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Abstract: We propose a new approach to reuse the basis function evaluations in the 
numerical integration of isogeometric analysis. The concept of reusability of the basis 
functions is introduced according to their symmetrical, translational and proportional 
features on both the coarse and refined levels. Based on these features and the parametric 
domain regularity of each basis, we classify the bases on the original level and then reuse 
them on the refined level, which can reduce the time for basis calculations at integration 
nodes. By using the sum factorization method and the mean value theorem for the 
integrals, a new integration method with high integral efficiency is proposed. We validate 
the proposed method by some structural analysis problems in domains with different 
dimensionality. Comparing the numerical result accuracy and the time cost of the 
proposed integration method with the full Gauss integration quadrature, it turns out to be 
very promising. 
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1 Introduction 
The efficient quadrature for isogeometric analysis, which was initially considered in 
Hughes et al. [Hughes, Reali and Sangalli (2010)], is a hot research topic in recent years 
[Wang, Xu and Pasini (2017)]. However, most of the works so far in isogeometric analysis 
still use the “full” Gauss quadrature on each element that is carried over from standard 
finite element analysis. It is no doubt that this integration method can give high-precision 
numerical results, but there still exists a non-ignorable problem: the number of Gauss 
quadrature points grows exponentially on each refined level and thus much more time is 
spent on the integral computation for the stiffness or mass matrix generation.  
To minimize the integration points for high efficiency, many integration methods are 
proposed. Hughes et al. [Hughes, Reali and Sangalli (2010)] proposed the “half-point 
rule” based on the precise smoothness of basis function across element boundaries, which 
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recalculate the quadrature points on the macro-elements. And the number of quadrature 
points in this proposed method is less than the full Gauss method [Wang, Arabnejad, 
Tanzer et al. (2018)]. This integration rule is verified by some structural mechanics and 
fluid dynamics problems. Compared with the standard Gauss method, this method has 
higher integral efficiency. Takacs et al. [Takacs and Jüttler (2011)] discussed the special 
case of singularly parameterized NURBS surfaces and volumes represented by 
non-quadrangular or non-hexahedral domains without splitting, and presented an 
approach for verifying the integrability of these singular parameterizations and a method 
for modifying the test functions when a diverging integral is tested. Auricchio et al. 
[Auricchio, Calabro, Hughes et al. (2012)] developed several new quadrature rules for 
isogeometric analysis taking into account the features of basis functions, which are tested 
by some boundary value problems. Rypl et al. [Rypl and Patzák (2012)] have compared 
the computational efficiency of four available numerical quadrature in IGA: GSR (Gauss 
Standard Rule), GBE (Gauss rule on Bezier Elements), GPS (Gauss rule with basis 
functions Precomputed for all knot Spans), and HPR (Half-Point Rule), and they have got 
the conclusion that the HPR scheme is more appropriate than others. Schillinger et al. 
[Schillinger, Hossain and Hughes (2014)] proposed some non-tensor-product structure 
monomial quadrature rules based on the tensor-product Gauss and Gauss-Lobatto rules. It 
enjoys the same accuracy and stability behavior as the full Gauss quadrature with fewer 
integration points. Adam et al. [Adam, Hughes, Bouabdallah et al. (2015)] proposed a 
new approach to construct selective and reduced integration rules and developed a robust 
and computationally efficient local algorithm for computing the quadrature points and 
weights element by element. Calabro et al. [Calabro, Sangalli and Tani (2017)] proposed 
a new algorithm using no-element-wise assembling loop. Instead, this proposed method 
loops over the matrix rows based on a specifically designed weighted quadrature (WQ) 
rule. According to the tensor product structure of the B-spline basis functions and the 
sum-factorization implementation, this quadrature method also has high integral 
efficiency. Mantzaflaris et al. [Mantzaflaris, Jüttler, Khoromskij et al. (2017)] introduced 
a new quadrature method which reduces demanding multi-dimensional quadrature 
operations on tensor-product B-splines to inexpensive one-dimensional operations on 
univariate B-splines. 
For the refinement or the hierarchical refinement, each basis function must be 
recalculated on each level in traditional integration methods. Their low quadrature 
efficiency is a bottleneck for IGA, especially when a hierarchical refinement is adopted 
[Wu, Huang, Liu et al. (2015)]. Actually, the basis functions on the refined level have a 
shape similar to those on the original level, except for the width of their spans. And the 
values of basis functions on higher levels can be obtained from those at lower levels or 
the original level through transformation. According to this transformation concept, we 
could reuse lower-level basis functions without recalculating the basis functions on each 
refinement level. In Auricchio et al. [Auricchio, Calabro, Hughes et al. (2012)], the entire 
basis functions have been divided into three categories: the boundary functions, bubble 
functions and transmission functions. However, few works discuss the quadrature based 
on these transform features. Actually, our verification shows that the integration 
efficiency can also be improved by exploiting these basis function features. 
The structure and content of this paper is organized as follows. Section 2 begins with a 



 
 
 
Reusing the Evaluations of Basis Functions in the Integration                           461 

 

brief review of the basis functions for splines and follows up with the discussions on their 
reusability and the descriptions of the basis-function classification based on the reusable 
rules formed according to the multiplicity of the nodes in the definitions of individual 
basis functions. The definition of reusable basis function is also discussed in this section. 
In Section 3, the Gauss integration method is introduced first, and then the extended 
Gauss integration method based on three features of basis functions is proposed. In 
addition, the integration points and weights under given knot vector is given there. 
Section 4 presents three examples, to which the proposed method is applied, and the 
comparative study that discusses about the computational efficiency and precision of the 
proposed method versus the standard Gauss method and the weighted quadrature method. 
Finally, we finalize the paper with a summary of some open problems related to this 
research in Section 5. 

2 The redefinition of basis functions 
We start with the discussion on three features of basis functions. Then, we propose a 
classification method for basis functions on entire refinement levels based on the features 
and their node multiplicity as well. At last we define the calculation method for basis 
function of NURBS according to the proposed classification method. For further details on 
the features of basis function and refinement, we refer to the fundamental works of Hughes 
and his co-workers [Hughes, Cottrell and Bazilevs (2005)]; Schillinger and Rank (2011); 
Schillinger, Evans, Reali et al. (2013); Bornemann and Cirak (2013)]; Scott, Thomas and 
Evans (2014); Auricchio, Calabro, Hughes et al. (2012); Wang, Wang, Xia et al. (2018)]. 

2.1 Three features of basis functions 
The basis functions of B-spline curves with degree +∈ Zp  are defined from a 

non-decreasing knot vector 1 2 1{ , ,..., },n p n Zξ ξ ξ +
+ +Ξ = ∈ , with the Cox-de Boor 

recursion formula. The formula starts with the piecewise constant-valued basis functions 
( 0=p ): 

1
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otherwise
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and the other basis functions are recursively given in the form (the quotient 0/0 is defined 
to be zero):  
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The basis functions are piecewise polynomials on their parametric spans. At the two end 
spans, the corresponding basis functions comply with the symmetry. This feature is called 
symmetry rule in this paper. In addition, most of basis functions with the same 
multiplicity in their parametric domain have the same shape though they are related to 
different nodes with various spans, and these basis functions can be gotten from one 
function through transformation. This characteristic is called translation rule here. For 
the basis functions of univariate B-splines with degree p=3, knot vector 
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{0 0 0 0 1 2 3 4 5 6 6 6 6}, , , , , , , , , , , ,Ξ =  shown in Fig. 1(a), the two corresponding rules are 
illustrated in Fig. 1(b) and Fig. 1(c) respectively. The 0 0 0

6 7 8, andN N N can be derived from 
0 0 0
0 1 2, andN N N through an anti-symmetry operation respectively. And 0 0

4 5andN N  can be 

obtained through translating 0

3
N . 

For the basis functions from the refinement at the midpoints of intervals, there exists a 
ratio of basis functions between the coarse level and refined level. This scaling relation 
between basis functions at two levels is called scaling rule in this paper, which is shown 
in Fig. 1 and Fig. 2. For example, the bases 0

0
N on level 0 and 1

0
N on level 1, although 

the span of 1

0
N on refined level is half of 0

0
N , have the values equal to each other. 
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Figure 1: The two rules of basis functions. (a) All basis functions of the defined knot 
vector. (b) The symmetric basis functions. (c) The translational basis functions 
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Figure 2: The proportion rule of basis function on coarse level and refinement level 

2.2 The classification of basis functions 
The sharpness of a basis function depends on the knot multiplicity of the support knot 
spans supp

i
N



. In this paper, the knot multiplicity is the total number of multiple knots 
in a specific support knot span. It should be noted that the multiplicity of each knot is 
different in the support spans of different basis functions. We suppose that the 
multiplicity of each support span { | ( ), supp }

i i i i
s s s u u N



= ∈  is identical or symmetric, 
the corresponding basis function is the same. For reusing the basis functions based on the 
three rules in Section 2.1, we propose a reclassification of the basis functions according 
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to the multiplicity of support knot span. We assume that the similar multiplicity of 
support spans supp

k

i
N



 of the refined basis functions can be found out on the spans 
0

supp
i

N


 of the original level. We only classify the original knot vector, and the refined 
basis function can be classified according to the multiplicity of support spans. 

Table 1: The classification results based on the multiplicity method 

reference span knot multiplicity basis functions rule 
[0 0 0 1]  [3 3 3 1]  0 0

0 6,N N  symmetry 
[4 5 5 5]  [1 3 3 3]  1 1

0 11,N N  symmetry/scaling 
[0 0 1 2]  [2 2 1 1]  0 0

1 5,N N  symmetry 
[3 4 5 5]  [1 1 2 2]  1 1

1 10,N N  symmetry/scaling 

[0 1 2 3]  [1 1 1 1] 
0 0 0
2 3 4, ,N N N  translation 

1 1 1
2 3 9, ,...,N N N  translation/scaling 

Here, we take the original knot vector {0, 0, 0,1, 2, 3, 4, 5, 5, 5}Ξ = and its refinement knot 
vector {0, 0, 0, 0.5,1,1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5, 5}Ξ = for p=2 as an example to illustrate our 
classification method. The classification results are shown in Tab. 1.  
From Tab. 1, all the basis functions are divided into three groups based on the 
multiplicity of the knots on their support spans. For the basis functions on the same level, 
they only meet the translational or symmetry rule. But for the basis functions on the 
different levels, they satisfy the scaling rule in addition to the above two rules.  
Here, we propose the following classification principles: (1) Choose each support span 
on the refined levels and calculate the multiplicity of each knot node. (2) Compare them 
with those for the bases on the initial level one by one; if the multiplicity vectors are 
equal or symmetrical, their corresponding bases belong to the same class.  
For the spans [0 0 0 1]  and [4 5 5 5] on the original level and the span [4.5 5 5 5]  on 
the refined level, the corresponding multiplicity vectors are [3 3 3 1] , [1 3 3 3]  and 
[1 3 3 3]  respectively, which meet the requirements of symmetric rule, and so they 
belong to the same group. However, for span [0 1 2 3]  on the original level and 
[0 0 0.5 1] on the refined level, their multiplicity vectors are different ( [1 1 1 1] vs. [2 2 1 1] ), 
and it is necessary to classify them into different groups (see Tab. 1). 
Here, for simplification, we suppose that all level refinements are conducted by 
subdividing all the knot span elements of the knot vector at their midpoints. The knot 
interval length on the original level is the same and the length among different refined 
levels is proportional to each other. 

2.3 The transformation of basis function according to the classification rules 
Based on the classification method discussed above, we select one basis function in each 
group to redefine the others. Here, this selected basis function is called reference basis

R
N , 
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and its corresponding support domain is called reference span supp
R

N


. Generally, each 
group has only one reference basis and one reference span. 
Actually, for the basis functions spans in a same group, there exists an affine 
transformation between the defined reference span and others: 

( ) ( )L u C u µ β= − + ,                                                       (2) 
where the coefficient C is a constant, and the variables µ  and β are the first node value 
of the reference span and the mapped span respectively. Choosing the support span of 

0

2
N ( u1=[0 1 2 3]) as the reference span (see Tab. 1), and the span of refined basis 

function 1

6
N (u2=[2.5 3 3.5 4]) can be expressed using Eq. (2): 

2 1 1
( ) 0.5( 0) 2.5 0.5 2.5L u u u= − + = + . Note that it is wrong to confirm the variable β in Eq. (2) 

using the above proposed method directly for the symmetric spans and they must be 
inverted at first and then calculate µ and β according to the corresponding reference span. 

The coefficient 1 / 2
k

C = ± for the proportional spans where k is the refinement level and the 
minus indicate that the selected span is symmetry with the reference span. 
Now, all the basis functions can be expressed by their corresponding reference bases 
through the affine transformation of their spans. And the value of basis function at a point 
is equal to that of reference basis functions. As for the evaluation of the compared basis 
function, it is important that the right reference basis is chosen. Here, we follow a “left” 
principle to select them: trying to select the basis function and its span located on the left 
end of the original level as the reference basis and span. Usually, these selected spans 
always contain node 0, and it is convenient to confirm the affine transformation for them. 
Based on affine transformation, all the basis functions ( )N u can be re-expressed in terms 
of the reference basis ( )RN u : 

( ) ( ( )) ( ( ) )
R R

N u N L u N C u µ β= = − + ,                                          (3) 

This formula defines the translation relation of basis functions from the reference span to 
the other spans. However, in the process of calculating, the calculated span has always 
been known beforehand, and it is necessary to confirm its inverse transformation that 
projects the selected span to its corresponding reference span. This inverse 
transformation can be written in this way: 

1 ( )
u

L u
C

β
µ− −

= + ,                                                       (4) 

So the basis function on the selected span can be expressed by the reference basis 
function: 

( ) ( )
R

u
N u N

C

β
µ

−
= + ,                                                    (5) 

and the corresponding derivative has the form as follows 
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' '1
( ) ( )

R

u
N u N

C C

β
µ

−
= + ,                                                   (6) 

Table 2: The variable values of the affine transformation for the basis functions in Fig. 3 

reference span supported span C  µ  β  

[0 0 0 1] / 0

0N  

[5 6 6 6] / 0

8N  -1 0 6 

[0 0 0 0.5] / 1

0N  0.5 0 0 

[5.5 6 6 6]/ 1

14N  -0.5 0 6 

[0 0 1 2] / 0

1N  

[2 3 4 4] / 0

4N  -1 0 4 

[4 4 5 6] / 0

6N  1 0 4 

[4 5 6 6] / 0

7N  -1 0 6 

[0 0 0.5 1] / 1

2N  0.5 0 0 

[3 3.5 4 4] / 1

8N  -0.5 0 4 

[4 4 4.5 5] / 1

10N  0.5 0 4 

[5 5.5 6 6] / 1

13N  -0.5 0 6 

[0 1 2 3] / 0

2N  

[1 2 3 4] / 0

3N  1 0 1 

[0 0.5 1 1.5] / 1

2N  0.5 0 0 

[0.5 1 1.5 2] / 1

3N  0.5 0 0 

[1 1.5 2 2.5] / 1

4N  0.5 0 1 

[1.5 2 2.5 3] / 1

5N  0.5 0 1.5 

[2 2.5 3 3.5] / 1

6N  0.5 0 2 

[2.5 3 3.5 4] / 1

7N  0.5 0 2.5 

[4 4.5 5 5.5] / 1

11N  0.5 0 4 

[4.5 5 5.5 6] / 1

12N  0.5 0 4.5 

[3 4 4 5] / 0

5N  [3.5 4 4 4.5] / 1

9N  0.5 3 3.5 
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Figure 3: The results of basis functions classification. (a) The reference basis functions. 
(b) The classified basis functions on the original level. (c) The classified basis functions 
on the 1st level 

Based on Eq. (5), any basis function on the original level or on the refined level can be 
redefined. Now we take the original knot vector {0, 0, 0,1, 2, 3, 4, 4, 5, 6, 6, 6}Ξ =  with p=2 
and its refined knot vector {0, 0, 0, 0.5,1,1.5, 2, 2.5, 3, 3.5, 4, 4, 4.5, 5, 5.5, 6, 6, 6}Ξ =  as an 
example, which is shown in Fig. 3. There are four reference basis functions on the 
original knot vector according to the classification principle proposed above; they are 

0

0
N  ([0 0 0 1]), 0

1
N  ([0 0 1 2]), 0

2
N  ([0 1 2 3]) and 0

5
N  ([3 4 4 5]) shown in Fig. 3(a). 

According to the knot multiplicity of their reference spans, the basis functions on these 
two levels are classified into four groups shown in Fig. 3(b) and Fig. 3(c). 
The variables in Eq. (4) are given in Tab. 2. Due to the chosen reference basis functions 
are distributed on the left of the original parametric domain, which contains node 0, so 
the variable µ  is equal to 0 in general. In addition, 0C <  indicates that the span is 
symmetrical to the reference span. 

2.4 The basis functions of NURBS 
The basis function can be re-expressed by a reference basis via Eq. (5). The value of 
basis function at a point can be calculated by evaluating its corresponding reference and 
performing the inverse affine transformation Eq. (4). And the bivariate basis functions of 
NURBS can be written with the reference bases: 

,
( , )

i j
R u v A B= ,                                                          (7) 

where 1 2

1 2

1 2

( ) ( )
Ri Rj ij

u v
A N N

C C

β β
µ µ ϖ

− −
= + + , 1 2

1 2

1 2

( ) ( )
Ri Rj ij

i j

u v
B N N

C C

β β
µ µ ϖ

− −
= + +∑∑ . 
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ij
ϖ is the control points weights. 

If 1ijϖ ≡ , this formula can be simplified as follows: 

1 2

, 1 2

1 2

( , ) ( ) ( )
i j Ri Rj

u v
R u v N N

C C

β β
µ µ

− −
= + + .                                       (8) 

The partial derivatives for Eq. (7) are shown as: 

( )
( )

2

, , ,

2

, , ,

u u u

v v v

R A B A B B

R A B A B B

= −

= −
 ,                                                   (9) 

where 
'

, 1 1 1 2 2 2 1

'

, 1 1 1 2 2 2 2

(( ) / ) (( ) / ) /

(( ) / ) (( ) / ) /

u Ri Rj ij

v Ri Rj ij

A N u C N v C C

A N u C N v C C

β µ β µ ω

β µ β µ ω

= − + − +

= − + − +
, 

'

, 1 1 1 2 2 2 1

'

, 1 1 1 2 2 2 2

(( ) / ) (( ) / ) /

(( ) / ) (( ) / ) /

u Ri Rj ij

i j

v Ri Rj ij

i j

B N u C N v C C

B N u C N v C C

β µ β µ ω

β µ β µ ω

= − + − +

= − + − +

∑∑

∑∑
. 

In the above equations, the values of basis functions are expressed with the reference 
basis functions. It is possible to reuse the evaluations for reference bases in the 
calculation of the basis functions according to this feature. 

3 The numerical integration method 
Nowadays, the integration efficiency is still a bottleneck for IGA. In this section, we 
propose a numerical integration method according to the concept of reference basis 
functions defined in Section 2, which takes less time in the integration compared with the 
“full” Gauss quadrature. 

3.1 The quadrature based on the reference bases 
The tensor product structure of B-splines basis functions can be expressed as [Antolin 
(2015)]: 

1 21 2
m 1

) )( ) ( ( ( ) ( )
d

d

d m mR u N u N u N u N u

=

= =∏ .                                    (10) 

And its gradient can be written as follows: 

m 1

( )
( ( ))im

d

m m

i

R u
D N u

u
δ

=

∂
=

∂
∏ ,                                                 (11) 

where 
' ( ) if

( ( ))
( )

im
m m

m m

m m

N u i m
D N u

N u otherwise

δ
=

=




. 

In Antolin et al. [Antolin, Buffa, Calabro et al. (2015)], the integration formulation for 
the mass matrix and the stiffness matrix can be obtained according to the univariate 
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quadrature rules in nested integrals: 

1 2 3

1 2 3

1 1

1 1 1 1 2 2 2 2 3 3 3 3 1 2 3 3 2 1

(u) (u) (u) u ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

m m

d d

, m m

m m

b b b

a a a

m R R c d N u N u c u du

N u N u N u N u N u N u c u ,u ,u du du du

α β α β α βΩ Ω

α β α β α β

= =

= =

= ×      

∏ ∏∫ ∫

∫ ∫ ∫
,   ``` (12) 

1 1

( ( )) ( ( )) ( )jkik

dd

, k k k k

i , j k

s D N u D N u c u du
α β α βΩ

δδ

= =

=   ∑ ∏∫ ,                                (13) 

where ( )c u is a factor about the coefficients of the investigated partial differential 
equation and the problem geometry, i.e., the Jacobian of the geometry. 
From the extended basis function defined in Section 2.3, each basis function in Eq. (12) 
and Eq. (13) has its own reference basis. They can be expressed using the reference basis 
as follows:  

1 1 2 2

3 3

1 1 1 1 2 2 2 2

3 3 3 3 1 2 3 3 2 1

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( , )d d d

, ,

,

, f f

R g R g R g R gU U

R g R g g g g g g gU

m R u R u c u du

N u N u N u N u

N u N u c u u ,u u u u

α β α β

α β

α β α β

α β α β

α β

Ω
=

= ⋅

⋅

∫
∫ ∫

∫

,                        (14a) 

1 21 2

1 1 2 2

33

3 3

1 1

1 1 1 1 2 2 2 2

3 3 3 3 1 2 3 3 2 1

( ( )) ( ( )) ( )

( ( )) ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( , )d d d

j ji i

, ,

ji

,

jkik

dd

, k k k k
i , j k

R g R g R g R gU U

R g R g g g g g g gU

s D N u D N u c u du

D N u D N u D N u D N u

D N u D N u c u u ,u u u u

α β α β

α β

α β α β

δ δδ δ

α β α β

δδ

α β

δδ

Ω
= =

=

= ⋅

⋅

  ∑ ∏∫

∫ ∫

∫

.         (14b) 

where 
R R

N , N
α β

 are the univariate reference basis. According to Eq. (11), an integral on a 
multi-dimensional domain has become a product of serval integral parts on 
one-dimensional domain. The format of each part is similar to each other.  

3.2 The integrand in quadrature 
3.2.1 The quadrature derived from Gauss method 
From the principle of Gauss integration, 

1

0
0

( )d ( )
n

i i

i

f x x W f Q
=

≈ ∑∫ .                                                   (15) 

where 
i

Q  and 
i

W  are the integration points and weights respectively, n  is the number 
of Gauss points. 
According to Eq. (14), there are similar integral forms based on the reference basis 
functions defined in Section 2.3, and hence one reference basis might have been 
calculated several times in an integral operation. However, this repeated calculation has 
two disadvantages in the integral process. One is the low efficiency of integral 
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calculation; another is a waste of a lot of computational recourses. To overcome this 
dilemma, we extended the Gauss method to a weighted Gauss integration. 
Here, we define a new integration method similar to the general Gauss integration: 

0

( ) ( )d ( )
n

b

i ia
i

g x f x x f xω
=

≈ ∑∫ .                                                 (16) 

where ( )g x  is a polynomial weight function. However, in this new method this 
function is associated with reference bases in the way ( )= ( ) ( )R Rg x N x N xα β . Note that 

( )g x does meet the following condition: 

( ) 0  [ ]g x , x a,b> ∀ ∈  or ( ) 0  [ ]g x , x a,b< ∀ ∈ .                                   (17) 
This proposed integration method, which is called the extended Gauss integration 
method (EGM), is different from the traditional Gauss method shown in Eq. (15). The 
first is the integration polynomial that is defined by two basis functions. The second is 
the integration domain that is alien to the normal span [-1,1] of the traditional Gauss 
quadrature. In this proposed integration method, this domain is related to the 
function ( )g x , that is, the integration domain is determined by the intersection of spans of 
the two basis functions in ( )g x . Although it can be easily converted to a certain domain 
using the three features defined in Section 2.1, it needs more transformation parameters. 

3.2.2 Combinations of the reference bases 
In the previous section, the integral polynomial is a compound of two arbitrary 
reference bases. It is known that the number of reference bases is limited. It is possible 
to calculate the integration on all defined domain through this characteristic. However, 
due to the two differences mentioned above, it is not easy to deal with ( )g x  in the same 
way as traditional Gauss. 
For reusing the reference bases in our new integration method, the combinations of the 
reference bases are studied. In the integration process of IGA, there are four situations for 
each combination (such as ( )

R
N x

α
 and ( )

R
N x

β
, the two bases may indicate a same 

reference basis): 

1
( )= ( ) ( )

R R
g x N x N x

α β
,                                                     (18a) 

2
( )= ( ) ( )'

R R
g x N x N x

α β
,                                                     (18b) 

3
( )= ( ) ( )'

R R
g x N x N x

α β
,                                                      (18c) 

4
( )= ( ) ( )' '

R R
g x N x N x

α β
.                                                     (18d) 

When we calculate the integration of mass matrix, only 
1
( )g x  needs to be chosen. For 

the computational mechanics or the fluid problems, it is probably to select the 
4
( )g x  to 

calculate the stiffness matrixes or fluid equations. 
It is known that the basis function has its own influence domain, that is, a basis function 
may cover several elements. Although one can calculate the integration on several 
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elements (macro-element in half point rule), it is hard to deal with the integration domain 
when the combinations of different reference basis functions are taken into account. 
In the process of integration calculation, our proposed method will continue to perform 
the integration on each element with the Gauss method which can be written as follows: 

0

( ( )) ( ( )) ( )d ( ) ( )d ( )( ) ( )d jmim

n

R R i iU U
i

b

a
D N x D N x f x x x f x x f xg x f x x

αβ αβ

α β

δδ ρ ω
=

⋅ = ≈= ∑ ∑∫ ∫∫ ,      (19) 

where ( ) ( ( )) ( ( ))jmim

R R
x D N x D N x

α β

δδρ = ⋅ , U U
αβ αβ
⊂ is an integration element, which is the 

intersection set of the span of
R

N
α

and
R

N
β
. The symbol imDδ means x/∂ ∂ . Based on the 

reference basis, one can quickly calculate the integration on each element without 
recalculating the value of basis function on each Gauss point. 
To illustrate the proposed integration technique described above, we give an integration 
example on a quadratic B-spline with the knot vector {0,0,0,1,2,3,4,5,6,6,6}. In this 
example, we confirm the new integration points and weights based on the traditional 
Gauss method. 
According to the classification rule for the bases and the principle for choosing reference 
bases defined in Section 2.2, there are three reference basis functions in the above knot 
vector: 0

0 2,
N , 0

1 2,
N and 0

2 2,
N . Their corresponding spans are [0,0,0,1], [0,0,1,2] and [0,1,2,3], 

respectively. Here, there are 6 types of polynomial combinations from the pairs of 3 
reference bases and 24 integration situations in total. For simplification, here we take the 
combination of reference basis 0

1 2,
N and 0

2 2,
N  into account at first. Considering the 

derivation of the basis in the process of integration, the polynomial ( )g x can be expressed: 
0 0

1 2 2 2
( ) ( ( )) ( ( ))  1 2; 1 2.jmim

, ,
g x D N x D N x , i , j , m ,

δδ= ⋅ = =                                (20) 

And the integration on the domain [0, 2] can be shown as follows: 
2 0 0

1 2 2 20
( ) ( )d ( ( )) ( ( )) ( )djmim

b

, ,a
g x f x x D N x D N x f x x

δδ=∫ ∫ .                                 (21) 

Due to ( )g x is a piecewise polynomial on [0, 1] and [1, 2], this integration can be 
decomposed into the following form: 

1 20 0 0 0

1 2 2 2 1 2 2 20 1
( ) ( )d ( ( )) ( ( )) ( )d ( ( )) ( ( )) ( )djm jmim im

b

, , , ,a
g x f x x D N x D N x f x x D N x D N x f x x

δ δδ δ= +∫ ∫ ∫ .         (22) 

According to Eq. (16) and the traditional Gauss method, each integration domain in Eq. 
(23) has its own integration points ix  and weights iω , which can be obtained through the 
following equations: 

2 3( ) ( )d ( ) [0 1];[1 2] 1 2 3 4 ( )=1
l i i

i

g x f x x f x , , , ; l , , , ; f x , x, x , x ,
Γ

ω Γ  = = =∑∫ .        (23) 

Here, we can obtain equations as follows (p=2): 
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1 1 0 0

1 1 2 2 2 1 20 0

1 1 0 0

1 1 2 2 2 1 1 2 20 0

1 12 0 0 2 2 2

1 1 2 2 2 1 1 2 20 0

1 13 0 0 3 3

1 1 2 2 2 1 1 20 0

1
( )d ( ) ( )d

10

3
( ) d ( ) ( ) d

40

5
( ) d ( ) ( ) d

84

11
( ) d ( ) ( ) d

224

, ,

, ,

, ,

, ,

g u u N u N u u

g u u u N u N u u u x x

g u u u N u N u u u x x

g u u u N u N u u u x x

ω ω

ω ω

ω ω

ω ω

= = = +

⋅ = ⋅ = = +

⋅ = ⋅ = = +

⋅ = ⋅ = = +

∫ ∫

∫ ∫

∫ ∫

∫ ∫ 3

2

, 

Solving this equations and obtaining the integration points and weights for the 
0

1 2,
N and 0

2 2,
N  on the domain [0,1]: 

1 2
15 22 1995 231x , x ±= ,

1 2
1 20 3 1995 7600,ω ω −= . 

Fig. 4 shows the distribution of integration points of 0 0

1 0 2 2
( ) ( ) ( ) 0 1 2

, i ,
g u N u N u ,i , ,= =  and 

0 0

1 0 3 3
( ) ( ) ( ) 0 1 2 3

, i ,
g u N u N u ,i , , ,= = with p=2 and p=3 respectively. In this figure, the blue points 
with red edge are the integration points. The red and the blue curves are the basis functions. 
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1
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1

0 0.5 1
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1

(a)

(b)  
Figure 4: The distribution integration points. (a)The integration points of 

1
( )g u  with 

p=2; (b)The integration points of 
1
( )g u  with p=3 

Using the same method, we can get their corresponding integration points and the 
corresponding weights for the all reference bases. With the experimental verification, for 
higher order of basis functions (less than 5), it can obtain the accurate integral results 
using only 2 integration points in one direction for each element. Actually, it is necessary 
to take three or more integration points in each direction according to the Eq. (23) to 
reduce the calculation error. Here, we consider a d-dimensional model problem on a 
single-patch domain, the degree of tensor-product space p and total dimension. NDOF For 
the standard Gauss method, each local stiffness matrix has dimension (p+1)2d and each 
entry is calculated by quadrature on (p+1)d integration points. The total cost is 
about 3( )d

DOFO N p floating point operations. For our proposed method, due to the 
computational frame of sum-factorization, the total computational cost is 
about 2 d

DOFRN p (R is a constant) [Calabro, Sangalli and Tani (2017)].  
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3.2.3 The analysis of the integration condition for integral polynomial 
According to the integration condition Eq. (17), the integral polynomial should be always 
great than or less than 0 on the whole integration domain [a, b]. However, this condition 
cannot be satisfied by all the situations of ( )kg x defined in Eq. (18) at the same time. To 
overcome this problem, it is necessary to divide the integral domain into several 
sub-domains and keep the value of ( )kg x  always being negative or positive on each 
sub-domain. These sub-domains can be confirmed by solving the equations: 

( ) 0  1 2 3 4; [ ]kg x , k , , , x a,b= = ∈ .                                            (24) 

Assume the roots of the equations are 1{ | 0 1 }k k kx x x ,k , , ,n

+
< = , which divide the 

integration domain into several sub-domains. There is only one integral domain [a,b], if 
Eq. (24) has no root in the interval. 
On the basis of Eq. (17) and Eq. (24), the integral in Eq. (23) can be expressed as the 
form of integral sum on all sub-domains: 

1

( ) ( )d ( ) ( )d
nb

ka Ue
e

g x f x x g x f x x
=

= ∑∫ ∫ .                                          (25) 

In this equation, the integration points on some domains may be doubled. Due to the 
non-negative characteristic of basis functions, this situation does not appear when the 
integral polynomial is 1 ( )g x .It is obvious that each calculated point is still located in its 
corresponding integration domain. However, there exists a large integral error using these 
integration points and weights without considering the condition of Eq. (17). So it should 
check the integrand carefully when calculating the integration points and weights. 

3.2.4 The standard integration domain for the proposed integration method 
In the above section, the calculated integration points and weights are present on the 
whole spans of reference basis. It is inconvenient to convert these reference basis spans 
to the actual integration domain, especially for the longer spans of the high-order basis 
functions. So it is necessary to define a standard domain for simplifying the calculation 
process and keeping accordance with the traditional Gauss integration method. 
Considering the features of knot vectors, this standard domain is set to [0, 1]. 
According to the three characteristics illustrated in Section 2.1, any span of basis function 
can be converted to this standard domain. This transformation is similar to the affine 
transformation Eq. (2) between coarse and refined basis spans that can be extended as 
follows: 

( ) ( )R

u
N u N

C

β
µ η

θ

−
= + + ,                                                (26) 

whereθ is a scaling ratio between the integration and the standard domain, η  is a shift 
factor that equal to the lower bound of integration domain. 
Illustrating the integration points and weights on the standard domain, we take the knot 
vector in Section 3.2.2 as an example and give the points and weights for combinations 
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of all reference basis functions, which are shown in Tabs. 3-5. In these tables, g2(x)/g3(x) 
indicates that the integration points and weights are equal to each other under this 
combination situation. 

Table 3: The integration points and weights for 0 0

0 2 0 2, ,
N N, , 0 0

0 2 1 2, ,
N N, and 0 0

0 2 2 2, ,
N N, . 

basis span gk(x) integration point( ix ) weights( iω ) 

0

0 2,
N , 0

0 2,
N  

0 0.5 1
0

0.5

1

 

g1(x) 1 4 21 28±  1 10 21 90  

g2(x)/ g3(x) 2 7 15 21± , (1 4 15 1003 )− ,. 

g4(x) 1 3 10 15± ,. 2 3 10 12 ,. 

0

0 2,
N , 0

1 2,
N  

0 0.5 1
0

0.5

1

 

g1(x) 39 98 359 98± ,. 7 120 359 107707 ,. 

g2(x) 94 203 1934 203±  (5 24 1934 7736039 )−  

g3(x) 
2686 11823 2966198 11823±

17 21 2 21±  

17 81 31394 2966198 600655095

(1 648 2 6480 )−  

g4(x) 
17 69 2885 345±  

5 6 5 30±  

(14 27 2885 5712 )−  

1 54  

0

0 2,
N , 0

2 2,
N  

0 0.5 1
0

0.5

1

 

g1(x) 1 2 7 14±  1 120  

g2(x) 4 7 2 7±  1 24 2 240−  

g3(x) 3 7 2 7±  1 24 2 240  

g4(x) 1 2 5 10±  1 6−  

In Tab. 3, the integration points of g3(x) and g4(x) with the combination of 0

0 2,N , 0

1 2,N  go 
out of the integration domain [0,1] if the condition in Eq. (17) is not considered . It is 
necessary to divide their corresponding domain into two subdomains according to Eq. 
(25), which means that there are four integration points on the domain of [0, 1]. 
According to the above table, for any interval integration [a, b], the integration points and 
weights can be expressed as follows: 

( ) , if  0

( ) , if  0
i

i

i

b a x a C

a b x b C
χ

− + >
=

− + <





, 
1

, if  0

, if  0
i

i

n i

C

C

ω
ω

ω
+ −

>
=

<





,                                           

where i is the index of integration point/weight and C is the scaling factor in Eq. (5). 
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Table 4: The integration points and weights for 0 0

1 2 1 2, ,N N, and 0 0

1 2 2 2, ,N N,  

basis span gk(x) integration point( ix ) weights( iω ) 

0

1 2,
N , 0

1 2,
N  

0 1 2
0

0.5

1

 

g1(x) 901 1524 5437957 10668±  17 120 5437957 18644424137±  

g2(x)/ g3(x) 
74 231 291 2312±  

811 939 287931 6573±  

1 9 291 3928516  

7 144 287931 888472801859−  

g4(x) 8 17 7770 255±  1 2 7770 414415  

0 1 2
0

0.5

1

 

g1(x) 1 4 21 28±  1 40 21 360  

g2(x)/ g3(x) 2 7 15 21±  1 16 15 4003− ±  

g4(x) 1 3 10 15±  1 6 10 48  

0

1 2,
N , 0

2 2,
N  

0 1 2 3
0

0.5

1

 

g1(x) 15 22 1995 231±  1 20 1995 76003±  

g2(x) 
8 21 2 212±  

20809 23793 3519107 23793±  

1 81 2 810±  

43 1296 351907 22803813360141907−  

g3(x) 17 27 1687 189±  7 48 1687 5784053± . 

g4(x) 3 5 3 5±  3 725  

0 1 2 3
0

0.5

1

 

g1(x) 20 59 7210 413±  13 240 7210 494400107  

g2(x) 79 196 85 1965±  1 6 85 637526− ±  

g3(x) 
135 749 29458 1498± ,

5 7 2 14± . 

17 384 29458 565593605723

1 384 2 3840− ±  

g4(x) 1 2 15 10±  1 12 15 36− ±  

0 1 2 3
0

0.5

1

 

g1(x) 1 2 7 14±  1 240  

g2(x) 4 7 2 7±  1 48 2 480−  

g3(x) 3 7 2 7±  1 48 2 480  

g4(x) 1 2 5 10±  1 12−  
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Table 5: The integration points and weights for 0 0

2 2 2 2, ,N N,  

basis span gk(x) integration point( iξ ) weights( iH ) 

0

2 2,
N , 0

2 2,
N  

0 1 2 3
0

0.5

1

 

g1(x) 3 4 21 28±  1 40 21 360±  

g2(x)/ g3(x) 5 7 15 21±  1 16 15 4003±  

g4(x) 2 3 10 15±  1 6 10 48±  

0 1 2 3
0

0.5

1

 

g1(x) 1 2 119 42±  9 40  

g2(x)/ g3(x) 309 1498 302073 4494±  

 

5 64 302073 4027640123  

 g4(x) 1 2 15 10±  1 6  

0 1 2 3
0

0.5

1

 

g1(x) 1 4 21 28±  1 40 21 360  

g2(x)/ g3(x) 2 7 15 21±  1 16 15 4003− ±  

g4(x) 1 3 10 15±  1 6 10 48  

0 2 4
0

0.5

1

 

g1(x) 39 59 7210 413±  13 240 7210 49440107±  

g2(x) 2 7 2 14±  

 

1 384 2 3840±  

 g3(x) 117 196 85 1965±  1 6 85 637526±  

g4(x) 1 2 15 10±  1 12 15 36−  

0 2 4
0

0.5

1

 

g1(x) 20 59 7210 413±  13 240 7210 49440107  

g2(x) 79 196 85 1965±  1 6 85 637526− ±  

g3(x) 135 749 29458 1498±  

 

17 384 29458 565593605723  

 g4(x) 1 2 15 10±  1 12 15 36− ±  

0 5
0

0.5

1

 

g1(x) 1 2 7 14±  1 240 ,1 240  

g2(x) 4 7 2 7±  1 48 2 480−  

g3(x) 3 7 2 7±  1 48 2 480  

g4(x) 1 2 5 10±  1 12−  

3.3 The integration method for multivariable bases 
Substituting Eq. (5) and Eq. (23) into Eq. (16), one obtains 



                                                                         
 
 
476                                            CMES, vol.122, no.2, pp.459-485, 2020 

 

1 2
1 1 1 2 2 2( ) ( )d ( ) ( ) ( )d

b b

R Ra a

u u
g u f u u N N f u u

C C

β β
µ η µ η

θ θ

− −
= + + + +∫ ∫ .                (27) 

Note that Cθ  is equivalent for all reference bases in the same refined level. Eq. (29) can 
be expressed as follows according to the transformation of the upper and lower bound: 

1
1 2

1 1 1 2 2 2 30

1

1 1 2 2 30

1
( ) ( )d ( ) ( ) ( + )d( + )

1
( + ) ( + ) ( + )d

b

R Ra

R R

u u u u
g u f u u N N f

C C C C C

N u N u f u u
C

β β
µ η µ η µ λ

θ θ θ θ θ

λ λ λ
θ

− −
= + + + +

=

∫ ∫

∫
   (28) 

Here, we assume that the knot vector is{0,0,0,0.5,1,1,1}, 2( )= 1f u u + , and 
0 0

0 2 0 2( )= ( ) ( ), ,g u N u N u . The exact integral result of ( ) ( )g u f u  can be expressed as: 

0 5 0 50 0 4 2

0 2 0 20 0

17
( ) ( )d ( ) ( ) ( )d (2 1) ( +1)d 0 10119

168

b . .

, ,a
g u f u u N u N u f u u u u u .= = − = ≈∫ ∫ ∫ . 

According to Eq. (28), these integral results can be calculated using our method (the 
integration points and corresponding weights are shown in Tab. 3): 

2 2

1 4 21 28 1 4 21 281 1 21 1 21 17
( ) ( )d 1 1 0.10119

2 2 10 90 2 10 90 168

b

a
g u f u u

+ −
= + − + + + = ≈

           
                          

∫ . 

This numerical result is equal to the exact integral result. 
Whether the integration is for mass matrix or the stiffness matrix, there is the same 
calculation form shown in Eq. (28). Due to the reusability of the basis functions, it is not 
necessary to calculate every basis function on the whole integration domain. 
Similar to the traditional Gauss method, the stiffness and mass matrix in Eq. (14), can be 
expressed as 

1 21 2

1 1 2 2

33

3 3

1 1

1 1 1 1 2 2 2 2

3 3 3 3 1 2 3 3 2 1

1

( ( )) ( ( )) ( )

( ( )) ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( , )

j ji i

, ,

ji

,

jkik
dd

, k k k k
i , j k

R g R g R g R gU U

R g R g g g g g g gU

k

s D N u D N u c u du

D N u D N u D N u D N u

D N u D N u c u u ,u du du du

x

α β α β

α β

α β α β

δ δδ δ
α β α β

δδ
α β

δδ

ω

Ω
= =

=

= ⋅

⋅

=

  ∑ ∏∫

∫ ∫

∫

1 2 2 3 3 1 2 3
1 1 2 1 3 1

( , )
n n n

s
k k k k k g g g

k k k

x x x c u u ,uω ω
= = =

⋅∑ ∑ ∑

,   (29a) 

1 1 2 2

3 3

1 1 2 2

3 3

1 1 2 2 3 3
1 1 2 1 3 1

1 1 2 2

3 3 1 2 3 3 2 1

1 2 3

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

, ,

,

, f f

R R R RU U

R RU

n n n
m

k k k k k k
k k k

g g g g

g g g g g g g g

g g g

m R u R u c u du

N N N N

N N c , , d d d

x x x c , ,

u u u u

u u u u u u u u

u u u

α β α β

α β

α β α βΩ

α β α β

α β

ω ω ω
= = =

=

= ⋅

⋅

= ⋅

∫
∫ ∫

∫

∑ ∑ ∑

,                 (29b) 
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where 1 2i ix , ,i ,ω = are integration points and the corresponding weights. The 

factor 1 2 3( , )g g gc u u ,u  can be expressed as 
1

1 2 3 1 2 3 1 2 3 1 2 3( , )= ( , ) ( , ) det ( , )s T s

g g g g g g g g g g g gc u u ,u DF u u ,u DF u u ,u DF u u ,u γ− −⋅ ⋅ ⋅  and 

1 2 3 1 2 3( , )=det ( , )m m

g g g g g gc u u ,u DF u u ,u γ⋅ respectively. The variable γ is the transformation 
coefficient between the current basis function and the reference basis function. 
For NURBS, due to the weights of control points are not all equal to 1, so the stiffness 
and mass matrix can be rewritten as follows (for 2-dimensional problem): 

1

1

2 3

3 4

( )( )
( ) ( ) ( )

( ) ( )

( )( )
( ( )) ( ( )) ( ( )) ( )

( ) ( )
( )( ( )) ( ) ( )

k

, ,u ,v

,v

,u ,v ,u

,u ,u ,v

,v

A u,vA u,v
s c u,v dudv

B u,v B u,v

B c u,vc u,v
A u,v A u,v dudv A u,v A u,v dudv

B B
B c u,v B B c u,v

A u,v A u,v dudv A u,v A u,v dudv
B B

x

βα
α β Ω

α β α βΩ Ω

α β α βΩ Ω

=

= −

− +

=

∫

∫ ∫

∫ ∫
2 2 2 21 1

1 2 2 1 2 1 21 2

2 1 2

3 3 3 3

3 3 3 3 1 2 1 2

1 1 2 2 3
1 1 2 1

4

4 4 1 2

1 2

1 1 2 2

1 2 1 22 3
1 1 2 1 1 1 2 1

4 4

4 4 1 2

1 2

( ( , )) ( , )

( ( , )) ( , )( , )

( ( , )) ( ( ,

k k k kk k

k k k

n n
k k ,u k k

k k k k

k k

k k

k k

n n n n
,v

k k k k
k k k k

k k ,u

k k

B x x c x x
x x

B

B x x c x xc x x
x x x

B B

B x x B x x
x x

ω ω

ω ω ω ω

ω ω

= =

= = = =

−

+

−∑ ∑

∑ ∑ ∑ ∑

4 4 4

1 2

4
1 1 2 1

)) ( , )n n
,v k k

k k

c x x

B= =

∑ ∑

,     (30a) 

1 1 2 2
1 1 2 2 2

1 1 2 2 1 2
1 1 2 1

( )( )
( )

( ) ( )
( , )

( ) ( ) ( ) ( )
( )

( , )

, ,

,

R R R RU U

n n

k k k k k k
k k

A u,vA u,v
m c u,v dudv

B u,v B u,v
c u v

N u N u N v N v dudv
B u,v
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where A and B are defined in Section 2.4. 
Compared with the weighted quadrature method, there are many differences in our 
proposed method. Firstly, the integration principle is different. The Gauss-lobatto rule 
based weighted quadrature is a fixed-point quadrature method, that the integration points 
and the corresponding weights are not changeable for the same test and trial functions. 
However, this proposed integration method is not a fixed point quadrature method, that is, 
the integration points and the corresponding weights are different for the different 
combinations of the reference bases. Secondly, the number of integration points in one 
element is different. For the weighted quadrature, only 2 integration points are needed in 
each direction far away from the domain boundary, while p+1 points are taken on 
boundary elements. For the proposed method, the number of integration points are the 
same for all elements on the whole domain if the corresponding basis functions satisfy 
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the defined condition in Eq. (17). Thirdly, the computation complexity is different. It 
needs to confirm the value of trial functions on all integration points when calculating the 
integrand value defined in Eq. (4.1) in Calabro et al. [Calabro, Sangalli and Tani (2017)] 
for weighted quadrature. However, it does not need to calculate the value of basis 
functions for the integrand in the proposed method. Because the value of integration 
points and the corresponding weights already contains the results of the integrand. 

4 Numerical examples 
In this section, we present three application examples for the proposed integration 
method. Upon the results obtained for these examples, the accuracy, efficiency and 
convergence of the method are discussed. The results are produced with the programs 
developed in the environment of MATLAB, which implement the proposed integration 
method as well as other related methods for comparison. It is worthwhile to note that 
these programs utilize the same linear equation solver provided by MATLAB, which 
implements the algorithm of Gauss elimination with partial pivoting for the case of our 
problems. 

4.1 A Poisson equation in 1D 
Considering the following one-dimensional Poisson equation [Nguyen, Anitescu, Bordas 
et al. (2015)]: 

( ) ( ) 0 [0 1],xxu x b x x ,+ = ∈ ,                                               (31) 

where ( )= (0)=0,  (1)=0 b x x,u u .The exact solution of this problem is 

31 1
( ) [0 1]

6 6
u x x x, x ,= − + ∈ .                                             (32) 

We refine the definition domain to obtain the numerical solution of Eq. (31) using the 
standard Galerkin method. Here, we choose two integration points in each element in 
Tabs. 3-5 to obtain the approximate solution. For the higher accuracy of numerical 
solution, we refine the whole parameter domain nine times using h-refinement and 
estimate the relative error (between the exact solution and the proposed method, between 
the exact solution and the standard Gauss method) in 1H semi-norm and 2L  norm on 
each refined level. Figs. 5(a)-5(b) show the convergence of the solutions obtained with 
B-splines of 2-3 polynomial degree in the 1H  semi-norm and 2L  norm, respectively. 
This figure presents the error curves of two integration methods: Gauss integration 
method, and the proposed integration method. The methods are respectively denoted with 
Gauss and R-Gauss in the figure. It can be observed that the Gauss method is slightly 
more accurate than the extended Gauss integration method.  
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Figure 5: The error in H1 semi-norm and L2 norm for this example. (a) Error in H1 of 
B-splines with p=2,3. (b) Error in L2 of B-splines with p=2,3 

In the proposed method, it is unnecessary to calculate the basis functions on the refined 
level when the stiffness matrix is generated. And the experiment results show that the 
computation efficiency of proposed method is higher than the Gauss (at least three times 
in Fig. 6).  
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Figure 6: The computation time of the proposed and Gauss integration methods 

Here, the consumption time contains two parts: the pre-processing times and the 
assembling the global stiffness matrix time. The pre-processing time means that the 
consumption time of establishing the domains of reference basis functions and obtaining 
the integration points and the corresponding weighting coefficients. We also observe that 
it needs longer computation time as the degree of B-spline increases. For the B-splines 
with the same degrees, the consumption time of the proposed method is far less than the 
Gauss method. 

4.2 A simple cantilever beam example in 2D 
We test the proposed integration method with a simple cantilever beam problem in 2D, 
which is described in Fig. 7. The analytical solution of this problem is ( 3 12I D= ): 

2 2( ) [(6 3 ) +(2 )( - )] ( )4 6xu x, y L x x v yPy D EI= − − + ,                          (33a) 
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2 2( ) [(3 ) +2 ( )+(4+5 ) ]4 6yu x, y L x x vy L x vP D x EI= − − .                       (33b) 

       

L = 48 m   P = 1000 N   D = 12 m
E = 3×107 kPa  v = 0.3 D

 

P
 x

y

L  

Figure 7: Elastic cantilever beam problem 

We analyze this problem using the above integration method to get the numerical 
displacement results on the whole domain. In this example, the initial bases degrees are 
set to p=2, the initial parameter domains are defined by the knot vectors 

0

2
[0, 0, 0, 0.5,1,1,1] [0, 0, 0,1,1,1]

p
s t

=
Ξ = × = × , and the corresponding control point weights are 
all set to be 1. Fig. 8 shows the convergence of the solutions obtained with B-splines of 2 
polynomial degree in the 1H semi-norm and 2L norm, respectively. This figure presents the 
error curves of three integration methods: Gauss integration method, the weighted 
quadrature method, and the proposed integration method. These methods are respectively 
denoted with Gauss, WQ and R-Gauss in this paper. It can be observed that the 
convergence rate of the R-Gauss is faster than the WQ method. WQ and R-Gauss 
methods are slightly more accurate than the Gauss method. 
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Figure 8: The error in H1 semi-norm and L2 norm for this example. (a) Error in H1 of 
B-splines with p=2. (b) Error in L2 of B-splines with p=2 

Fig. 9 shows the time consumption of the above three integral methods for quadratic 
B-splines. As it shows, the computation time of the Gauss method is the longest while that 
of the proposed integral method is the shortest with the increase of the number of DOFs.  
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Figure 9: Time consumption time of B-splines with p=2 under three methods 

It is noticed that the proposed extended Gauss integration method shows no advantage on 
first two refinement levels. Since the new reference basis functions are created in the 
process of subdivision refinement, the corresponding integration points and weights 
should be recalculated. 

4.3 Hole within an infinite plate 
The problem of a hole with an infinite plate subject to an x-direction traction xT at 
infinity has an exact solution is: 
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θ
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σ θ θ

= − − +

= + +

= + −

.                             (34) 

This problem is described in Fig. 10(a), where symmetry is applied to the right and 
bottom edges and the traction boundary conditions are applied the left edges. The 
corresponding mesh and control points are shown in Fig. 10(b). R is the radius of the hole, 
L is the length of the finite quarter plate, E is Young’s modulus, and v is Poisson’s ratio. 
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Figure 10: The problem definition of elastic plate with a hole 
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This example is analyzed using the Gauss integration method, weighted quadrature 
method and the proposed integration method. Based on the close-form solutions, the 
relative error norm of domain displacements is considered for convergence study: 

1 2( ( ) ( ) )T /

Le u u u u d 

Ω
= − − Ω∫ , 

where u  is the numerical solution and u is the analytical result. 
Here, the h-refinement is used to carry out the convergence study. Fig. 11 also shows the 
convergence comparison between the proposed integration method and the weighted 
quadrature method. From this figure, it is observed that the proposed integration method 
can converge at the same rate as the weighted quadrature method. It also has higher 
convergence rate as the degree of B-spline increases. 
Efficiency is another important measure for evaluating a solution method. The time 
consumption curves vs. the degrees of freedom under Gauss, weighted quadrature and 
R-Gauss integration method with B-splines of even polynomial degree (quadratic and 
quartic) and odd polynomial degree (cubic and quintic) are shown in Figs. 12(a)-12(b). It 
can be seen that the R-Gauss spends much less time in assembling the stiffness matrix 
than the other two integration methods. In order to keep the same integration points of 
the finite element method, we take 3 integration points to calculate this problem when the 
B-splines polynomial degree greater than 3. 

10
1

10
2

10
3

10
4

10
5

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

#degree of freedom

Re
la

tiv
e 

er
ro

r

 

 
WQ
R-Gauss        
WQ
R-Gauss
WQ
R-Gauss
WQ
R-Gauss

 p=2

 p=3

 p=4

 p=5

 
Figure 11: The error for this example under three integration method 

10
1

10
2

10
3

10
4

10
5

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

#degree of freedom

Ti
m

e 
(s

)

 

 
Gauss
WQ
R-Gauss         
Gauss
WQ
R-Gauss

 p=2

 p=4

10
1

10
2

10
3

10
4

10
5

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

#degree of freedom

Ti
m

e 
(s

)

 

 
Gauss
WQ
R-Gauss        
Gauss
WQ
R-Gauss

 p=3

 p=5

 
(a) The computation time with p=2,4      (b) The computation time with p=3,5 

Figure 12: The computation time of the three integration methods 
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5 Conclusions 
In this article, we have discussed the basis functions classification method based on the 
concept of middle subdivision for the parameter domain, introduced the reuses of the 
basis functions among coarse and refined levels, and defined the reference basis 
functions as well as their spans, which can be utilized to decrease the calculation time in 
iterations. We have also proposed an extended Gauss integration method based on the 
Gauss method and the defined reference bases, and applied the combination of two 
reference bases to calculate the integration points and weights. The classification for 
basis functions turns out to be suitable for analysis model, because it is unnecessary to 
calculate every basis function on refined levels. The extended Gauss integration method 
appears to be applicable for IGA. It has the same accuracy as the traditional Gauss 
method while it bears less computational cost for the same DOFs. This proposed 
integration method performs well on several test problems, which shows that it is very 
promising for efficiency improvement in IGA.  
Nevertheless, there are some topics that will be investigated in the future. First, the 
classification for the basis functions at different levels should account for the multiplicity 
of knot nodes. An extension to complex situations such as multi-variable basis function is 
another possible topic requiring future research. Currently, the reference basis used is 
deduced from the relations between the corresponding spans and other spans. Further 
adjustments and more convenient formulas that are directly deduced from parametric 
knot vectors are under investigation. Second, each combination of reference basis 
function has its own integration points and weights, which is inconvenient for the 
calculation in integration. It would be helpful to carry out an elaborated study on the 
calculated integration points and weights for achieving higher integration efficiency. 
Third, due to the complexity of the parameter domain of the multi-patch and trimmed 
models, it is necessary to further study the integration method of the proposed method for 
the boundary basis functions. Here, the proposed integration method is only tested with 
some elliptic problems and we have not examined its effectiveness on hyperbolic and 
parabolic differential equations. Despite this, we still believe that the present 
developments have provided inspiration for studies on those more complex engineering 
design and analysis problems. 
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