylized image x and the content image 
and the style image is reduced. 

3.2 Style randomization procedure 
In general, the normalization parameter for linear interpolation comes from the 
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predictive vector of the style prediction network for the style image s [Ghiasi, Lee, 
Kudlur et al. (2017)]. This style prediction network needs to be trained through large-
scale style images and content images, but this data-driven approach inevitably leads to 
a stylization effect that is highly correlated with the type and number of image style of 
training dataset. Therefore, in order to eliminate this correlation, we introduce a 
multivariate Gaussian distribution as a random style-embedding vector. The image 
stylization effect is shown in Fig. 3. The shape of the stylized image is preserved, but 
the color, texture, and contrast in the image are randomly varying. Qualitatively 
speaking, our approach can produce arbitrary styles and provide solutions for 
generalizing to unknown scenarios. The images used here for stylization come from the 
Flowers-17 dataset and the road images we collected. 
In addition, in order to control the image style intensity and achieve the best end-to-end 
model, we linearly interpolate the predictive style embedding vector P(c) of the input 
image and the randomly sampled style embedding vector G(µ,R). Among them, the style 
learning network keeps most of the content of the input image unchanged, and the 
multivariate Gaussian distribution is used to extend to previously unobserved scenarios. 
Therefore, the final style embedding vector is defined as: 

( , ) (1 ) ( )α µ α= + −v G R P c                                                                                              (6) 

[ ( )]µ = Εs P c                                                                                                                     (7) 

, cov[ ( ) , ( ) ]=i j i jR P c P c                                                                                                    (8) 

where style intensity α is the style intensity ratio; the content image c is predicted by the 
style learning network P to generate the embedded vector P(c); µ and R are the mean and 
covariance of the multivariate Gaussian distribution, which are derived from the mean 
and covariance of the vector P(c). Fig. 4 shows the stylized results with different α values. 
As α gradually increases, the shape of flowers, lane lines and surrounding objects in the 
image is more and more prominent. In addition, when α is relatively smaller, surrounding 
objects in the image containing the lane lines are blurred. As for how to choose the 
appropriate α value, we will introduce it in the next chapter. 

 
Figure 3: Image stylized display 
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Figure 4: Stylized images display with different α values 

4 Experimental results 
We use experiments to verify the feasibility of data augmentation technology based on 
image style transfer drive, that is, to improve the generalization and robustness of the 
end-to-end control model by the proposed algorithm to disturb the color, texture and 
contrast ratio of the image. Therefore, our work only compares our method with existing 
image augmentation techniques. 
We validate the rationality of the proposed method and determine the best style strength 
α by general image classification and cross-domain classification experiments. Among 
them, cross-domain classification experiments further put forward higher requirements 
and challenges for our image style transfer algorithm. In the image classification 
experiment, we used the Flowers-17 benchmark dataset and determined the best α by 
hyperparameter search. Then, we did a cross-domain classification experiment on the 
Office-Caltech dataset to test the generalization ability of the proposed style transfer 
algorithm for invisible domains. To ensure the fairness of the experiment, we set the 
number of augmented and unaugmented images to 1:2. Finally, simulation experiments 
were carried out employing image data in the real-world scenarios, and a reduced-size 
smart car experiment platform was built and verified in four real-world environments. 

4.1 Image classification 
We use the Flowers-17 small data set to find the appropriate style intensity α and test the 
performance of the proposed method. The dataset has 17 categories, each containing 80 
images. This is a challenge to avoid overfitting when training deep learning models, so it 

Original α  = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4

α = 1 α = 0.9α = 0.8 α = 0.7 α = 0.6 α = 0.5 

Original α  = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4

α = 1 α = 0.9α = 0.8 α = 0.7 α = 0.6 α = 0.5 



 
 
 
604                                                                                        CMES, vol.122, no.2, pp.593-617, 2020 

puts high demands on data augmentation algorithms. We use a VGG-16 network with a 
learning rate of 10-3, a weight attenuation of 10-6, and an iteration of 100 times. In 
addition, the batch size is 64, and the early stopping is set to 10. 
We find the appropriate style intensity α by the Hyperparameter search experiments, 
where the α value is set from zero to one, with an interval of 0.1. In addition, in order to 
ensure the fairness of the experiment, we set the ratio of unaugmented data size to 
augmented data size to 2: 1. When the images of style augmentation are mixed with the 
traditional data augmentation, we set the ratio of its data size to 1:1, which guarantees 
that the ratio of unaugmented data to augmented data is still 2:1. We obtained a more 
suitable value through the mean and standard deviation of the five experiments. In the 
hyperparameter search experiments shown in Fig. 5, the red line depicts the mean of the 
accuracy obtained at differentα values, and the error bars (blue line) denote the standard 
deviation. It can be obtained from Fig. 5 that when α=0.4, the result is optimal. 

 
Figure 5: Hyperparameter Search experiments 

At α=0.4, we compared the style transfer model with the traditional augmentation 
techniques (such as flipping, translation, adding random noise, random clipping, and 
random brightness, etc.). As shown in Fig. 6(b), the unaugmented model obtains the 
worst classification accuracy, and the model with style transfer is superior to it. By 
comparing the training accuracy in Fig. 6(a), it can be seen that the unaugmented model 
has overfitting, and the models with data augmentation have obtained better outcomes. 
Obviously, our image transfer-driven data enhancement method (Style Transfer) has a 
faster convergence speed. The mixed augmentation (style transfer and traditional 
augmentation techniques) achieves the fastest convergence rate and highest accuracy 
(Mix). In summary, we can apply the style transfer algorithm to data augmentation to 
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avoid overfitting and improve the convergence rate, but combined with the traditional 
data augmentation technique, we get unexpected results on the VGG-16 network that is 
not currently advanced. 

 

    
Figure 6: With the Flowers-17 dataset as the training set, we recorded the accuracy of four 
different data augmentation techniques in the training process. Among them, (a) is the 
training accuracy curve of different models; (b) is the test accuracy curve of different models 

4.2 Cross-Domain classification experiment 
To challenge and test the generalization of the proposed style transfer method for 
invisible domains, we tested it on the Office-Caltech dataset. The Office dataset consists 
of Webcam, DSLR, and Amazon domains. Each domain consists of 10 classes (backpack, 
bike, calculator, headphones, keyboard, laptop, monitor, mouse, mug and projector). The 
background of the image in Amazon domain is simple, and we select 958 pictures. The 
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Webcam domain is taken from the camera and we have 295 pictures. The Caltech dataset 
also consists of 10 categories, and its image is a mix of camera shots and Amazon 
product images, with a total of 1123 pictures. 

Table 1: Test accuracy on the Office-Caltech dataset. A, C, and W represent Amazon, 
Caltech, and Webcam 

Task Network Accuracy (%) 
None Trad Style Mix 

A→C VGG-16 74.6 75.1 76.3 79.9 
GoogleNet 84.5 87.3 89.6 91.6 

A→W VGG-16 55.9 56.1 59.3 66.5 
GoogleNet 67.8 68.4 71.8 78.9 

C→A VGG-16 83.1 83.6 84.1 86.4 
GoogleNet 91.3 92.2 92.8 93.6 

C→W VGG-16 61.4 62.1 64.5 72.7 
GoogleNet 73.1 74.6 76.6 83.5 

W→A VGG-16 53.1 55.9 57.4 60.2 
GoogleNet 66.3 66.9 68.8 77.8 

W→C VGG-16 56.8 57.0 58.6 60.1 
GoogleNet 67.4 67.5 69.2 72.9 

We evaluated on an advanced network architecture (GoogleNet [Szegedy, Liu, Jia et al. 
(2015)]) and on the less advanced VGG-16 network. We experimented with each domain 
as a source and target domain, and compared the test accuracy of No Data Augmentation 
(None), Traditional Data Augmentation (Trad), Style Augmentation (Style), and Mixed 
Augmentation (Mix). Tab. 1 shows the average test accuracy for three experiments on 
VGG-16 and GoogleNet. Obviously, the mixed augmentation method achieved the 
highest accuracy in each experiment. The accuracy of the unaugmenteded model is lower 
than the other three methods, and the style augmentation method is slightly better than 
the traditional method. When the source domain and the target domain differ greatly 
(such as A→W, C→W, W→A, and W→C), the traditional method does not improve the 
accuracy of the model obviously, but the style augmentation method has been greatly 
improved. Even though GoogleNet has achieved good classification results in previous 
image classifications, it still achieves higher accuracy than the unaugmented and 
traditional augmentation methods when using style augmentation or mixed augmentation. 
Therefore, the proposed style transfer method has better generalization ability for 
invisible domains, and can provide a new scheme for improving classification accuracy 
on the datasets of the small batch data. 

4.3 End-to-End vehicle control experiment based on monocular vision 
In image classification and cross-domain classification experiments, we determined both 
the best style intensity α and the feasibility of the proposed method in the invisible 
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domain. Next, we designed an end-to-end vehicle control simulation experiment and a 
real road test experiment based on monocular vision. 

4.3.1 Simulation experiment 
We tested the performance of the proposed method in end-to-end vehicle control based 
on monocular vision in three different environments. The experimental environment is 
the self-driving simulator provided by Udacity and the tracks of two real-world scenarios 
(Figs. 1(c) and 1(d)). The real-world scenarios shown in Figs. 1(c) and 1(d) (there are 
significant reflections and light spots on the smooth floor, etc.) poses a major challenge to 
our approach. Then, two types of data are collected in each experimental environment, 
one for training the end-to-end model and the other for testing the performance of the 
model. The convolutional neural networks we use here for training are all based on the 
architecture of reference [Bojarski, Del Testa, Dworakowski et al. (2016)]. 

 
Figure 7: Comparison between steering angle values of human driver and predicted 
values of different data augmentation models 
Fig. 7 shows a comparison between the steering angle values of the human driver and 
the predicted values of the different data augmentation models. Tab. 2 shows the Mean 
and MSE between the predicted values of the different data augmentation models and 
the steering angle values of the human driver. It is worth noting that Mean represents 



 
 
 
608                                                                                        CMES, vol.122, no.2, pp.593-617, 2020 

the average error between the predicted steering angle values and the true values. It can 
be seen from Fig. 7 and Tab. 2 that the difference in the results of the different tasks is 
very small. This is because the environment inside the simulator is single and stable, as 
shown in Fig. 1(a), regardless of which data augmentation methods are applied, the 
depth model all makes steering decisions by identifying lane lines. The work of Yang et 
al. [Yang, Wang, Liu et al. (2017)] supports our research. They point out that road-
related features are the most important for training controllers. The roadside-related 
features are helpful to improve the generalization of the controller to the complex 
roadside information scenarios. 

Table 2: Mean and MSE between the results predicted by different data augmentation 
models and the steering angle values of human drivers 

(a): Udacity’s Self-Driving Simulator Scenario 
Task None Trad Style Mix 
Mean 2.555×10-2 2.381×10-2 2.322×10-2 2.154×10-2 
MSE 1.051×10-3 8.671×10-4 8.583×10-4 7.450×10-4 

(b): Real-world Scenario 2 
Task None Trad Style Mix 
Mean 2.268×10--1 2.200×10-1 1.735×10-1 1.387×10-1 
MSE 1.327×10-1 1.170×10-1 1.078×10-1 7.255×10-2 

(c): Real-world Scenario 3 
Task None Trad Style Mix 
Mean 3.221×10-1 2.910×10-1 2.527×10-1 1.542×10-1 
MSE 2.633×10-1 2.264×10-1 1.975×10-1 1.349×10-1 

However, in the real-world environment (as shown in Figs. 8(a), 8(b)), the model without 
data augmentation has a large degree of deviation when going straight, especially in the 
environment 3 with large interference (Fig. 8(b) shown). The angle values predicted by 
the model with style augmentation and mixed augmentation are less deviated from the 
true steering angle. When the vehicle turns, because the left steering angle data in 
environment 2 is less (the data between [0, 1]), both the unaugmented and traditional 
augmentation models may exhibit significant understeering or non-steering. When in 
Scenario 3 (less right turn angle data), this phenomenon is more obvious. When the data 
transfer method is adopted, only the style-augmented model has a better prediction result, 
as shown in Fig. 8(a). Although in the Scenario 3, the style augmentation technique has 
better results than the unaugmented and traditional augmentation techniques, because of 
its more interference, it eventually leads to the prediction outcome that is lower than the 
result of the Scenario 2. However, the model with mixed augmentation gets good 
prediction results. As shown in the figure, the prediction outcome of the vehicle going 
straight is less fluctuating, and the phenomenon of understeering has also been well 
solved. Obviously, even if the steering angle data in a certain direction is lacking, the 
mixed augmentation yields good prediction results. In addition, from the results shown in 
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Tabs. 2(b) and 2(c), it can be intuitively seen that the “Mix” method is optimal, and the 
steering angle error and the MSE value are the smallest, then the Mean and MSE of 
“Style” are better than those of “Trad” and “None”. 

 
(a): Real-world Scenario 2 
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(b): Real-world Scenario 3 

Figure 8: Comparison between steering angle values of human driver and predicted 
values of different data augmentation models 

 
(a) Real-world Scenario 2 
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Traditional augmentation

Style transfer
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(b) Real-world Scenario 3 

Figure 9: Visualized heatmap of traditional augmentation and style augmentation 
techniques 

In order to check whether the model trained by the four data augmentation techniques 
really focuses on the lane lines, we generate a saliency heatmap on the test dataset. Fig. 9 
shows the heatmap in two real-world environments. It can be seen from the visualization 
results that neither the unaugmented model nor the traditional augmentation model makes 
driving decisions by identifying lane lines. Among them, the model trained in Scenario 2 
identifies surrounding objects as well as bright windows. In Scenario 3, the model makes 
driving decisions by identifying light spots on the smooth floor and bright windows. It is 
conceivable that when the position of the object and light position or light intensity in the 
environment change, the model trained by the previous data will lose the identification 
basis and the robustness of the model will be greatly reduced. However, when the method 
based on image style transfer is applied to augment the data, the model finally re-
identifies the lane lines. In Scenario 3, the style augmentation and mixed augmentation 
models filter out the obvious light spots on the floor. Although there are particularly 
bright reflections in the picture and cannot be completely filtered out, Yang et al. [Yang, 
Wang, Liu et al. (2017)] pointed out in their work that roadside-related features help to 
improve the generalization of end-to-end models for complex scenarios, and lane lines 
features are critical to the robustness of the model. In addition, their work also verified 
that it is feasible to identify only the lane lines model. In addition, their work also verified 
that the model trained only with lane line data could also achieve great steering angle 
prediction results. Therefore, the data augmentation technique based on the style transfer 
drive can refocus the model to the lane lines, which greatly improves the robustness of 
vehicle control. As the comparison between black and cyan curves and blue curves in Fig. 
7 shows, their prediction results are better than those of unaugment and traditional 
augmentation models. 

4.3.2 Road test experiment 
To further test the performance of data augmentation technique based on style transfer 
drive in vehicle control, we built a reduced-size smart car (proportion 1:16) experiment 
platform. The experiment hardware platform is shown in Fig. 10, including WiFi 
communication module, workstation, smartphone, game controller X-box and smart car 
donkeycar based on Raspberry Pi. The WiFi module is used for communication between 
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Style transfer
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smart car, smartphone and workstation. Smartphone are used to control the start, stop, 
and speed of the vehicle. The X-Box is used to control the driving of the vehicle for data 
collection. Finally, the collected data is imported from the Raspberry Pi into the 
workstation, and the neural network training is completed in the workstation.  

 
Figure 10: Hardware experiment platform. Its include WiFi communication module, 
workstation, smartphone, game controller X-box and smart car donkeycar based on 
Raspberry Pi 
 

 
Figure 11: Four different experimental sites 

We conducted road test experiments through four different test sites, as shown in Fig. 11. 
From Site a to Site d, there are more and more interference factors in the environment. 
The light and the surrounding objects of Site a is relatively fixed. Site b has light 
interference, but the surrounding objects are fixed. Site c and Site d have more 
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disturbances, light spots on the floor and changes in the surrounding environment 
(billboard shifts, walking pedestrians, etc.). Among them, the light interference of the 
Site d is the most serious, which also poses a biggest challenge for our algorithm. In order 
to visually evaluate the advantages and disadvantages of our proposed method and 
traditional data augmentation methods, we define two evaluation criteria ourselves: 
(1) The smart car drives autonomously 50 times on the track, and runs 2 laps at a time as 
an experiment. The sign of self-driving success is that the four wheels of the smart car do 
not completely rush out of the track and do not hit the fence. Then the success rate is 
defined as ζ=n/50, where n is the number of successes. 
(2) After the vehicle has successfully driven autonomously for two laps, let it continue to 
run and record the total time (in seconds) of the lane keeping. When the car drives 
autonomously for more than 10 laps, it is recorded as “Finished”, which means that the 
model is very robust (we define it ourselves). Finally, the average lane keeping time is 
calculated as ξ=m/n, where m is the total running time. 
Since the vehicle has accumulated error during operation [Chen and Huang (2017)], the 
purpose of the standard (2) is to observe the error accumulation of the four augmentation 
techniques. The vehicle speed is the same during the experiment, and the running time of 
each site is about 7 s, 14.5 s, 17 s and 17 s, respectively. In addition, in order to fully test 
the robustness of the model, the time of the training model and the experimental time 
interval are more than 6 hours (for example, data is collected in the morning and the 
neural network is trained, and the experiment is performed in the afternoon). 

Table 3: Smart car self-driving success rate. N, T, S, and M represent no augmentation, 
traditional data augmentation, style augmentation, and mixed augmentation, respectively 

Site a b c d 
Task N T S M N T S M N T S M N T S M 

Unfinished 11 9 9 4 28 19 11 5 32 24 16 9 42 39 18 14 
Finished 39 41 41 46 22 31 39 45 18 26 34 41 8 11 32 36 

ζ (%) 78 82 82 92 55 62 78 90 36 52 68 82 16 22 64 72 

Table 4: Average running time for self-driving. It intuitively shows the error 
accumulation of the model trained by different augmentation techniques. The longer the 
running time is, the smaller the model error accumulates. “Finished” means that the 
vehicle can automatically drive 10 laps or more 

Site a b 
Task N T S M N T S M 
ξ (s) 26.6 Finished Finished Finished 72.9 99.7 143.3 Finished 
Site c d 
Task N T S M N T S M 
ξ (s) 42.2 59.0 102.0 140.6 35.1 36.7 79.1 111.9 

Tab. 3 shows the success rate of self-driving. Although the success rate from the Site a to 
Site d is gradually reduced as the interfereence increases, both style augmentation and 
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mixed techniques yield better results than the other two augmentation techniques. It can 
be seen from the whole that the success rate is higher in the Site a and Site b where the 
environment is relatively stable, and the style augmentation models get better results than 
the unaugmented and traditional augmentation techniques. Especially when combining 
traditional methods with style augmentation, the success rate is higher. In the Site a 
where the light and the surrounding objects are relatively fixed, the success rate of the 
four techniques is high, and the success rate is 92% when the mixed augmentation 
technique is used. Since the Site b and Site c have less interference with the Site d, we get 
better results than the Site d. Among the sites d with the greatest external environment 
change, the success rate of unaugmented and traditional augmentation techniques is the 
lowest, with only 12% and 16% accuracy, respectively. And the performance of the 
traditional data augmentation does not seem to improve much. However, after employing 
style augmentation technique, the success rate increased to 64%, and the mixed method 
further made the success rate reach 72%. 
From the average time of self-driving maintenance in Tab. 4, it can be seen that the error 
accumulation of mixed augmentation and style augmentation techniques is lower than 
that of traditional method. As can be seen in Fig. 3 and Fig. 4, the style transfer technique 
produces arbitrary stylized images by disturbing the texture, color, and contrast of the 
image. This technique therefore augments the original image to previously unobserved 
scenarios. Although this advantage is not obvious in site a, only the unaugmented model 
does not meet the custom criteria 2. However, in the site c and d where there is more 
interference, the style augmentation and mixed augmentation techniques greatly improve 
the self-driving time. Although the four augmentation techniques failed to meet the 
criteria 2, the average lane-keeping time was almost twice that of the other two 
technologies. This shows that style augmentation technology can significantly reduce the 
error accumulation phenomenon of the model. In summary, the data augmentation 
technique based on image style transfer drive is feasible, which can improve the success 
rate and time of lane keeping, and this advantage is more obvious in the environment 
with more interference. The mixed augmentation technique is better for reducing the 
error accumulation of the end-to-end control model. 

5 Conclusions 
For the first time, we applied image style transfer-driven data technology to self-driving 
vehicles based on deep learning. In this paper, we propose a novel arbitrary image style 
transfer algorithm. The style embedding vector is sampled from a multivariate Gaussian 
distribution and linearly interpolated with the embedded vector predicted on the style 
learning network, which provides a set of normalization constants for the style transfer 
network and finally generates arbitrary stylized image. It effectively avoids the high 
correlation between the traditional image style transfer method and the type, quantity of 
training data. Next, we also determine the best style intensity α through hyperparameter 
searches experiments and perform cross-domain experiment on the dataset of small batch 
data. In the end-to-end vehicle control experiment based on monocular vision, we 
compare the steering angle from a human driver with the predicted steering angle of four 
end-to-end models. In the heat map comparison, only our method can identify the lane 
lines in the environment with more interference. Finally, we have road test experiments 
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in four different real-world scenarios. The experimental results show that the combination 
of style augmentation and traditional data augmentation technique can significantly 
improve the self-driving success rate and reduce the error accumulation of the end-to-end 
model, which greatly improve the accuracy of steering angle prediction. Therefore, our 
proposed image style transfer-driven data augmentation technique can be applied to the 
steering angle prediction of self-driving based on deep learning, which can significantly 
improve the robustness of the end-to-end model. 
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