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Abstract: A characteristic tensor is defined using stress tensor averaged in a small 
circular domain at the crack tip and multiplied by the root of domain radius. It possesses 
the original stress tensor characteristics and has a simple relationship with conventional 
fracture-mechanics parameters. Therefore, it can be used to estimate stress intensity 
factors (SIFs) for cracks of arbitrary shape subjected to multiaxial stress loads. A 
characteristic tensor can also be used to estimate SIFs for kinked cracks. This study 
examines the relation between a characteristic tensor and SIFs to demonstrate the 
correlation between the characteristic tensor and fracture-mechanics parameters. 
Consequently, a single straight crack and a kinked crack of finite length existing in a two-
dimensional, infinite isotropic elastic body in a plane stress state, were considered to 
investigate the properties of the characteristic tensor under mixed-mode loadings. To 
demonstrate the practical utility of the characteristic tensor, the stress distribution 
obtained through finite element analysis (FEA) was used to estimate mixed-mode SIFs, 
and the values of estimated SIFs were compared with those obtained using an analytical 
solution. Results demonstrate that SIFs estimated under mixed-mode loadings exhibit a 
good agreement with the analytical values. This indicates that the proposed characteristic-
tensor-based approach is effective in extracting features of singular stress fields at crack 
tips, and can be employed to estimate values of fracture-mechanics parameters, such as 
SIFs. Owing to its simplicity, the proposed approach can be easily incorporated in 
commercial FE codes for practical applications to simulate the crack-growth problem 
under both static and dynamic loading scenarios. The excellent applicability of the 
characteristic tensor greatly contributes to efficiency of the design process in industries. 
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1 Introduction 
Fracture-mechanics parameters are a topic of intense research, as they regard the 
evaluation of singular stress fields near crack tips and generic crack-propagation analyses. 
The stress intensity factor (SIF) is a basic elastic fracture-mechanics parameter that is 
used to express the singular displacement and stress fields near crack tips. SIF values can 
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be directly calculated from either displacement or stress fields obtained via finite element 
analysis (FEA) [Chan, Tuba and Wilson (1970)]. One of the most popular fracture-
mechanics parameters is Rice’s J-integral [Rice (1968)], which was originally proposed 
as a contour integral around crack tips. Owing to its characteristics of being path-
independent during evaluation and applicability to both elastic and elastic-plastic 
mechanics, the J-integral has wide applications in practical crack-propagation analyses. 
However, in actual investigations dealing with stress fields obtained using the finite 
element method (FEM), the J-integral demonstrates an inherent inaccuracy [Moran and 
Shih (1987)], to avoid which Moran et al. developed the domain integral, which 
demonstrates a more robust and accurate computational performance in comparison with 
the J-integral when calculating contour integrals around crack tips. 
Additionally, under mixed-mode loadings, which define practical operating conditions 
for most structures, fracture-mechanics parameters contribute considerably to the 
assessment of material failure due to crack propagation. When considering mixed-mode 
loadings, the use of SIFs is preferred to that of the J-integral, because the J-integral does 
not provide an individual SIF for each mode separately. To extract mixed-mode SIFs 
from contour integrals, Chen et al. [Chen and Shield (1977)] developed interaction 
integrals to determine SIFs from J-integrals in cases involving actual deformations and 
auxiliary fields. Yau et al. [Yau, Wang and Corten (1980)] applied a J-integral-based 
interaction to a single straight crack formed in a 2D specimen and determined mixed-
mode SIFs under several loading conditions. Combining the auxiliary field and domain 
integral methods, Shih et al. [Shih and Asaro (1988)] developed domain forms of 
interaction energy integrals for analysis of 3D cracks. The method was employed for both 
2D and 3D cracks. Gosz et al. [Gosz, Dolbow and Moran (1998)] employed domain 
forms of interaction-energy integrals to calculate mixed-mode SIFs of curved 3D cracks 
by considering additional terms in the domain integral. These additional terms vanish at a 
straight crack front. Gosz et al. [Gosz and Moran (2002)] evaluated several crack-
geometry types using the method, thereby introducing an orthogonal curvilinear 
coordinate system that eliminates issues introduced by the consideration of auxiliary 
stress and displacement fields for crack shapes. Walters et al. [Walters, Paulino and 
Dodds (2005)] investigated the extent to which terms concerning the crack-front 
curvature contribute to the computation accuracy, and in turn, proposed a simplified 
formulation of the interaction integral with judicious levels of mesh refinement. 
Subsequently, interaction integrals based on domain forms, which have wide applications 
in industries, were implemented in non-linear FEM software [Gadallah, Osawa, Tanaka 
et al. (2018)]. A virtual crack closure-integral method (VCCM) offers another means to 
identify fracture-mechanics parameters in elastic bodies subjected to various loading 
conditions [Rybicki and Kanninen (1977)]. Through implementation of this method, the 
energy release rate can be derived from nodal forces and displacements calculated by 
FEA. The said method can be applied to both 2D and 3D bodies [Shivakumar, Tan and 
Newman (1988)]. SIFs can be estimated by considering the asymptotic stress field closer 
to the crack tip. In practical crack-propagation analyses, the method has been extended to 
be applied using a tetrahedral solid-element formulation suitable to 3D remeshing 
procedures for new surfaces created owing to crack extension [Okada, Kawai and Araki 
(2008); Kawai, Okada and Araki (2008)]. Because singular-field evaluations (based on 
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identification of fracture-mechanics parameters described above) are essential for 
efficient product development and manufacturing, extensive research has been conducted 
in this regard. 
A characteristic tensor can be derived from the characteristic stress field near crack tips, 
and is strongly related to fracture-mechanics parameters in principle as mentioned by 
Murakawa [Murakawa (2018)]. Each component of a characteristic tensor comprises an 
invariant stress singularity. Because these tensor components contain information regarding 
the intensity and direction of the said singularity, they can be considered a potential aid in 
the evaluation of crack initiation as well as its propagation direction under complex loading 
conditions encountered in practical analyses. A major advantage of characteristic tensor is its 
ease of for calculation. Although several parameters based on fracture mechanics and 
methods have been successfully implemented for industrial problems, their applications are 
limited because they are not as easy as the characteristic tensor. This is because conventional 
methods, such as domain-based interaction integrals and VCCM, require intensive and 
complex computation implementation. These limitations are critical, especially for dynamic 
analyses using explicit FEM. Because the time step, which is determined by element size 
and stress wave speed, is extremely small in explicit FEM, a large number of calculation 
steps is generally necessary. Hence, currently crack propagation computation based on 
reliable fracture-mechanics parameters is seldom performed using dynamic explicit FEM. 
On the contrary, computing procedures for the characteristic tensor are comparatively simple 
and easy to incorporate with commercial FEM software. Because the characteristic tensor is 
only derived from a stress field, it does not require special element formulations or complex 
computation procedures. If the characteristic tensor is estimated using an appropriate fitting 
function, the deterioration in prediction accuracy owing to a coarse mesh is not significant in 
comparison with that computed by the direct method [Chan, Tuba and Wilson (1970)]. 
Moreover, the direct relationship between the characteristic tensor and fracture-mechanics 
parameter makes it convenient to utilize conventional methods for crack-propagation 
analysis. Existing reliable methods based on fracture-mechanics parameters that were 
validated in extant studies can be used with the characteristic tensor. When used in 
combination with other element technologies, such as the extended finite element method 
(XFEM) [Moës, Dolbow and Belytschko (1999)], the tensor proves to be efficient in 
reducing the computing time. Analysis using the characteristic tensor can be effectively 
incorporated in industrial crack-propagation-analysis workflows, thereby enhancing the 
efficiency of the overall design cycle.  
To validate the effectiveness and accuracy of the characteristic tensor, it is essential to 
identify its relevance with regard to conventional fracture-mechanics parameters. This 
study aims to demonstrate the reliability associated with the use of a characteristic tensor 
by identifying its relationship with SIFs of structures subjected to mixed-mode loadings. 
In this paper, the definition of a characteristic tensor is first presented, followed by the 
verification of its properties in cases involving a single-straight crack subjected to 
uniaxial and mixed-mode loadings. Subsequent sections describe the several FEA-based 
numerical studies performed to investigate the feasibility of the characteristic tensor for 
practical analyses. A single straight crack and a kinked crack with finite kink length were 
considered, and their behavior was investigated under several loading conditions. In all 
cases, characteristic tensor components were determined from the stress distribution 
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obtained via FEA. Mixed-mode SIFs were estimated using corresponding characteristic 
tensor components, and their values were compared with those obtained analytically, as 
reported in extant literature to demonstrate the reliability of the proposed method. Results 
obtained in this study demonstrates the feasibility of the characteristic tensor in general 
crack-propagation analyses. 
In Section 2, the definition of the characteristic tensor is presented, and then, its 
relationship with fracture-mechanics parameters under a mode-I loading case is presented. 
In Section 3, properties of the characteristic tensor under a mixed-mode loading case are 
discussed. The relation between each tensor component and SIFs is then introduced. 
Finally, Section 4 presents the results of several numerical simulations to evaluate the 
applicability of characteristic tensor. 

2 Characteristic tensor 
Considering a two-dimensional isotropic elastic body having a single straight crack of 
length 2𝑎𝑎 shown in Fig. 1, the mean stress near the crack tip can be defined as the 
average stress over the domain Ω, which corresponds to the zone enclosed within a circle 
of infinitesimally small radius 𝑅𝑅. That is, 

𝜇𝜇𝑖𝑖𝑖𝑖 = 1
𝑉𝑉Ω
∫ 𝜎𝜎𝑖𝑖𝑖𝑖𝑑𝑑VΩ    (𝑟𝑟 = 𝑅𝑅 → 0)             (1) 

Here, 𝑉𝑉Ω denotes the volume of domain Ω, 𝑟𝑟 denotes the distance from the crack tip along 
the radial direction, and 𝜎𝜎𝑖𝑖𝑖𝑖 denotes the stress component at the crack tip in the Cartesian 
coordinate system. The characteristic tensor can be calculated by multiplying the square 
root of radius 𝑅𝑅 with the mean stress as 
𝜒𝜒𝑖𝑖𝑖𝑖 = √𝑅𝑅𝜇𝜇𝑖𝑖𝑖𝑖  (𝑅𝑅 → 0)             (2) 
The William’s general stress function around the crack tip can be described as a 
superposition of polynomial functions [Williams (1956)] given by  

𝛷𝛷 = ∑ �𝑟𝑟
𝑛𝑛
2+1𝐹𝐹 �𝜃𝜃, 𝑛𝑛

2
��𝑁𝑁

𝑛𝑛=1   𝑛𝑛 = 1,2,3 …             (3) 

 

Figure 1: Single straight crack and associated coordinate system 
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Here, 𝐹𝐹 is a function of 𝜃𝜃, which represents the angle along the circumferential direction. 
Using the stress function relation, the corresponding stress distribution can be expressed as 

𝜎𝜎𝑖𝑖𝑖𝑖 =
𝛤𝛤𝑖𝑖𝑖𝑖�𝜃𝜃,−12�

√𝑟𝑟
+ ∑ �𝑟𝑟

𝑚𝑚
2 𝛤𝛤𝑖𝑖𝑖𝑖(𝜃𝜃,𝑚𝑚)�𝑀𝑀

𝑚𝑚=0   𝑚𝑚 = 0,1,2 …             (4) 

where 𝛤𝛤 is a function that depends on 𝐹𝐹 and its derivatives.  
The stress distribution described in Eq. (4) includes higher-order terms, which can be 
ignored if the value of 𝑟𝑟 is infinitesimally small (i.e., 𝑟𝑟 𝑎𝑎⁄ ≪ 1). In this case, the stress 
function has a singularity of 1 √𝑟𝑟⁄  in the local neighborhood of a crack tip. Therefore, if 
the value of the singularity under the applied load and crack geometry is calculated, the 
characteristic tensor described in Eq. (2) becomes a constant near the crack tip. That is, 

𝜒𝜒𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.   𝑅𝑅
𝑎𝑎
≪ 1             (5) 

Since the characteristic tensor has no dependency on any variable other than the 
singularity of 1 √𝑅𝑅⁄ , it is highly suitable to capture the singularity produced by the 
existence of cracks. Moreover, the characteristic tensor may exclusively be sufficient to 
assess the singularity of each stress component owing to its tensorial expression. 

 
 

Figure 2: Single crack in infinite body subjected to uniaxial loading 

As a primitive investigation of the characteristic tensor, a mode-I loading case, wherein a 
single straight crack of length 2𝑎𝑎  forms in a two-dimensional, isotropic elastic body 
subjected to a uniaxial load acting perpendicular to the crack as shown in Fig. 2, was 
considered in this study. The local coordinate system was placed at the crack tip, and the 
same was embedded along the crack direction. The observed stress distribution under the 
mode-I loading around a crack tip can be expressed as 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐾𝐾𝐼𝐼
√2𝜋𝜋𝑟𝑟

𝑓𝑓𝑖𝑖𝑖𝑖(𝜃𝜃) + 𝛰𝛰�√𝑟𝑟�,             (6) 

where 𝜎𝜎𝑖𝑖𝑖𝑖  denotes the stress component, and 𝐾𝐾𝐼𝐼  denotes the SIF under mode-I loading. 
Additionally, 𝑟𝑟 denotes the distance from the crack tip, and 𝑓𝑓𝑖𝑖𝑖𝑖 represents a function of angle 
𝜃𝜃 , which determines the angle along the circumferential direction. Assuming (𝑖𝑖, 𝑗𝑗) =
�(1,1), (2,2)� and 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋, values of functions 𝑓𝑓11 and 𝑓𝑓22 can be determined using 

𝑓𝑓11(𝜃𝜃) = cos 1
2
𝜃𝜃 �1 − sin 1

2
𝜃𝜃 cos 3

2
𝜃𝜃�             (7) 
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𝑓𝑓22(𝜃𝜃) = cos 1
2
𝜃𝜃 �1 + sin 1

2
𝜃𝜃 cos 3

2
𝜃𝜃�             (8) 

The second term on the right in Eq. (6) can be eliminated if 𝑟𝑟 → 0 . Thus, the 
characteristic tensor can be expressed as 

𝜒𝜒11 = 1.6� 8
9𝜋𝜋3

𝐾𝐾𝐼𝐼                      (9) 

𝜒𝜒22 = 2.4� 8
9𝜋𝜋3

𝐾𝐾𝐼𝐼                      (10) 

Eqs. (9) and (10) indicate that the characteristic tensor has a proportional relationship 
with mode-I SIF near the crack tip. However, the stress field around the crack contains a 
singular term 1 √𝑟𝑟⁄  as well as higher-order terms contained within the second term on the 
right in Eq. (6). This may be attributed to the averaging radius 𝑟𝑟, which is generally 
defined to be of finite length. Therefore, the characteristic tensor 𝜒𝜒𝑖𝑖𝑖𝑖  derived from the 
stress field can be approximated using the polynomial function 

�̅�𝜒𝑖𝑖𝑖𝑖 ≅ 𝜒𝜒𝑖𝑖𝑖𝑖 + ∑ 𝑟𝑟
𝑚𝑚
2𝜓𝜓𝑚𝑚,𝑖𝑖𝑖𝑖

𝑀𝑀
𝑚𝑚=1 ,             (11) 

where 𝜓𝜓𝑚𝑚,𝑖𝑖𝑖𝑖 denotes the polynomial coefficient. 
Use of the Westergaard function [Westergaard (1939)] also yields the stress field around 
a single crack formed in a structure subjected to mode-I loading, and the corresponding 
stress distribution can be obtained analytically by solving the Westergaard function [Sun 
and Jin (2012)]. Therefore, the mean stress defined in Eq. (1) can be calculated by 
numerically integrating the analytical stress distribution. Lastly, the characteristic tensor 
defined in Eqs. (9) and (10) can be calculated using the mean stress and corresponding 
radius of the averaging region. 
Using the stress field along with Eqs. (9) and (10), the SIF value can be estimated using 
the below expressions. 

𝐾𝐾�𝐼𝐼 = 1
1.6
�9𝜋𝜋3

8
�̅�𝜒11             (12) 

𝐾𝐾�𝐼𝐼 = 1
2.4
�9𝜋𝜋3

8
�̅�𝜒22             (13) 

Fig. 3 depicts plot of SIF values obtained using Eq. (13). As can be seen, the obtained SIF 
values are normalized with respect to the analytical value and plotted against the ratio of 
the averaging radius 𝑟𝑟 divided by half the crack length a having values in the range of 
0.01-1. Tab. 1 lists error values between theoretical SIF and its numerical estimates. The 
errors were calculated using the expression 

𝐸𝐸𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟(%) = 𝐾𝐾𝐼𝐼−𝐾𝐾�𝐼𝐼
𝐾𝐾�𝐾𝐾

× 100             (14) 

As the averaging radius becomes infinitesimally small, the estimated SIF value 
approaches the theoretical value. On the other hand, the larger the radius, the greater is 
the observed deviation between the two values. This difference between theoretical and 
estimated SIF values stems from the second term-on the right of the equality in Eq. (11)-
which depends on the averaging radius. Therefore, it is necessary to extract the 
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characteristic tensor comprising only the singular term 1 √𝑟𝑟⁄  when considering a practical 
integration domain with a finite averaging radius. 

 
Figure 3: Estimated SIF normalized with respect to theoretical values obtained for each 
averaging radius 

Table 1: Percentage error in SIF estimation at each averaging radius 

𝑟𝑟 𝑎𝑎⁄  0.01 0.1 0.2 0.3 0.4 0.6 0.8 1.0 

Error (%) 0.26 2.51 4.88 7.25 9.57 14.14 18.71 23.44 

3 Properties of characteristic tensor under mixed-mode loading 

 
Figure 4: Single crack in infinite body subjected to mixed-mode loading 

To be able to utilize a characteristic tensor effectively during practical analyses, it is 
important to understand its properties in more general cases. This section describes how 
the characteristic tensor is related to SIFs when considering structures subjected to 
mixed-mode loadings. Fig. 4 depicts a two-dimensional infinite isotropic elastic body 
with a single crack with a Cartesian coordinate system considered aligned with crack 
direction. The general stress field in the local neighborhood of the single crack can be 
described as the superposition of two fundamental modes-I and II. The resulting stress 
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distribution can be expressed as 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐾𝐾𝐼𝐼
√2𝜋𝜋𝑟𝑟

𝑓𝑓𝑖𝑖𝑖𝑖(𝜃𝜃) + 𝐾𝐾𝐼𝐼𝐼𝐼
√2𝜋𝜋𝑟𝑟

𝑔𝑔𝑖𝑖𝑖𝑖(𝜃𝜃) + 𝑇𝑇𝛿𝛿1𝑖𝑖𝛿𝛿1𝑖𝑖 + 𝛰𝛰�√𝑟𝑟�             (15) 

where 𝐾𝐾𝐼𝐼 and 𝐾𝐾𝐼𝐼𝐼𝐼 denote SIFs corresponding to modes I and II, respectively; 𝑇𝑇 denotes a 
constant stress along the 1-direction in the local coordinate system; and 𝑓𝑓𝑖𝑖𝑖𝑖 and 𝑔𝑔𝑖𝑖𝑖𝑖  are 
functions of the variable 𝜃𝜃, which determines the angle in the circumferential direction 
asymmetric to the crack surface. Values of the said functions in the interval 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋  
can be obtained using the following relations. 

𝑓𝑓11(𝜃𝜃) = cos 1
2
𝜃𝜃 �1 − sin 1

2
𝜃𝜃 cos 3

2
𝜃𝜃�             (16) 

𝑓𝑓22(𝜃𝜃) = cos 1
2
𝜃𝜃 �1 + sin 1

2
𝜃𝜃 cos 3

2
𝜃𝜃�             (17) 

𝑓𝑓12(𝜃𝜃) = sin 1
2
𝜃𝜃 cos 1

2
𝜃𝜃 cos 3

2
𝜃𝜃             (18) 

𝑔𝑔11(𝜃𝜃) = −sin 1
2
𝜃𝜃 �2 + cos 1

2
𝜃𝜃 cos 3

2
𝜃𝜃�             (19) 

𝑔𝑔22(𝜃𝜃) = sin 1
2
𝜃𝜃 cos 1

2
𝜃𝜃 cos 3

2
𝜃𝜃             (20) 

𝑔𝑔12(𝜃𝜃) = cos 1
2
𝜃𝜃 �1 − sin 1

2
𝜃𝜃 cos 3

2
𝜃𝜃�             (21) 

Considering 𝑟𝑟 → 0, all higher-order terms in Eq. (11) can be ignored. Using Eq. (1), the 
mean stress can be evaluated using the expression 

𝜇𝜇𝑖𝑖𝑖𝑖 = 1
𝜋𝜋𝑅𝑅2 ∫

𝐾𝐾𝐼𝐼
√2𝜋𝜋𝑟𝑟

𝑟𝑟𝑑𝑑𝑟𝑟 ∫ 𝑓𝑓𝑖𝑖𝑖𝑖(𝜃𝜃)𝑑𝑑𝜃𝜃 +2𝜋𝜋
0

1
𝜋𝜋𝑅𝑅2 ∫

𝐾𝐾𝐼𝐼𝐼𝐼
√2𝜋𝜋𝑟𝑟

𝑟𝑟𝑑𝑑𝑟𝑟 ∫ 𝑔𝑔𝑖𝑖𝑖𝑖(𝜃𝜃)𝑑𝑑𝜃𝜃2𝜋𝜋
0

𝑅𝑅
0

𝑅𝑅
0 + 𝑇𝑇𝛿𝛿1𝑖𝑖𝛿𝛿1𝑖𝑖         (22) 

Considering the asymmetric property of the stress distribution around a crack tip, several 
terms concerning the integration of 𝑓𝑓12 , 𝑔𝑔11 , and 𝑔𝑔22  conveniently vanish. Thus, the 
characteristic tensor can be evaluated using the expressions 
𝜒𝜒11 = √𝑅𝑅𝜇𝜇11 = 𝑎𝑎11𝑏𝑏𝐾𝐾𝐼𝐼 + √𝑅𝑅𝑇𝑇             (23) 
𝜒𝜒22 = √𝑅𝑅𝜇𝜇22 = 𝑎𝑎22𝑏𝑏𝐾𝐾𝐼𝐼             (24) 
χ12 = √𝑅𝑅𝜇𝜇12 = 𝑎𝑎12𝑏𝑏𝐾𝐾𝐼𝐼𝐼𝐼             (25) 
where coefficients 𝑎𝑎11, 𝑎𝑎22, and 𝑎𝑎12 are constants derived by integrating with respect to 𝜃𝜃 
(𝑎𝑎11=1.6, 𝑎𝑎22=2.4, and 𝑎𝑎12=1.6). Likewise, coefficient 𝑏𝑏 = �8 (9𝜋𝜋3)⁄  is also a constant 
evaluated by integrating the stress-distribution function with respect to radius 𝑟𝑟. These 
equations demonstrate that each component of the characteristic tensor, which is based on 
the coordinate system aligned with the crack direction, is directly proportional to SIFs 
under mixed-mode loading conditions. This implies that the characteristic tensor is 
directly related to reliable fracture-mechanics parameters in principle, and the same can 
be used to identify conventional parameters that can be used to tackle the problem of 
crack initiation and propagation. However, as described in the previous section, the 
characteristic tensor estimated using a finite averaging radius is only an approximation 
obtained from a polynomial function, and its value cannot be considered constant owing 
to the influence of terms that depend on the averaging radius. Therefore, some numerical 
manipulations are required to extract constant terms from the said polynomial function 
and identify valid parameters for crack analyses. In this study, the least-square method 
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was employed, as described in the following section. 

4 Numerical study 
To verify applicability of the characteristic tensor under mixed-mode loading, several 
numerical simulations were performed. SIF values were estimated using the characteristic 
tensor calculated from the stress distribution obtained for mixed-mode loading scenarios, 
and the mixed-mode stress state was realized in a two-dimensional infinite plane body 
having a single crack inclined to the uniaxial loading direction. At first, a single straight 
crack was considered, and mixed-mode SIFs are estimated for different inclination angles 
followed by their comparison against theoretical values. Next, a single kinked crack 
having a finite kink length was considered, and corresponding SIF values were 
determined. All characteristic tensors were evaluated using the stress distribution 
obtained via FEA. 

4.1 Numerical model 
For numerical analysis performed in this study, a two-dimensional infinite thin plate 
containing a single crack of length 2𝑎𝑎 was considered. Fig. 5 depicts a schematic of the 
numerical model. An in-plane biaxial load was applied to the model as a boundary 
condition and the crack was inclined at angle 𝛽𝛽 with respect to the loading direction to 
ensure attainment of several mixed-mode stress states around the crack tip. All loads 
were applied parallel to either the 1- or 2-direction of the global coordinate system. 
In addition to the global coordinate system, a local coordinate system aligned with the 
crack direction was defined in the model to facilitate calculation of the characteristic 
tensor. The finite element model used in this analysis is depicted in Fig. 6. The size of the 
model was determined to reproduce the infinite plane considered in this numerical study. 
A 4-noded fully integrated 2D plate element, which is under plane stress condition, was 
employed for geometry modeling. The material was assumed be isotropic and elastic. 

4.2 Calculation of characteristic tensor from computed stress field 
Numerical integration of a stress field is required for calculating the characteristic tensor. 
To calculate the mean stress, defined in Eq. (1), stress components at integration points 
must be integrated over the averaging domain using Gaussian quadrature. The resulting 
expression for mean stress calculation can be expressed as 

�̅�𝜇𝑖𝑖𝑖𝑖 = 1
𝜋𝜋𝑅𝑅2

∑ �𝜎𝜎�𝑖𝑖𝑖𝑖 det 𝐽𝐽�
𝑘𝑘
𝑤𝑤𝑘𝑘

𝑛𝑛𝑖𝑖𝑖𝑖
𝑘𝑘=1              (26) 

where 𝑅𝑅 denotes the averaging radius, 𝑛𝑛𝑖𝑖𝑖𝑖 denotes the total number of integration points 
in the averaging domain, 𝜎𝜎�𝑖𝑖𝑖𝑖 denotes the stress component, 𝑤𝑤 denotes the weight of the 
Gaussian quadrature formula, and det 𝐽𝐽 denotes the Jacobian determinant. In Eq. (26), all 
quantities with index 𝑘𝑘 possess a value at the corresponding integration point. From Eq. 
(2), the characteristic tensor can be obtained as 
�̅�𝜒𝑖𝑖𝑖𝑖 = √𝑅𝑅�̅�𝜇𝑖𝑖𝑖𝑖             (27) 
As described in Sections 3 and 4, the characteristic tensor derived via practical stress 
analysis contains additional terms that depend on the averaging radius. Thus, for accurate 
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evaluation of singularities at cracks, extraction of valid terms is necessary. The 
characteristic tensor derived from Eq. (27) can be approximated as 

�̅�𝜒𝑖𝑖𝑖𝑖 = 𝜒𝜒𝑖𝑖𝑖𝑖 + 𝑅𝑅
1
2𝜓𝜓1,𝑖𝑖𝑖𝑖 + 𝑅𝑅𝜓𝜓2,𝑖𝑖𝑖𝑖,             (28) 

which contains terms up to 𝑀𝑀 = 2 in Eq. (11). In this study, component 𝜒𝜒𝑖𝑖𝑖𝑖 was extracted 
from Eq. (28) using the least-square method. Eventually, SIF values were estimated using 
Eqs. (24) and (25) along with extracted the characteristic tensor components-𝜒𝜒22 and 𝜒𝜒12. 

 
Figure 5: Single inclined crack in infinite plate subjected to in-plane biaxial tension 

 

Figure 6: Finite element model and inclined single crack in body 
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Figure 7: Mesh pattern for 𝐿𝐿𝑒𝑒 = 0.1 𝑎𝑎 case with 𝛽𝛽 = 30° 

 
Figure 8: Mesh pattern at crack tip (𝛽𝛽 = 30°) 

4.3 Estimation of mixed-mode SIFs for single straight crack 
In this study, mixed-mode SIFs for a single straight crack were estimated using the 
characteristic tensor calculated from the stress field obtained via FEA. To obtain several 
mixed-mode stress states around the crack tip, biaxial stresses were applied along 
boundaries of the cracked body, thereby changing the stress ratio-defined as 𝐵𝐵 = 𝜎𝜎1 𝜎𝜎2⁄ -
to values of 0, 0.5, and 1.0 (Fig. 5). Additionally, in each case, the crack angle 𝛽𝛽 was 
changed in the 0-75° range in 15° increments. Three cases of element size (𝐿𝐿𝑒𝑒 = 0.1 𝑎𝑎, 
0.01 𝑎𝑎, and 0.001 𝑎𝑎) were considered near the crack tip. Fig. 7 depicts the mesh pattern 
for the case 𝐿𝐿𝑒𝑒 = 0.1 𝑎𝑎 with 𝛽𝛽 = 30°, whereas Fig. 8 depicts the corresponding mesh for 
each case near the crack tip. Values of estimated mixed-mode SIFs were compared to 
those theoretically obtained in extant studies [Anderson (2005)]. Analytical expressions 
used for SIF calculation were given by 
𝑘𝑘𝐼𝐼 = 𝐾𝐾𝐼𝐼0(cos2 𝛽𝛽 + 𝐵𝐵 sin2 𝛽𝛽)              (29) 
and 
𝑘𝑘𝐼𝐼𝐼𝐼 = 𝐾𝐾𝐼𝐼0(sin𝛽𝛽 cos𝛽𝛽)(1 − 𝐵𝐵)             (30) 
where 𝑘𝑘𝐼𝐼  and 𝑘𝑘𝐼𝐼𝐼𝐼  denote mixed-mode SIFs, and 𝐾𝐾𝐼𝐼0 denotes the SIF for mode I  when 
𝛽𝛽 = 0 and 𝐵𝐵 = 0. 
Figs. 9, 10, and 11 compare mixed-mode SIF values obtained for different inclination 
angles. All SIF values were normalized with respect to the theoretical SIF obtained for 
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𝛽𝛽 = 0, which remains constant irrespective of the applied stress ratio. The graph in Fig. 9 
refers to the case with stress ratio  𝐵𝐵 = 0 , which implies uniaxial loading along the 
structures boundary. The graph in Fig. 10 corresponds to the case with 𝐵𝐵 = 0.5, whereas 
that in Fig. 11 refers to the 𝐵𝐵 = 1.0 case, thereby implying application of pure biaxial 
tension along the structure boundary. Because its value equals zero under application of 
pure biaxial tension, the SIF obtained for mode II in the 𝐵𝐵 = 1 case is not depicted in Fig. 
11. As observed, estimated SIF values demonstrated good agreement with corresponding 
theoretical values obtained for different stress ratios and inclined angles. Tabs. 2, 3, and 4 
list percentage errors incurred during estimation of mixed-mode SIFs in this study. In 
cases with 𝐿𝐿𝑒𝑒 = 0.001 𝑎𝑎 and 0.01 𝑎𝑎, the error incurred was observed to be less than 1%.  

 
Figure 9: Comparison between SIF estimates at stress ratio B=0 implying application of 
uniaxial load on structure boundary 
 

 
Figure 10: Comparison between SIF estimates at stress ratio B=0.5 

In the case with 𝐿𝐿𝑒𝑒 = 0.1 𝑎𝑎, which provides acceptable computational costs even in the 
explicit FEM, in which the element length directly effects the incremental time step size, 
the error incurred was less than 3%. These results imply that derivation of the 
characteristic tensor is helpful in evaluating singularities near crack tips along with 
conventional fracture-mechanics parameters. 
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Figure 11: Comparison between SIF estimates at stress ratio B=1 implying application of 
pure biaxial tension on structure boundary 

Table 2: Percentage error incurred during SIF estimation for element size 𝑳𝑳𝒆𝒆 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 𝒂𝒂 

𝛽𝛽(°) 𝐵𝐵 = 0 𝐵𝐵 = 0.5 𝐵𝐵 = 1.0 
𝐾𝐾𝐼𝐼 𝐾𝐾𝐼𝐼𝐼𝐼 𝐾𝐾𝐼𝐼 𝐾𝐾𝐼𝐼𝐼𝐼 𝐾𝐾𝐼𝐼 

0 0.32% 0.00% 0.46% 0.00% 0.46% 
15 0.51% 0.46% 0.51% 0.47% 0.51% 
30 0.49% 0.44% 0.50% 0.48% 0.50% 
45 0.82% 0.71% 0.85% 0.76% 0.86% 
60 0.78% 0.65% 0.83% 0.70% 0.86% 
75 0.41% 0.31% 0.48% 0.38% 0.51% 

Table 3: Percentage error incurred during SIF estimation for element size 𝑳𝑳𝒆𝒆 = 𝟎𝟎.𝟎𝟎𝟎𝟎 𝒂𝒂 

𝛽𝛽(°) 𝐵𝐵 = 0 𝐵𝐵 = 0.5 𝐵𝐵 = 1.0 
𝐾𝐾𝐼𝐼 𝐾𝐾𝐼𝐼𝐼𝐼 𝐾𝐾𝐼𝐼 𝐾𝐾𝐼𝐼𝐼𝐼 𝐾𝐾𝐼𝐼 

0 1.04% 0.00% 1.03% 0.00% 1.03% 
15 1.10% -0.03% 1.09% -0.01% 1.09% 
30 1.21% -0.07% 1.19% 0.09% 1.18% 
45 1.03% -0.14% 1.05% -0.16% 1.06% 
60 1.06% -0.18% 1.08% -0.13% 1.09% 
75 1.15% -0.19% 1.01% 0.16% 1.01% 

Table 4: Percentage error incurred during SIF estimation for element size 𝑳𝑳𝒆𝒆 = 𝟎𝟎.𝟎𝟎 𝒂𝒂 

𝛽𝛽 (°) 𝐵𝐵 = 0 𝐵𝐵 = 0.5 𝐵𝐵 = 1.0 
𝐾𝐾𝐼𝐼 𝐾𝐾𝐼𝐼𝐼𝐼 𝐾𝐾𝐼𝐼 𝐾𝐾𝐼𝐼𝐼𝐼 𝐾𝐾𝐼𝐼 

0 2.45% 0.00% 2.44% 0.00% 2.44% 
15 1.65% -1.00% 1.58% 1.33% 1.52% 
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30 2.65% -1.68% 2.68% -1.44% 2.69% 
45 2.29% -2.36% 2.39% -2.55% 2.44% 
60 2.04% -2.40% 2.23% -3.26% 2.29% 
75 1.82% -2.37% 2.23% -2.83% 2.27% 

Lastly, in this study, estimated SIF values were compared against those obtained using 
conventional methods-direct method [Chan, Tuba and Wilson (1970)] and domain-integral 
method [Lei, O’Dowd and Webster (2000)]. In the direct method, SIF can be estimated 
using either the displacement or stress around the crack tip, where the displacement 
perpendicular to the crack direction under mode-I loading can be expressed as 

𝑢𝑢2′(𝑟𝑟, 𝜃𝜃) = 4𝐾𝐾𝐼𝐼
𝐺𝐺 � 𝑟𝑟

2𝜋𝜋
sin �𝜃𝜃

2
� � 4

1+𝜈𝜈
− 2 cos2 �𝜃𝜃

2
��              (31) 

In the above expression, G denotes shear modulus, and 𝜈𝜈 denotes the Poisson ratio. The 
corresponding SIF was estimated using nodal displacements on the crack surface as 
follows: 

𝐾𝐾𝐼𝐼 = 𝐸𝐸
4
�2𝜋𝜋

𝑟𝑟
𝑢𝑢2′(𝑟𝑟,𝜃𝜃 = 𝜋𝜋)              (32) 

Tab. 5 summarizes the percentage error incurred during SIF estimation at 𝛽𝛽 = 0 and 𝐵𝐵 =
0 using the three methods. In the case of the direct method, the linear approximation was 
employed for fitting nodal displacements. As can be observed, for each element size, the 
domain-integral method predicts SIFs with errors measuring less than 1%. The direct 
method estimates SIF with good accuracy in the case with 𝐿𝐿𝑒𝑒 = 0.001 𝑎𝑎. However, the 
error incurred increases to 10% in the 𝐿𝐿𝑒𝑒 = 0.1 𝑎𝑎  case. The proposed characteristic-
tensor-based approach estimates SIF accurately when using a fine mesh. Furthermore, the 
deterioration in estimation accuracy when using a coarse mesh is much smaller compared 
to that observed when using the direct method. Through use of an appropriate fitting 
function, the least-square method works effectively to extract characteristic tensors 
containing the  1 √𝑟𝑟⁄  singularity. 

Table 5: Percentage error incurred during SIF estimation using different methods 

𝐿𝐿𝑒𝑒 Direct method Domain-integral method Characteristic tensor 
0.001𝑎𝑎 -0.45% -0.15% 0.32% 
0.01𝑎𝑎 -2.85% 0.02% 1.04% 
0.1𝑎𝑎 -9.99% -1.01% 2.45% 

One aspect of characteristic tensor is its simplicity of derivation. The method of deriving 
SIFs via characteristic tensors is easier than those of other methods. In the direct method, 
though the derivation of the SIFs is similar to that of the aforementioned tensors and the 
least square method can be also applied for the fittings, nodal displacements must be 
identified on the same straight line toward the crack tip. In the domain integral method, 
the mesh orientation must be designed and searched during computation such that the 
contour of elements forms a circle that starts from the bottom surface and ends at the 
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upper surface of the crack. On the contrary, the calculation scheme of the proposed 
method involves adding the stress components of integration points in the corresponding 
radius. Therefore, the impact to computation costs is not too large. Evaluation with the 
characteristic tensor can be an effective solution for assessing singularity, and balancing 
cost and accuracy. 

4.4 Estimation of mixed-mode SIFs in single kinked crack having finite kink length 
In general, the crack direction changes during crack growth. Consequently, a curved crack 
path forms as the crack deviates from its original direction. Therefore, SIF estimation for 
kinked cracks is important from the viewpoint of evaluating singular fields for 
comprehensive crack-propagation analyses. In this study, SIFs for kinked cracks with finite 
kink length were estimated in a manner similar to that described in the previous section. 

 
Figure 12: Single kinked crack with finite kink length subjected to uniaxial tension 

Fig. 12 depicts a schematic of the numerical model. As can be seen the crack is aligned 
with the 1-direction of the global coordinate system. One of the tips of the single crack is 
inclined at angle α with respect to the original crack direction, and its kink length has 
been considered finite. In this study, the kink angle was increased in 15° increments in 
the range of 15-60°. For each kink angle, two cases of kink length-0.1 𝑎𝑎 and 0.2 𝑎𝑎-were 
investigated. Dimensions of the FE model were the same as those depicted in Fig. 6. The 
element size of the model was set as 0.001 𝑎𝑎 around the kinked-crack tip. The boundary 
stress ratio was considered to be 𝐵𝐵 = 0, and only the stress along the 2-direction of the 
global system was applied to the elastic structure’s boundary. The characteristic tensor 
was calculated with respect to the local coordinate system aligned with the kink direction. 
Corresponding SIF values were estimated as described in previous sections. These SIF 
values were compared against analytical results reported in extant literature [Kitagawa, 
Yuuki and Ohira (1975)] with SIF values being normalized with respect to that obtained 
for a straight crack of length c. The said normalized SIFs (F1 and F2) could be expressed 
as [Kitagawa, Yuuki and Ohira (1975)] 

𝐹𝐹1 = 𝐾𝐾𝐼𝐼
𝜎𝜎2�𝜋𝜋𝑐𝑐 2⁄

              (33) 

𝐹𝐹2 = 𝐾𝐾𝐼𝐼𝐼𝐼
𝜎𝜎2�𝜋𝜋𝑐𝑐 2⁄

             (34) 

The length c of the straight crack is given by 
𝑐𝑐 = 2𝑎𝑎 + 𝑙𝑙 cos𝛼𝛼             (35) 
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Tab. 6 lists reference values of normalized SIF along with the percentage error incurred 
during their estimation as well as the characteristic tensor. For all kink angles considered, 
the observed error measured less than 1% for all lengths. These results demonstrate that 
SIF estimation via use of the characteristic tensor is accurate, and that the characteristic 
tensor is reliable for use even in cases involving kinked cracks. 

Table 6: Normalized SIFs at tip of kinked crack for α=15°, 30°, 45°, and 60° 

𝛼𝛼 𝑙𝑙 2𝑎𝑎⁄  
Referenced   Error of estimation 

𝐹𝐹1 𝐹𝐹2 𝐹𝐹1 (Error) 𝐹𝐹2 (Error) 

15° 
0.1 0.954 0.212 0.856% 0.641% 
0.2 0.9496 0.2346 0.941% 0.777% 

30° 
0.1 0.8245 0.3895 0.805% 0.705% 
0.2 0.8076 0.4307 0.854% 0.956% 

45° 
0.1 0.6339 0.5053 0.558% 0.721% 
0.2 0.5983 0.5578 0.618% 0.807% 

60° 
0.1 0.4106 0.5462 0.759% 0.545% 
0.2 0.3583 0.5996 0.105% 0.827% 

5 Conclusions 
A characteristic tensor is a second-order tensor-similar to a stress tensor-and characterizes 
the singular stress field near crack tips in linear elastic bodies. A characteristic tensor bears 
a direct relationship with the conventional fracture-mechanics parameters, such as SIF and 
energy release rate. Several numerical computations were performed to investigate the 
theoretical validity of the characteristic tensor as well as the expected accuracy associated 
with its application in the evaluation of fracture-mechanics parameters subjected to 
multiaxial stress states. Major conclusions drawn from this study are 
 The characteristic tensor demonstrates a direct relationship with fracture-mechanics 
parameters under both uniaxial and mixed-mode loadings. 
 The characteristic tensor can be easily calculated from stress distributions of FEA by 
employing the least-square method. 
 Estimated SIF values for a single crack under mixed-mode loading demonstrate good 
agreement with their analytical counterparts. Additionally, for a single kinked crack, SIFs 
can be accurately estimated. 
 The error incurred during SIF estimation is acceptable, albeit the mesh size used for 
stress analyses is substantially large. 
 These results suggest that the proposed characteristic tensor characterizes and quantifies 

the singularity at the crack tip and can be applied to analyze practical crack propagation 
problems.  
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