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Abstract: A beam approximation method for dynamic analysis of launch vehicles 
modelled as stiffened cylindrical shells is proposed. Firstly, an initial beam model of the 
stiffened cylindrical shell is established based on the cross-sectional area equivalence 
principle that represents the shell skin and its longitudinal ribs as a beam with annular 
cross-section, and the circumferential ribs as lumped masses at the nodes of the beam 
elements. Then, a fine finite element model (FE model) of the stiffened cylindrical shell 
is constructed and a modal analysis is carried out. Finally, the initial beam model is 
improved through model updating against the natural frequencies and mode shapes of the 
fine FE model of the shell. To facilitate the comparison between the mode shapes of the 
fine FE model of the stiffened shell and the equivalent beam model, a weighted nodal 
displacement coupling relationship is introduced. To prevent the design parameters used 
in model updating from converging to incorrect values, a pre-model updating procedure 
is added before the proper model updating. The results of two examples demonstrate that 
the beam approximation method presented in this paper can build equivalent beam 
models of stiffened cylindrical shells which can reflect the global longitudinal, lateral and 
torsional vibration characteristics very well in terms of the natural frequencies. 
 
Keywords: Finite element method, model updating, stiffened shell, beam approximation, 
model reduction. 

1 Introduction 
A stiffened cylindrical shell consists of skins and ribs with high specific stiffness and 
specific strength and is widely used as the main load-bearing body of a launch vehicle 
[Davila, Bisagni and Rose (2015); Hao, Wang, Tian et al. (2016); Hilburger, Lindell, Waters 
et al. (2017); Wang, Tian, Hao et al. (2016)]. To minimise the scale of computational 
models in load calculation, control, dynamic analysis, stability analysis, etc., launch 
vehicles are often reduced to equivalent simple models [Grimes, Mc Tigue, Riley et al. 
(1970); Nurre, Ryan, Scofield et al. (1984); Pinson (1970); Zipfel (2014)] which should 
reflect their global longitudinal, lateral and torsional vibration characteristics. The local 
vibration characteristics are usually considered in a simple manner in the above analysis. 
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Since the slenderness ratios of launch vehicles are large, the stiffened cylindrical shells in 
launch vehicles are usually modelled as beams or spring-mass oscillators [Zipfel (2014)], 
and the on-board equipment is simplified as lumped masses. The key to a successful 
reduced model of a launch vehicle is the appropriate treatment of the stiffened cylindrical 
shell. There is a strong motivation to model the stiffened shell as a beam which can 
accurately reflect the global longitudinal, lateral and torsional vibration characteristics. 
In order to predict the mechanical behaviour of a large complex structure accurately, it is 
necessary to establish a large-scale fine finite element model (FE model). This is often the 
case in static analysis as it does not take much time to do this. In dynamic analysis, 
however, a large-scale fine FE model presents a significant impact on computation time, 
particularly when optimization, control, or other theoretical work is also required. So 
reducing the scale of the model without losing the required accuracy is a way forward. In 
recent decades, model reduction theory [Afonso, Lyra, Albuquerque et al. (2010); Benfield 
and Hruda (1971); Box and Wilson (1951); Cortex and Vapnik (1995); Craig and Bampton 
(1968); Friswell, Garvey and Penny (1995); Guyan (1965); Hajela and Berke (1992); Hou 
(1969); Kaintura, Spina, Couckuyt et al. (2017); Koutsovasilis and Beitelschmidt (2008); 
Kuhar and Stahle (1974); Matheron (1963); Samuel, Ferranti, Knockaert et al. (2016); 
Wilson (1974); Wilson, Yuan and Dickens (1982)] has been developed and widely used. It 
has become an important part of the dynamic analysis of large and complex structures. One 
methodology is to reduce the mass, stiffness and damping matrices of the FE model by 
mapping the nodal displacements of the original model to the vector space of the reduction 
basis. The common methods in this category includes Guyan method [Guyan (1965)], 
Kuhar method [Kuhar and Stahle (1974)], improved reduction system method [Friswell, 
Garvey and Penny (1995)], Ritz method [Wilson, Yuan and Dickens (1982)], modal 
synthesis method [Benfield and Hruda (1971); Craig and Bampton (1968); Hou (1969)], etc. 
These methods can significantly reduce the scale of a FE model. The accuracy of the 
reduced model depends on the composition of the reduced basis. Another methodology is 
the proxy or surrogate model technique, which uses a mathematical expression with a small 
amount of computation to represent the original model for specific analysis. The commonly 
used proxy models are the response surface model [Box and Wilson (1951)], Kriging 
model [Kaintura, Spina, Couckuyt et al. (2017); Matheron (1963)], artificial neural network 
model [Hajela and Berke (1992)], support vector machine model [Cortex and Vapnik 
(1995)], etc. Proxy models are established by repeated reanalysis of the original model on a 
series of sample points and the established reduced model usually lacks physical 
connections with the original physical parameters. The accuracy of a proxy model depends 
on the number of sample points and their distribution. It is usually very time-consuming to 
establish a proxy model of a complex structure with high nonlinearity. 
To reduce the scale of the computational models of stiffened cylindrical shells, Cheng and 
his group [Cai, Xu and Cheng (2014); Cheng, Cai and Xu (2013)] developed a 
homogenization method and applied it to a three-dimensional periodic structure. Firstly, the 
complex three-dimensional periodic structure was divided into numerous typical unit cells. 
Then each typical unit cell was simplified to an equivalent structure with similar stiffness 
characteristics according to the mechanical properties of each cell. Finally, all the unit cells 
are replaced by those simple structures. And Hao et al. [Hao, Wang, Tian et al. (2017); 
Wang, Tian, Hao et al. (2016); Wang, Tian, Zheng et al. (2017)] developed an efficient 
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equivalent analysis model of stiffened shells to facilitate the post-buckling optimization 
based on the numerical implementation of asymptotic homogenization method. This kind 
of methods is suitable for periodic structures with the same unit cells. The difficulty lies 
in the equivalence of the unit cells. The accuracy is dependent on the understanding of 
the mechanical properties of the typical unit cells.  
The method proposed by Zheng et al. [Wang, Cheng and Li (2013)] divided a FE model of 
a stiffened cylindrical shell into several regions and assumed that each region was a rigid 
body. Then, a transformation relationship between the local motion and the global motion 
was constructed to reduce the FE model. To improve the accuracy of the reduced model, a 
deformation correction was introduced. Cheng et al. [Cheng and Wang (2014)] extended 
Zheng and Ding’s method and reduced the stiffened cylindrical shell to a super-beam. To 
improve the accuracy of the super-beam model, three shear coefficients were introduced. 
This method maintains a good conversion relationship between the super-beam model and 
the original FE model. The accuracy of the super-beam is good. However, as the super-
beam model lacks an obvious physical meaning, it is difficult to establish directly an 
intuitive finite beam element model for the shell. On the basis of this method, Wang et al. 
[Wang, Li, Hao et al. (2017); Li, Wang and Cheng (2017)] established a reduced-order 
model for the structural dynamic analysis of complicated beam-type structure by using a 
novel reduction basis along with the polynomial interpolation function. The basic idea was 
to convert the displacements of finite element model nodes in each cross section to a small 
set of nodes with a few generalized degrees of freedom. Li et al. [Li, Hao, Wang et al. 
(2019)] presented a model-reduction method based on the proper orthogonal decomposition 
technique. The basic idea was to extract the principal component of correlation matrix 
assembled by the nodal displacement field of full-order models subjected to different cross-
sectional loads as the transformation matrix. 
Pan et al. [Pan, Wang, Ma et al. (2014)] compared the simplified models obtained from 
several equivalence principles, and proposed a cross-sectional area equivalence principle. 
After studying the cause for the incorrect increase in torsional stiffness, they obtained a 
correction coefficient to modify the torsional stiffness of the simplified model established 
through a cross-sectional area equivalence principle. That method can directly establish 
an equivalent beam model according to the geometry of the original structure, but it is 
difficult to take into account the influences of the circumferential ribs and the internal 
components of the structure. A good accuracy can be obtained only if the cross-sectional 
moment of inertia of the equivalent beam is close to that of the original structure. 
This paper proposes a new beam approximation method for dynamic analysis of launch 
vehicles modelled as stiffened cylindrical shells. The flow chart of the method is shown 
in Fig. 1. An initial beam model of the stiffened cylindrical shell is built based on a cross-
sectional area equivalence principle and improved through model updating against the 
modal analysis results of the shell. First, an improvement has been made to the cross-
sectional area equivalence principle, the circumferential ribs are considered as lumped 
masses at the nodes of the beam elements, and so the mass distribution of the initial beam 
model is much closer to that of the shell along the longitudinal direction. Then, model 
updating, generally, which is implemented to minimise the difference between model 
predictions and corresponding test results [Friswell and Mottershead (1995); Mottershead 
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and Friswell (1993); Mottershead, Link and Friswell (2011)], is utilized to improve the 
accuracy of the equivalent beam model in this paper, and the iterative model updating 
method using modal data is selected. During the model updating process, because of the 
great difference between a beam and a stiffened cylindrical shell, two problems arise: a) 
the comparison of mode shapes is difficult; b) the design parameters used in model 
updating are prone to converging to incorrect values. By introducing a weighted nodal 
displacement coupling relationship, problem a) has been solved. The mode shapes of 
stiffened cylindrical shell are transformed into the displacements of a series of nodes 
located on the longitudinal axis of the shell. For problem b), a pre-model updating 
procedure is added before the proper model updating. 

 

Figure 1: The flow chart of the beam approximation method 

The contents of this paper are arranged as follows: The cross-sectional area equivalence 
principle, the weighted nodal displacement coupling relationship, and the iterative model 
updating method using modal data are established or discussed in the second to fourth 
sections. In the fifth Section, an outline of modelling and updating the initial beam is 
presented. Two examples are given in the sixth section. And some conclusions are drawn 
in the last Section. 

2 Cross-sectional area equivalence principle 
A cross-sectional area equivalence principle [Pan, Wang, Ma et al. (2014)] is commonly 
used to build simple equivalent models of launch vehicles for load calculation, control, 
dynamic analysis, etc. It is easy to establish an equivalent beam model with annular 
cross-section according to the geometry of the stiffened cylindrical shell through this 
principle. The core idea of the principle lies in the equivalence of the longitudinal ribs. In 
launch vehicles, the number of longitudinal ribs is usually 40 to 120, which can be 
regarded as uniformly distributed. The longitudinal ribs influence the bending, torsional 
and longitudinal stiffness of the stiffened cylindrical shell through their contributions to 
the moments of area of the shell. The effects of circumferential ribs are usually not 
considered. The shape and eccentricity of the longitudinal rib has negligible influence on 
the equivalence accuracy of this principle [Pan, Wang, Ma et al. (2014)] because the 
diameter of the stiffened cylindrical shell is much larger than the cross-section size of the 
ribs. For convenience, it is assumed that all the longitudinal ribs are identical. The cross-
section shape of the ribs is circular with a radius 𝑟𝑟rib, and the axis of the ribs locates in 
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the shell skin [Pan, Wang, Ma et al. (2014)]. The cross-sectional area, 𝐴𝐴rib, the second 
moment of area, 𝐼𝐼rib, and the polar moment of area, 𝐽𝐽rib, relative to its centre of the 
longitudinal rib can be easily written as: 
𝐴𝐴rib = 𝜋𝜋𝑟𝑟rib2              (1) 

𝐼𝐼rib = 𝜋𝜋𝑟𝑟rib
4

4
             (2) 

𝐽𝐽rib = 2𝐼𝐼rib = 𝜋𝜋𝑟𝑟rib
4

2
             (3) 

The cross-section area of the stiffened cylindrical shell, 𝐴𝐴0, can be written as: 
𝐴𝐴0 = 2𝜋𝜋𝑟𝑟skin𝑡𝑡skin + ∑ 𝐴𝐴𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 2𝜋𝜋𝑟𝑟skin𝑡𝑡skin + 𝑛𝑛𝐴𝐴rib            (4) 
where 𝑟𝑟skin is the average radius of the stiffened cylindrical shell, 𝑡𝑡skin is the thickness of 
the shell skin,  𝐴𝐴𝑖𝑖 is the cross-section area of each longitudinal rib, 𝑛𝑛 is the number of the 
longitudinal ribs. 
The thickness of the equivalent annular cross-section beam, 𝑡𝑡, can be calculated by 

𝑡𝑡 = 𝐴𝐴0
2𝜋𝜋𝑟𝑟skin

= 𝑡𝑡skin + 𝑛𝑛𝐴𝐴rib
2𝜋𝜋𝑟𝑟skin

= 𝑡𝑡skin + 𝑡𝑡rib             (5) 

where 𝑡𝑡rib is the thickness contributed by longitudinal ribs. 
The area moment of inertia, 𝐼𝐼, and the polar moment of area, 𝐽𝐽, of the equivalent beam 
can be easily written as: 
𝐼𝐼 = 𝜋𝜋

4
𝑟𝑟skin𝑡𝑡�4𝑟𝑟skin2 + 𝑡𝑡2� ≈ 𝜋𝜋𝑟𝑟skin3 𝑡𝑡             (6) 

and 
𝐽𝐽 = 2𝐼𝐼 = 𝜋𝜋

2
𝑟𝑟skin𝑡𝑡�4𝑟𝑟skin2 + 𝑡𝑡2� ≈ 2𝜋𝜋𝑟𝑟skin3 𝑡𝑡             (7) 

In Eqs. (6) and (7), the second-order small quantity 𝑡𝑡2  has been neglected. The area 
moment of inertia, 𝐼𝐼0, of the stiffened cylindrical shell can be written as: 

𝐼𝐼0 = 𝜋𝜋
4
𝑟𝑟skin𝑡𝑡skin�4𝑟𝑟skin2 + 𝑡𝑡skin2 � + 𝑛𝑛 �𝐼𝐼rib + 𝐴𝐴rib

2
𝑟𝑟skin2 � ≈ 𝜋𝜋𝑟𝑟skin3 𝑡𝑡 + 𝑛𝑛𝐼𝐼rib          (8) 

The polar moment of area of the stiffened cylindrical shell, 𝐽𝐽0, is not twice as much as its 
area moment of inertia [Pan, Wang, Ma et al. (2014)], 𝐼𝐼0. And the contribution from the 
longitudinal ribs to the torsional stiffness of the stiffened cylindrical shell is far less than 
that from the shell skin, the polar moment of area of the shell, 𝐽𝐽0 , can be written 
approximately as: 
𝐽𝐽0 = 𝜋𝜋

2
𝑟𝑟skin𝑡𝑡skin�4𝑟𝑟skin2 + 𝑡𝑡skin2 � ≈ 2𝜋𝜋𝑟𝑟skin3 𝑡𝑡skin             (9) 

In Eqs. (8) and (9), the second-order small quantity 𝑡𝑡skin2  has been neglected. 

From Eqs. (6) and (8), 𝐼𝐼0
𝐼𝐼
 can be calculated 

𝐼𝐼0
𝐼𝐼

= 𝜋𝜋𝑟𝑟skin
3 𝑡𝑡+𝑛𝑛𝐼𝐼rib
𝜋𝜋𝑟𝑟skin

3 𝑡𝑡
= 1 + 𝑟𝑟rib

2

2𝑟𝑟skin
2 �1+

2𝑟𝑟skin𝑡𝑡skin
𝑛𝑛𝑟𝑟rib

2 �
             (10) 
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Since 𝑟𝑟skin is far larger than 𝑟𝑟rib in launch vehicles, 𝐼𝐼0
𝐼𝐼
 equals to 1 approximately, i.e., the 

area moment of inertia of the equivalent beam is equal to that of the stiffened cylindrical 
shell approximately. 

From Eqs. (7) and (9), 𝐽𝐽0
𝐽𝐽

 can be calculated 

𝐽𝐽0
𝐽𝐽

= 2𝜋𝜋𝑟𝑟skin
3 𝑡𝑡skin

2𝜋𝜋𝑟𝑟skin
3 𝑡𝑡

= 𝑡𝑡skin
𝑡𝑡

= 1

1+ 𝑡𝑡rib
𝑡𝑡skin

             (11) 

Since 𝑡𝑡rib
𝑡𝑡skin

 cannot be neglected, the polar moment of area of the equivalent beam is much 
different from that of the stiffened cylindrical shell, a correction of the polar moment of 
area of the equivalent beam is needed [Pan, Wang, Ma et al. (2014)], and from Eq. (11), 
the correction factor, 𝑐𝑐tor, is given by 

𝑐𝑐tor = 𝑡𝑡skin
𝑡𝑡

             (12) 

The final polar moment of area of the equivalent beam is 
𝐽𝐽∗ = 𝑐𝑐tor𝐽𝐽 = 𝜋𝜋

2
𝑟𝑟skin𝑡𝑡skin�4𝑟𝑟skin2 + 𝑡𝑡2� ≈ 2𝜋𝜋𝑟𝑟skin3 𝑡𝑡skin            (13) 

3 Weighted nodal displacement coupling relationship 
There are 𝑙𝑙  nodes. Their coordinates are 𝐝𝐝𝑖𝑖 = (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖)T, 𝑖𝑖 = 1,2, … , 𝑙𝑙 , and their 
displacements are 𝐮𝐮𝑖𝑖 = �𝑢𝑢𝑖𝑖𝑖𝑖 ,𝑢𝑢𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖𝑖𝑖�

T . The weighted nodal displacement coupling 
relationship is to create a new node, 𝐝𝐝c = (𝑥𝑥c,𝑦𝑦c, 𝑧𝑧c)T, and use its displacement, 𝐮𝐮c =
�𝑢𝑢c𝑖𝑖,𝑢𝑢c𝑖𝑖,𝑢𝑢c𝑖𝑖�

T, to represent the displacements of the 𝑙𝑙 nodes. 
Firstly, the weighted centre coordinate, 𝐝𝐝o = (𝑥𝑥o,𝑦𝑦o, 𝑧𝑧o)T , of the 𝑙𝑙  nodes and its 
displacement, 𝐮𝐮o = �𝑢𝑢o𝑖𝑖,𝑢𝑢o𝑖𝑖,𝑢𝑢o𝑖𝑖�

T, are calculated as: 

𝑞𝑞o =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑙𝑙
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙
𝑖𝑖=1

 , 𝑢𝑢o𝑞𝑞 =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑙𝑙
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙
𝑖𝑖=1

, (𝑞𝑞 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧)             (14) 

where, 𝑤𝑤𝑖𝑖𝑖𝑖, 𝑤𝑤𝑖𝑖𝑖𝑖, 𝑤𝑤𝑖𝑖𝑖𝑖 are weighting coefficients for each degree of freedom of each node, 
usually taken as 1. 
Then, assuming that there are no relative motions between the 𝑙𝑙 nodes, a rigid region is 
formed. According to the rigid body motion relationship, the rigid-body displacement of 
node 𝑖𝑖, 𝐮𝐮𝑖𝑖∗ = �𝑢𝑢𝑖𝑖𝑖𝑖∗ ,𝑢𝑢𝑖𝑖𝑖𝑖∗ ,𝑢𝑢𝑖𝑖𝑖𝑖∗ �

T, can be written as: 
𝐮𝐮𝑖𝑖∗ = 𝐮𝐮o + 𝛂𝛂𝐫𝐫𝑖𝑖             (15) 
where 

𝛂𝛂 = �
0 −𝛼𝛼𝑖𝑖 𝛼𝛼𝑖𝑖
𝛼𝛼𝑖𝑖 0 −
−𝛼𝛼𝑖𝑖 𝛼𝛼𝑖𝑖 0

𝛼𝛼𝑖𝑖� , 𝐫𝐫𝑖𝑖 = 𝐝𝐝𝑖𝑖 − 𝐝𝐝o             (16) 
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𝛼𝛼𝑖𝑖, 𝛼𝛼𝑖𝑖, and 𝛼𝛼𝑖𝑖 are the angles of rotation about 𝑥𝑥-, 𝑦𝑦- and 𝑧𝑧-axis of the rigid region. They 
can be determined by minimizing the modulus, |𝛆𝛆|, of vector 𝛆𝛆 = �𝜀𝜀𝑖𝑖 , 𝜀𝜀𝑖𝑖, 𝜀𝜀𝑖𝑖�

T  of the 
error functions of 𝐮𝐮𝑖𝑖∗ and 𝐮𝐮𝑖𝑖 using the least-squares method 

𝜀𝜀𝑞𝑞 = ∑ 𝑤𝑤𝑖𝑖𝑞𝑞�𝑢𝑢𝑖𝑖𝑞𝑞∗ − 𝑢𝑢𝑖𝑖𝑞𝑞�
2𝑙𝑙

𝑖𝑖=1 , (𝑞𝑞 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧)             (17) 
Finally, the displacement vector of node 𝐝𝐝c can be determined 
𝐮𝐮c = 𝐮𝐮o + 𝛂𝛂(𝐝𝐝c − 𝐝𝐝o)             (18) 
The specific steps of using this relationship to transform the displacements of the nodes in 
the fine FEM model of a stiffened cylindrical shell to the node displacements of the 
equivalent beam model are introduced in Section 5.2 in detail. 

4 Iterative model updating method using modal data 
Modal data include natural frequencies and mode shapes of a structure, which are the 
common kinds of targets used in model updating. The iterative model updating method 
using modal data [Friswell and Mottershead (1995)] needs to select some physical and 
geometric parameters of the structure as design parameters and analyse their sensitivities. 
Normally, the natural frequencies and mode shapes vary with the design parameters 
nonlinearly, so it is necessary to linearize them by truncating the first-order Taylor 
expansion [Mottershead, Link and Friswell (2011)]. Using 𝐳𝐳obj to represent the vector 
consisting of the interested natural frequencies and mode shapes, 𝐳𝐳 to represent the vector 
consisting of the corresponding finite element analysis results, 𝛉𝛉 to represent the vector 
consisting of the design parameters, the relationship between them is defined as 
𝐳𝐳obj ≈ 𝐳𝐳𝑚𝑚 + 𝐒𝐒(𝛉𝛉𝑚𝑚+1 − 𝛉𝛉𝑚𝑚)             (19) 
where, subscript 𝑚𝑚 represents the 𝑚𝑚th iteration, 𝐒𝐒 is sensitivity matrix consisting of the 
first derivatives of the natural frequencies, 𝜔𝜔𝑘𝑘(𝑘𝑘 = 1,2,⋯ ,𝐻𝐻), and the mode shapes, 𝛟𝛟𝑘𝑘, 
with respect to the design parameters, 𝜃𝜃𝑗𝑗(𝑗𝑗 = 1,2,⋯ ). 
For an eigenvalue problem 
𝐊𝐊𝛟𝛟𝑘𝑘 = 𝜔𝜔𝑘𝑘

2𝐌𝐌𝛟𝛟𝑘𝑘             (20) 
where 𝐌𝐌 and 𝐊𝐊 are the mass matrix and stiffness matrix of the structure. The expression 
of the first derivative of the natural frequency, 𝜔𝜔𝑘𝑘, is [Friswell and Mottershead (1995)] 
𝜕𝜕𝜔𝜔𝑘𝑘
𝜕𝜕𝜃𝜃𝑗𝑗

= 1
2𝜔𝜔𝑘𝑘

𝛟𝛟𝑘𝑘
T � 𝜕𝜕𝐊𝐊

𝜕𝜕𝜃𝜃𝑗𝑗
− 𝜔𝜔𝑘𝑘

2 𝜕𝜕𝐌𝐌
𝜕𝜕𝜃𝜃𝑗𝑗

�𝛟𝛟𝑘𝑘             (21) 

The complete eigenvector derivative is given by a linear combination of all 𝐻𝐻 
eigenvectors of the structure [Friswell and Mottershead (1995)] 
𝜕𝜕𝛟𝛟𝑘𝑘
𝜕𝜕𝜃𝜃𝑗𝑗

= ∑ 𝑐𝑐ℎ𝛟𝛟ℎ
𝐻𝐻
ℎ=1 = 𝐯𝐯𝑘𝑘 + 𝑐𝑐𝑘𝑘𝛟𝛟𝑘𝑘             (22) 

the eigenvector, 𝛟𝛟𝑘𝑘, follows mass normalization equation 
𝛟𝛟𝑘𝑘
T𝐌𝐌𝛟𝛟𝑘𝑘 = 1             (23) 

By differentiating Eq. (23) with respect to 𝜃𝜃𝑗𝑗 , and combining with Eq. (22), the 
participation factor, 𝑐𝑐𝑘𝑘, is obtained 
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𝑐𝑐𝑘𝑘 = −𝛟𝛟𝑘𝑘
T𝐌𝐌𝐯𝐯𝑘𝑘 −

1
2
𝛟𝛟𝑘𝑘
T 𝜕𝜕𝐌𝐌
𝜕𝜕𝜃𝜃𝑗𝑗

𝛟𝛟𝑘𝑘             (24) 

A problem arises in the computation of 𝐯𝐯𝑘𝑘 and a solution is given by Nelson [Friswell and 
Mottershead (1995)]. 
Eqs. (21) and (22) are the theoretical formulas for calculating the sensitivities of natural 
frequencies and mode shapes, and in the practical operation, they are usually calculated 
approximately by using numerical differentiation method. 
By rearranging Eq. (19), the explicit iteration updating relationship of design parameters 
is obtained 
𝛉𝛉𝑚𝑚+1 = 𝛉𝛉𝑚𝑚 + 𝐒𝐒+�𝐳𝐳obj − 𝐳𝐳𝑚𝑚�             (25) 
where 𝐒𝐒+ is the inverse sensitivity matrix. Since the system of linear algebraic equations 
in Eq. (19) is often over-determined or under-determined, it cannot be inverted directly. 
The inverse sensitivity matrix [Friswell and Mottershead (1995)], 𝐒𝐒+, is calculated as: 

𝐒𝐒+ = �
[𝐒𝐒T𝐒𝐒]−1𝐒𝐒T over determined
𝐒𝐒−1 determined
𝐒𝐒T[𝐒𝐒𝐒𝐒T]−1 under determined 

             (26) 

5 Beam approximation process 
In this section, the beam approximation process for dynamic analysis of launch vehicles 
modelled as stiffened cylindrical shells is presented in detail. Firstly, an initial beam 
model is established based on the cross-sectional area equivalence principle. Then, a fine 
FE model of the stiffened cylindrical shell is established and a modal analysis is carried 
out. Some natural frequencies and mode shapes are selected as the model updating targets, 
and the mode shapes are translated by using the weighted nodal displacement coupling 
relationship. Finally, the initial beam model is improved through model updating against 
the natural frequencies and mode shapes of the fine FE model. 

5.1 Initial equivalent beam model 
The stiffened cylindrical shell mainly consists of skin, longitudinal ribs and 
circumferential ribs. Based on the cross-sectional area equivalence principle, the skin and 
the longitudinal ribs are represented as a beam model with annular cross-section located 
on the axis of the stiffened cylindrical shell and the circumferential ribs are ignored. In 
this paper, for the purpose of ensuring that the mass distribution of the beam model is the 
same as that of the stiffened cylindrical shell along the longitudinal direction, the 
circumferential ribs are represented as lumped masses applied to the nodes of the beam 
model. The specific steps are as follows: 
a) According to the geometry of the stiffened cylindrical shell, the cross-section area of 

each longitudinal rib is calculated, and then the thickness of the annular cross-
section beam is obtained from Eqs. (4) and (5). 

b) Taking the diameter of the shell skin as the diameter, the beam model with annular 
cross-section is established. The longitudinal locations of the beam nodes correspond 
to those of the circumferential ribs of the shell. 
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c) According to the material properties of the stiffened cylindrical shell, the mass of 
each circumferential rib is calculated and applied to the corresponding node of the 
beam model as a lumped mass. 

The material properties of the initial equivalent beam model are set in step b) according 
to those of the stiffened cylindrical shell. If the materials of the skin and the longitudinal 
ribs are different, the material properties of the beam model need to be estimated. It has 
to be noted that the mass distribution of the initial beam model should be as close as 
possible to the longitudinal mass distribution of the stiffened cylindrical shell. Other 
material attributes can be roughly selected. 

5.2 Model updating targets 
The fine FE model of the stiffened cylindrical shell is established, and modified if there 
are experimental data. Then, a modal analysis of the fine FE model is implemented. 
Some natural frequencies and mode shapes are selected as the model updating targets. 
The natural frequencies can be directly used to improve the equivalent beam model. 
While the mode shapes cannot, because of the nodes of the fine FE model of the shell and 
the equivalent beam model are not one-to-one correspondence. The weighted nodal 
displacement coupling relationship is used to transform the nodal displacements between 
the two models. For a mode shape, the specific steps are as follows: 
a) The nodes on the plane located the circumferential rib are selected and the node of 

equivalent beam model corresponding to the circumferential rib is selected. 
b) According to Eqs. (14) to (18), the displacements of the nodes on the plane are 

represented by the displacement of the node of the beam model. 
c) Steps a) and b) are repeated several times until the displacements of the nodes on the 

planes located the circumferential ribs are all represented by the displacements of the 
nodes of the beam model. 

5.3 Model updating 
Since the mass distribution of the beam model has been settled in Section 5.1, it is 
considered to be exact. A problem may occur during model updating, because of the great 
difference between the fine FE model and the equivalent beam model. If all the design 
parameters are directly used for model updating at the same time, they can easily 
converge to incorrect values, for example, the Young’s modulus, 𝐸𝐸 , may become 
negative. And it is hard to give the exact ranges of the design parameters directly. Having 
a pre-model updating procedure before the proper model updating to shift design 
parameters close to the convergent values can ease this problem. In pre-model updating, 
based on the sensitivity analysis and practical experiences, the area moments of inertia, 𝐼𝐼1, 
and, 𝐼𝐼2, in two directions, the polar moment of area, 𝐽𝐽p, and Young’s modulus, 𝐸𝐸, of the 
beam element are selected as design parameters. There are no range limitations of the 
design parameters, and, generally, they are converged to reasonable values. Usually, 
using these four design parameters the bending and torsional modes of the equivalent 
beam model can be corrected. The axial modes are sensitive to the cross-sectional area, 𝐴𝐴, 
and Young’s modulus, 𝐸𝐸, of the beam, and these two parameters are closely related to the 
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mass distribution and the bending modes of the beam model. So, in order to improve the 
axial modes, some linear spring elements are introduced between each pair of adjacent 
nodes of the equivalent beam model, and their stiffness, 𝑘𝑘, is selected as design parameter. 
All the design parameters of each element in the beam model are same. Those five design 
parameters are determined by using the natural frequencies of the first and the second 
bending modes in the two normal directions, the first torsional and the first axial modes 
of the fine FE model of the shell structure (totally six modes). The flow chart of pre-
model updating is shown in Fig. 2, which includes five steps: 

 

Figure 2: The flow chart of pre-model updating  

Initial equivalent beam model 
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a) A modal analysis is taken to the initial equivalent beam model. The modal assurance 
criteria (MAC) values [Friswell and Mottershead (1995)] between the mode shapes 
of the beam model and those of the stiffened shell are calculated. The MAC value 
between the 𝑖𝑖 th mode shape of the beam model and the 𝑗𝑗 th targeted mode is 
calculated from 

MAC𝑖𝑖𝑗𝑗 = �𝛗𝛗𝑖𝑖
T𝛙𝛙𝑗𝑗�

2

�𝛗𝛗𝑖𝑖
T𝛗𝛗𝑖𝑖��𝛙𝛙𝑗𝑗

T𝛙𝛙𝑗𝑗�
             (27) 

The closer the MAC value is to 1, the higher correlation of the two mode shapes is in. For 
each targeted mode shape, one mode shape of the beam model is identified that brings the 
MAC value of the two closest to 1. Then such two modes are paired. This process is 
called mode matching. 
b) The ratio of the natural frequencies of the first two bending modes, 𝛽𝛽, is improved. 
𝛽𝛽 = 𝜔𝜔b1

𝜔𝜔b2
             (28) 

where 𝜔𝜔b1 and 𝜔𝜔b2 are the natural frequencies of the first and second bending modes. 
The area moments of inertia, 𝐼𝐼1, and, 𝐼𝐼2, are selected as the design parameters to improve 
𝛽𝛽. In addition, for the case in which the frequencies of the first bending modes in two 
perpendicular out-of-plane directions are different, the same design parameters are taken 
to improve the ratio of the two frequencies, 𝛾𝛾. 

𝛾𝛾 = 𝜔𝜔b1
(1)

𝜔𝜔b1
(2)             (29) 

where the superscripts (1) and (2) represent two bending directions. 
c) The first bending modes are improved. The Young’s modulus, 𝐸𝐸, is selected as the 

design parameter. 
d) Now the first torsional mode is improved. The polar moment of area, 𝐽𝐽p, is selected 

as the design parameter. 
e) Afterwards, the first axial mode is improved. The stiffness of the spring elements, 𝑘𝑘, 

is selected as the design parameter, and the initial value come from 

𝑘𝑘0 = (𝐸𝐸0−𝐸𝐸�)𝐴𝐴
𝐿𝐿

             (30) 

where, 𝐸𝐸0 is the initial Young’s modulus value of the beam element, 𝐸𝐸� is the Young’s 
modulus value after step c), 𝐴𝐴 and 𝐿𝐿 are the cross-sectional area and the length of the 
beam element. 
The above steps are repeated several times until the frequencies of the afore-mentioned 
six modes of the equivalent beam model match the corresponding frequency of the fine 
FE model to the required accuracy. The values of design parameters after pre-model 
updating are quite different from those of the initial beam model, but the bending rigidity, 
torsional rigidity and tensile stiffness of the beam model before and after pre-model 
updating have not much, as shown in Section 6.1, which is expected and indirectly 
reflects that the finial equivalent beam model shows similar global static properties as the 
original model. And, it should be noted that, because of the beam approximation method 
presented in this paper is focused on the global dynamic performances of the original 
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model, the equivalent beam model can reflect only the global static properties of the 
original model. 
On this basis, the proper updating can be carried out to consider the higher frequencies and 
other quantities of interest. The ranges of the design parameters can be given if needed. For 
a simple stiffened cylindrical shell, its equivalent beam model can be obtained in good 
accuracy just by pre-model updating and this is presented in the next section. 

6 Numerical examples 
To verify the effectiveness of this method, two examples are given in this section. One is 
stiffened cylindrical shells with a circular cross-section. The other is a composite 
structure of stiffened cylindrical shells. The fine FE models and the equivalent beam 
models of the two examples are built in ANSYS. In the fine FE models, SHELL181 and 
BEAM188 elements are used to build the skins and ribs of the stiffened cylindrical shells. 
The material properties are Young’s modulus of 200 GPa, Poisson’s ratio of 0.33, density 
of 7850 kg/m3. The equivalent beam models are established by using MASS21, 
BEAM188, and COMBIN14 elements and improved in the authors’ MATLAB codes. 
The modal analyses of the finite element models in the paper are made in ANSYS using 
block Lanczos method. 

6.1 Stiffened cylindrical shell of circular cross-section 
The stiffened cylindrical shell of circular cross-section is 50 m long and 5 m in diameter. 
Its skin thickness is 0.01 m. 8 circular longitudinal ribs with a diameter of 0.15 m and 11 
circular circumferential ribs with a diameter of 0.6 m are distributed uniformly. There are 
totally 3200 SHELL181 elements, 1152 BEAM188 elements and 3232 nodes in the fine 
FEM model. A normal mode analysis of the fine FEM model is taken and frequencies 
and modes below 100 Hz are extracted. The beam model is established to reflect the first 
two bending, torsional and axial modes of the stiffened cylindrical shell, totally 6 modes, 
and the errors of the natural frequencies should be less than 2%, and the MAC values 
should be greater than 0.95. There are totally 10 BEAM188 elements, 10 COMBIN14 
elements and 11 nodes in the beam model. The parameter values of the normal mode 
analysis of the equivalent beam model are the same as those of the fine FEM model of 
the shell. The values of design parameters before and after model updating are shown in 
Tab. 1. The calculation results of the bending rigidity, torsional rigidity and tensile 
stiffness are given in Tab. 2. The shear modulus, 𝐺𝐺, is calculated by 

𝐺𝐺 = 𝐸𝐸
2(1+𝜇𝜇)             (31) 

where  𝜇𝜇 is Poisson’s ratio. The tensile stiffness, 𝐾𝐾, of the beam model is calculated by 

𝐾𝐾 = 𝐸𝐸𝐴𝐴
𝐿𝐿

+ 𝑘𝑘             (32) 

The torsional rigidity between brackets in Tab. 2 is calculated from the modified polar 
moment of area calculated by Eq. (13). In Tab. 1, the values of design parameters after 
pre-model updating are quite different from those of the initial beam model. And in Tab. 
2, it is shown that the bending rigidity, torsional rigidity and tensile stiffness of the beam 
model before and after pre-model updating are not changed a lot. This indirectly reflects 
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that the finial equivalent beam model shows similar static properties as the original model. 

Table 1: The values of design parameters before and after pre-model updating 
Name Initial beam model After pre-model updating 
Area moment of inertia  𝐼𝐼1(m4) 0.93019 3.85737 
Area moment of inertia  𝐼𝐼2(m4) 0.93019 3.85737 
Polar moment of area  𝐽𝐽p(m4) 1.86038 4.10773 
Young’s modulus  𝐸𝐸(Pa) 2.00000×1011 4.86976×1010 
Spring stiffness  𝑘𝑘(N/m) 0 9.07265×109 

Table 2: The bending rigidity, torsional rigidity and tensile stiffness of the beam model 
before and after pre-model updating 

Name Initial beam model After pre-model updating 
Bending rigidity 𝐸𝐸𝐼𝐼1(N∙m2) 1.86038×1011 1.87845×1011 
Bending rigidity 𝐸𝐸𝐼𝐼2(N∙m2) 1.86038×1011 1.87845×1011 

Torsional rigidity 𝐺𝐺𝐽𝐽p(N∙m2) 
1.39878×1011 
(7.38155×1010) 

7.52017×1010 

Tensile stiffness 𝐾𝐾(N/m) 1.19381×1010 1.19794×1010 

The results of the modal analysis are shown in Tabs. 3 and 4. The natural frequencies of 
the beam model after model updating and the fine FEM model under 100 Hz are 
calculated and are compared in Tab. 4. The relative error between the 𝑘𝑘 th natural 
frequency of the equivalent beam model, 𝜔𝜔𝑘𝑘, and the target, 𝜔𝜔obj,𝑘𝑘, is defined as: 

𝜀𝜀𝑘𝑘 = �𝜔𝜔𝑘𝑘−𝜔𝜔obj,𝑘𝑘�
𝜔𝜔obj,𝑘𝑘

× 100%             (33) 

Table 3: The modal analysis results of circular cross-section stiffened cylindrical shell 

Mode shape 

Fine FEM model Initial beam model After pre-model updating 
Natural freq. 
𝜔𝜔obj
2𝜋𝜋

/ Hz 

Natural freq. 
𝜔𝜔init
2𝜋𝜋

/ Hz 
Error 
𝜀𝜀/% 

MAC 
Natural freq. 
𝜔𝜔beam
2𝜋𝜋

/ Hz 
Error 
𝜀𝜀/% 

MAC 

1st bending 5.08693 5.30697 4.33 1.00 5.08685 0.00 1.00 
2nd bending 12.0315 13.4858 12.09 1.00 12.0321 0.00 1.00 
1st torsional 10.4780 17.9169 71.00 1.00 10.4780 0.00 1.00 
2nd torsional 20.8148 35.9476 72.70 1.00 21.1493 1.61 0.99 
1st axial 23.5534 23.5036 0.21 1.00 23.5531 0.00 1.00 
2nd axial 46.7567 46.7197 0.08 1.00 46.8182 0.13 1.00 
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Table 4: The under 100 Hz natural freq. of the beam and the fine FEM model 

Mode shape 
Equivalent beam model 
𝜔𝜔beam

2𝜋𝜋
/ Hz 

Fine FEM model 
𝜔𝜔obj

2𝜋𝜋
/ Hz 

Error 
𝜀𝜀/% 

MAC 

1st bending 5.08685 5.08693 0.00 1.00 
1st torsional 10.4780 10.4780 0.00 1.00 
2nd bending 12.0321 12.0315 0.00 1.00 
3rd bending 19.8983 19.8237 0.38 1.00 
2nd torsional 21.1493 20.8148 1.61 0.99 
1st axial 23.5531 23.5534 0.00 1.00 
4th bending 27.6192 27.3096 1.13 1.00 
3rd torsional 32.1963 30.8625 4.32 0.98 
Higher bending 34.7504 33.4403 3.92 1.00 
Higher bending 40.9770 41.6252 1.56 1.00 
4th torsional 43.7677 40.4604 8.17 0.96 
Higher bending 46.1146 46.3863 0.59 1.00 
2nd axial 46.8182 46.7567 0.13 1.00 
Higher bending 49.9529 50.1041 0.30 1.00 
Higher bending 52.3582 52.4540 0.18 1.00 
Higher torsional 55.9241 49.4290 13.14 0.93 
Higher mode 61.4747 68.5988 10.39 1.00 
Higher mode 65.8044 70.6128 6.81 0.98 
Higher torsional 68.5282 57.5659 19.04 0.91 
3rd axial 69.4816 69.2395 0.35 1.00 
Higher bending 75.4475 80.1641 5.88 0.95 
Higher torsional 81.0534 64.6387 25.39 0.88 
Higher mode 89.5765 93.6324 4.33 0.92 
4th axial 91.1822 90.6218 0.62 1.00 
Higher torsional 92.3630 70.2221 31.53 0.88 

As it is shown in Tab. 3, after pre-model updating, the first two bending, torsional and 
axial natural frequencies of the stiffened cylindrical shell predicted by the equivalent 
beam model are already in good agreement with the original structure, and thus the 
subsequent proper model updating is not necessary except for accurate prediction of 
higher frequencies if needed. And in Tab. 4, the relative errors of the natural frequencies 
of the first four bending, axial modes and the first three torsional modes are below 5%. It 
is shown that, for a simple stiffened cylindrical shell, its equivalent beam model can be 
obtained in good accuracy just by pre-model updating. 

6.2 Composite structure of stiffened cylindrical shells 
As shown in Fig. 3, a composite structure of stiffened cylindrical shells with a total 
height of 50 m and width of 13 m is presented. The shell stage 1, stage 2 and the dome-
shaped fairing located at the centre comprise the central stage. The diameters of them are 
5 m, and the heights of them are 25 m, 20 m and 5 m, respectively. Four boosters with a 
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diameter of 3.5 m and a height of 25 m are distributed around the centre. The distances 
between boosters and stage 1 are 0.5 m and the connections are modelled by BEAM188 
elements. Since the model in this example is mainly to verify the beam approximation 
method, the connection between the booster and stage 1 is simplified as a beam. There are 
two nodes built on the axes of each booster and stage 1. Each node is connected to the 
nearest circumferential rib by rigid beam elements. The beams for connecting the boosters 
with stage 1 are built between the two corresponding nodes of the boosters and stage 1. The 
skin thicknesses of the central stage and each booster are 0.01 m. The distributions of the 
longitudinal and circumferential ribs are shown in Fig. 3. There are 8 longitudinal ribs and 
10 circumferential ribs in the central stage and each booster. The cross-section of the 
longitudinal and circumferential ribs of the central stage is 0.15 m and 0.6 m in diameter, 
respectively. The cross-section of the longitudinal and circumferential ribs of each booster 
is 0.1 m and 0.4 m in diameter, respectively. That of the connection beams is 0.5 m in 
diameter. There are totally 9504 SHELL181 elements, 1776 BEAM188 elements, 192 rigid 
beam elements (96 elements each group to construct rigid region) and 9555 nodes (2 nodes 
with no mass for constructing rigid region) in the fine FEM model of the stage included 
stage 1, stage 2 and fairing. There are totally 3264 SHELL181 elements, 1064 BEAM188 
elements, 128 rigid beam elements (64 elements each group to construct rigid region) and 
3299 nodes (2 nodes with no mass for constructing rigid region) in the fine FEM model of 
each booster. Each connection is modelled by a BEAM188 element. A normal mode 
analysis of the fine FEM model of the whole structure is made and the first 16th non-rigid-
body modes are extracted. 

 

Figure 3: The sketch of the composite structure of stiffened cylindrical shells and its 
equivalent beam model 

The equivalent beam model is established based on a substructure technique. The 
components of the composite structure are reduced respectively at first, and then 
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assembled together. The model reduction process of each component is similar to that of 
the previous example. The first two bending and the first torsional and axial modes of 
each component are selected as the model updating targets for the corresponding 
equivalent beam model. The selected design parameters of each equivalent beam model 
are the same as the previous example. The fairing and the head of the boosters are located 
at the end of the cylindrical structures, their contributions to the stiffness of the composite 
structure are small, and only their masses should be made reasonably equivalent. It has to 
be noted that stage 1 and the boosters are connected, and hence their equivalent beam 
models should not only reflect the free modal characteristics of the structure without the 
nodes on the axes and the rigid beam elements, but also the constrained modal 
characteristics. The results of the design parameters after model updating with the targets 
of the free modal characteristics are the bases of the model updating with the targets of 
the constrained modal characteristics. In this example, the fixed constraints are imposed 
on the two nodes built on the axes of each booster and stage 1, and the results of the 
design parameters after the model updating with the targets of the constrained modal 
characteristics are selected as the final structure parameters. And the connections between 
stage 1 and the boosters should be improved after assembly. There are totally 10 
BEAM188 elements, 10 COMBIN14 elements and 11 nodes in the equivalent beam 
model of each booster and the whole stage. The parameter values of the normal mode 
analysis of the equivalent beam model of the whole structure are the same as those of the 
fine FEM model. The modal analysis results are shown in Tab. 5, and the mode shapes 
are given in Fig. 4. 

Table 5: The modal analysis results of the composite stiffened cylindrical shells 

Mode No. 

Fine FEM model Equivalent beam model 

Natural freq. 
𝜔𝜔obj

2𝜋𝜋
/Hz 

Natural freq. 
𝜔𝜔beam

2𝜋𝜋
/Hz 

Error 
𝜀𝜀/% 

MAC 

1 2.23412 2.22368 0.47 1.00 
2 2.51765 2.50270 0.59 0.99 
3 2.51765 2.50270 0.59 0.99 
4 3.96638 3.96429 0.05 1.00 
5 3.96638 3.96429 0.05 1.00 
6 6.67768 6.81119 2.00 1.00 
7 8.14362 8.14422 0.01 1.00 
8 8.67321 8.67464 0.02 0.99 
9 8.67321 8.67464 0.02 0.99 
10 9.58198 9.58669 0.05 1.00 
11 10.7373 10.7320 0.05 1.00 
12 10.7373 10.7320 0.05 1.00 
13 11.2967 11.0753 1.96 1.00 
14 13.1984 13.2035 0.04 1.00 
15 13.2337 13.1830 0.38 1.00 
16 13.2337 13.1830 0.38 1.00 
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Figure 4: The mode shapes of the composite structure of stiffened cylindrical shells 

In this example, only the first several modes of each component have been modified, and 
as shown in Tab. 5, the largest relative error among the first 16 natural frequencies of the 
whole structure is 2% (for the 6th natural frequency). And in Fig. 4, the mode shapes of 
the equivalent beam model are similar to those of the fine FEM model. 
For a composite structure of stiffened cylindrical shells, like a launch vehicle, the lower 
modes are usually most concerned and they are made up from the lower modes of 
individual components. The construction of the equivalent beam model for each 
component that captures the lower modes of the original structure can provide an 
accurate reduced model for the whole composite structure. 

7 Conclusions 
An equivalent beam model for dynamic analysis of launch vehicles modelled as stiffened 
cylindrical shells is successfully established. Model updating method is applied to 
improve the beam model of the stiffened cylindrical shells. Three aspects of this work 
lead to its success. In establishing the initial equivalent beam model, some improvements 
are made to the cross-sectional area equivalence principle. The mass distribution of the 
initial equivalent beam model is the same as that of the stiffened cylindrical shell along 
the longitudinal direction. In comparing the mode shapes, by introducing the weighted 
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nodal displacement coupling relationship, the relation between the mode shapes of the 
detailed FE model of the stiffened cylindrical shell and its equivalent beam model is 
constructed. In model updating, the whole process is split into two procedures, which 
helps prevent the design parameters from converging to incorrect values.  
The method proposed in this paper is an improvement of the method proposed by Pan et 
al. [Pan, Wang, Ma et al. (2014)]. There are three main advantages of the improved 
method compared with the common methods. 
a) The physical meaning of the equivalent beam model is clear. It is easy to build an 

intuitive FE model of the equivalent beam using conventional beam elements in 
commercial software. The improved method and the method proposed by Pan et al. 
both have clear physical meanings. The whole model reduction process does not 
depend on the experience of the analyst, and the high-accuracy equivalent beam models 
of the stiffened cylindrical shells can be established by follow some simple steps. 

b) Compared with the method proposed by Pan et al., the improved method can take into 
account the influences of the circumferential ribs of the stiffened cylindrical shells, so 
the mass distributions of the beam models are much closer to those of the shells along 
the longitudinal direction. And the model updating against the modal analysis results 
of the shells is given to the beam models, so they can have a higher accuracy. 

c) The method proposed by Pan et al. has a limitation of applicability. A good accuracy 
can be obtained only if the cross-sectional moment of area of the equivalent beam is 
close to that of the original structure. It means that the method proposed by Pan et al. 
is more suitable for establishing the equivalent beam models of the stiffened 
cylindrical shells with large diameter of the shell skins, small cross-section size and 
densely distributed of the longitudinal ribs, and few circumferential ribs. The 
improved method is not subjected to these limitations. 

It should be pointed out that although the proposed method improves the accuracy of the 
equivalent beam model through model updating, it needs to establish a fine FEM model 
of the original structure, which undoubtedly increases some extra work of the model 
reduction process compared with the method proposed by Pan et al. 
A real launch vehicle consists of several kinds of stiffened cylindrical shells which need 
to be classified at first. The stiffened cylindrical shells which constitute the main 
structures of the launch vehicle need to be reduced separately. If the length of the 
stiffened cylindrical shell is short, it should be conceptually grouped with a few other 
stiffened cylindrical shells so that all together the grouped shells are long enough to be 
modelled as a beam. Generally, when the slenderness ratio of a stiffened cylindrical shell 
is more than 10, its global dynamic behaviour becomes similar to that of a beam. For the 
other stiffened cylindrical shells which are very short and mainly used for connection. 
The equivalent beam models of them need to be updated together with the equivalent 
beam models of the stiffened cylindrical shells connected by them. After all the stiffened 
cylindrical shells are reduced properly, they are assembled together to determine the 
connections between the different stages and boosters. 
For applying this method to the general situation, the basic ideas are the same. Firstly, the 
mass distribution of the equivalent beam model should be the same as that of the 
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stiffened cylindrical shell along the longitudinal direction, which is relatively easy to 
achieve mathematically. The next step is the adjustment of the stiffness distribution, 
which is the difficult part in beam model equivalence. If the stiffened cylindrical shell is 
very complex along the longitudinal direction, it needs to be conceptually divided into 
several simple segments, and many design parameters have to be selected to get the 
equivalent model, which will bring many problems. This method is more suitable for 
establishing the equivalent beam model of the structure composed of several simple 
slender stiffened cylindrical shells. 
For further development of this method, one action is introducing additional degrees of 
freedom to enrich the representativeness of the equivalent beam model, to improve the 
accuracy and to expand the application, so that it can be used to describe accurately such 
structures as stiffened cylindrical shells with large openings on their side walls. The other 
is the application of model updating method combined with weighted nodal displacement 
coupling relationship. Such an improved method will have the ability to establish the 
equivalent models of other kinds of large and complex structures. 
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