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Abstract: To minimize the mass and increase the bearing failure load of composite double-

lap bolted joints, a three-step optimization strategy including feasible region reduction, 

optimization model decoupling and optimization was presented. In feasible region 

reduction, the dimensions of the feasible design region were reduced by selecting dominant 

design variables from numerous multilevel parameters by sensitivity analyses, and the 

feasible regions of variables were reduced by influence mechanism analyses. In model 

decoupling, the optimization model with a large number of variables was divided into 

various sub-models with fewer variables by variance analysis. In the third step, the 

optimization sub-models were solved one by one using a genetic algorithm, and the 

modified characteristic curve method was adopted as the failure prediction method. Based 

on the proposed optimization method, optimization of a double-lap single-bolt joint was 

performed using the ANSYS® code. The results show that the bearing failure load increased 

by 13.5% and that the mass decreased by 8.7% compared with those of the initial design of 

the joint, which validated the effectiveness of the three-step optimization strategy. 

 

Keywords: Composite, bolted joints, sensitivity analysis, optimization. 

1 Introduction 

Advanced composites play important roles in aircraft structures because of their high 

strength/stiffness-to-weight ratios and the weight-saving requirements in the aerospace 

industry [Kumar and Srinivas (2018); Xu, Yang, Zeng et al. (2016); Zhang, Li, Wang et al. 

(2015); Sane, Padole and Uddanwadiker (2018)]. However, joints are commonly regarded 

as weak parts of composite structures because of the significant concentration of stress 

around bolt holes [Zhao, Yang, Cao et al. (2018); Zhao, Qin, Zhang et al. (2015); Liu, Lu, 
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Zhao et al. (2018)]. In composite bolted joint design, increasing the load carrying capacity 

and minimizing joint mass have become crucial but challenging issues in the efficient use 

of composites. The load carrying capacity and joint mass are influenced by numerous 

multilevel parameters. Therefore, it is necessary to develop an efficient design approach to 

seek the best performance of composite bolted joints in engineering.  

To achieve a better structural performance and lower structural mass, various 

investigations have focused on the optimization of composite structures [Wu and 

Burgueño (2006); Lindgaard and Lund (2010); He and Aref (2003); Pelletier and Vel 

(2006); Manh and Lee (2014); Coelho, Guedes and Rodrigues (2015); Bakar, Kramer, 

Bordas et al. (2013); Kradinov, Madenci and Ambur (2007); Li, Huong, Crosky et al. 

(2009)]. Wu et al. [Wu and Burgueño (2006)] proposed an integrated approach for 

finding the optimal free-form three-dimensional shape and laminate stacking sequence 

design of fiber reinforced polymer shells. Lindgaard et al. [Lindgaard and Lund (2010)] 

proposed an approach for optimizing the nonlinear buckling fiber angle of laminated 

composite shell structures. He et al. [He and Aref (2003)] used a genetic algorithm to find 

the optimum design parameters of a fiber reinforced composite bridge deck, which 

included the number of stiffeners, the thickness and the orientations of outer skin layers. 

Pelletier et al. [Pelletier and Vel (2006)] presented a multi-objective optimization method 

for composite laminates based on an integer-coded genetic algorithm. The fiber 

orientations and volume fractions of the lamina were chosen as the primary optimization 

variables. Manh et al. [Manh and Lee (2014)] proposed an optimization model for 

aligning fibers in imperfect laminates based on a genetic algorithm and NURBS-based 

finite element isogeometric analysis. In addition to macroscopic parameters, such as the 

geometry configuration and stacking sequence, the mechanical performance of composite 

structures is also influenced by microscopic parameters. Coelho et al. [Coelho, Guedes 

and Rodrigues (2015)] used a multiscale topology optimization model to optimize bi-

material composite laminates in which the fiber cross-section was designed to obtain the 

optimal microstructure. Bakar et al. [Bakar, Kramer, Bordas et al. (2013)] presented a 

genetic algorithm to optimize the elastic properties of woven fabric composites. The 

design variables included the gap length, yarn thickness, material constituents and effect 

of the shape factor. 

Compared with the above simple laminates, only a few investigations have focused on 

the optimization of composite bolted joints. Based on a genetic algorithm and stress 

analyses, Kradinov et al. [Kradinov, Madenci and Ambur (2007)] achieved an optimum 

design of bolted composite joints. They considered the laminate thickness, lay-up, bolt 

locations, bolt flexibility and bolt sizes as design variables. Li et al. [Li, Huong, Crosky et 

al. (2009)] improved the bearing performance of composite bolted joints with reinforced 

z-pins. The volume contents and sizes of fibrous z-pins around the bolt holes were 

adopted as design variables. Clearly, recent investigations have generally focused on 

some of the design parameters of joints at the single scale, which has apparently 

restricted further exploration of the potential of composites. 

The performance of composite bolted joints is influenced by numerous parameters 

[Saleeb, Wilt, Al-Zoubi et al. (2003); Friedrich, Wu, Thostenson et al. (2011); Zhang, 

Zhou, Chen et al. (2016)], including dimension parameters, assembling parameters, 
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unidirectional lamina, and the fiber and matrix, and an ideal optimization model 

involving all the relevant parameters for composite bolted joints is needed. In addition, an 

optimization strategy with high calculation efficiency is essential in engineering. 

Therefore, in this paper, an ideal optimization model for composite bolted joints that 

includes all the mechanical and geometric parameters is presented. Then, a three-step 

optimization strategy, including feasible region reduction, optimization model decoupling, 

and optimization based on the modified characteristic curve method, is presented. Finally, 

optimization of a single-bolt, double-lap joint is conducted to validate the effectiveness of 

the proposed ideal optimization model and three-step optimization strategy.  

2 Ideal optimization model for composite bolted joints 

A typical composite single-bolt double-lap joint is shown in Fig. 1. This figure shows a 

general multi-level framework of composite structures: from the microscopic fiber/matrix 

to the mesoscopic unidirectional lamina, macroscopic laminates and structure. An 

optimization model of composite bolted joints involving all the relevant parameters is an 

ideal model, which is the precondition for obtaining the optimal design of joints. 
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Figure 1: Multi-level description of a composite single-bolt double-lap joint 

The three levels of parameters that affect the failure performance and mass of composite 

bolted joints were teased out and are listed in Tab. 1. The macroscopic geometry variables 

include dimension parameters and assembling parameters, which can directly impact the 

ultimate failure load, failure mode and structural mass. The majority of the mesoscopic 

parameters are unidirectional lamina properties, which affect the structural mass and failure 

load. The microscopic parameters are fiber/matrix constituent properties, which have a 

small effect on the structural mass but a more significant effect on the failure load. 
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Table 1: Multi-level variables of single-bolt double-lap joints 

Parameter level Parameters Expression 

Macroscopic 

(Laminate) 

Dimension parameters 

Diameter of hole D 

Thickness t=n×tply 

End distance 

Width distance 

e 

W=2Sw 

 

Assembling parameters 

Fit clearance η=D-d 

Tightening torque N 

Friction coefficient µ 

Mesoscopic 

(Unidirectional 

lamina) 

Number of unidirectional layers 

Elasticity moduli 

Shear moduli 

Poisson ratios 

Strength parameters of materials 

Thickness of unidirectional lamina 

Stacking sequence 

n 

E11, E22, E33 

G12, G13, G23 

v12, v13, v23 

XT, XC, YT, YC, 

S12, S13, S23 

tply=t/n 

[θ1/θ2/···/θn] 

Microscopic 

(Fiber & Matrix) 

Elasticity, shear modulus and Poisson ratio of 

fiber 
Ef, Gf, vf 

Elasticity, shear modulus and Poisson ratio of 

matrix 
Em, Gm, vm 

Fiber and matrix volume fractions Vf , Vm 

In Tab. 1, the subscripts 1, 2 and 3 are defined with the material principal coordinate 

systems, as shown in Fig. 1. X and Y represent the longitudinal and transverse strength 

properties of the unidirectional lamina, respectively, and S refers to the shear strength of 

the materials. The subscripts T and C represent the tensile and compressive strengths, 

respectively. At the microscale, the fiber and matrix are regarded as isotropic materials.  

For the composite joint, D, e, Sw and t are decisive variables for the mass, and the mass 

can be mathematically expressed as follows:  
2

1
3 [ 2 ( ) ]

4


= + − 

w

D
m S L e t               (1) 

where ρ is the average density of the composite material. Obviously, m increases with the 

increase of the macroscopic dimension factors e, Sw and t of the laminate. 

The objective of optimization in the present work is to simultaneously maximize the 

bearing failure load and minimize the joint mass. Adopting the method of division, the 

ideal optimization model of composite single-bolt double-lap joints can be expressed as: 
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where f is the mass-load ratio, m is the mass, and F is the failure load. The shear-out and 

tension failure modes, among other modes, are catastrophic failure modes and are 

undesirable in composite bolted joints design, while the bearing failure mode is the expected 

failure mode, and therefore, the optimization constraint is the bearing failure mode. 

3 Three-step optimization of composite bolted joints 

The three-step optimization strategy is presented. Then, the details of the strategy, 

including feasible region reduction, model decoupling, and one by one optimization with 

the modified characteristic curve method, are introduced. 

3.1 Three-step optimization strategy 

The flow chart of the three-step optimization strategy is shown in Fig. 2. For the ideal 

optimization model of composite bolted joints, the optimization is divided into three steps: 

feasible region reduction, model decoupling and one by one optimization. First, in 

feasible region reduction, the modified characteristic curve method is applied as the 

failure prediction method and the finite element model is established. Then, the dominant 

design variables are selected by sensitivity analysis, which reduces the dimensions of the 

feasible design region; influence mechanism analysis is conducted to reduce the feasible 

region of the dominant variables to further reduce the feasible design region. Finally, the 

simplified optimization model for composite bolted joints is proposed. By model 

decoupling, the simplified optimization model, which is multivariable, is further divided 

into several sub-models with relatively few variables by experimental design, failure 

analysis and variance analysis. In the optimization, based on the initial design variables 

and modified characteristic curve method, the sub-models can be solved one by one with 

the genetic algorithm to obtain the global optimal joint. 
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Figure 2: Flow chart of the optimization of composite bolted joints 

The characteristics of the three-step optimization strategy include (1) sensitivity analyses 

coupled with influence mechanism analyses are conducted to reduce the feasible design 

region. Reduction of the feasible design region and computational complexity is achieved 

in two ways; (2) the original optimization model is decoupled into several sub-models to 

decrease the amount of calculations, which is an innovative idea. This idea works 

because the parameters of the joints are multi-level and easy to decouple; (3) the 

modified characteristic curve method, which is accurate and computationally efficient, is 

applied. The details of the optimization process of the ideal optimization model for 

composite bolted joints will be introduced in the following sections. 

3.2 Modified characteristic curve method for failure load prediction 

The large computation cost restricts the application of the progressive damage method 

(PDM) [Qin, Zhao, Xu et al. (2019)] for the optimization of composite structures, which 

is the most commonly used failure load prediction method for complex composite 

structures. Meanwhile, the characteristic curve method is suitable for predicting the 

failure load of composite bolted joints and attracts attention in engineering because of its 

simplicity and low computation cost as well as its good ability to accurately predict the 

failure load and failure mode.  

In the current work, a modified characteristic curve method constructed by Zhang et al. 

[Zhang, Liu, Zhao et al. (2014)] was adopted to predict the failure loads and failure 

modes of composite bolted joints for subsequent sensitivity analysis, variables 

decoupling and optimization solving. Joint failure was detected when the stresses in any 

ply satisfies the modified Yamada-Sun failure criterion at any point on the characteristic 

curve. The modified characteristic curve, as shown in Fig. 3, is expressed as follows: 

( ) c o s 2 s in c o s   = + + − +
t c t

r R R R R    -90°≤θ≤90°             (3) 

where 

2 2 2 2 2 2
[ ( ) ]

2


+ + − + + − +
=

s s t s s c s t

s

R R R R R R R R R R R R

R R

            (4) 
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and r is the distance from the center of the hole to any point on the modified 

characteristic curve; R is the diameter of the hole; Rt, Rc and Rs are the tensile, 

compressive and shear-out characteristic lengths, respectively; and θ is anticlockwise 

measured from the symmetry axis, which ranges in the interval of [-90°, 90°]. Tensile 

failure occurs when the failure point is located at 75°≤  ≤90°; bearing failure emerges at 

the region of 0°≤  ≤15°, and shear-out failure occurs at 30°≤  ≤60°. The composite 

material system and joint configuration used by Zhang et al. [Zhang, Liu, Zhao et al. 

(2014)] is the same as the composite bolt joint in the current work. Therefore, this 

method and the corresponding characteristic coefficients are applied to the failure 

prediction in the present work. 
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Figure 3: Modified characteristic curve method 

3.3 Reducing the feasible design region to simplify the optimization model 

3.3.1 Selection of dominant variables based on sensitivity analysis 

Multi-level parameters have different influences on the ultimate failure load of composite 

bolted joints. To reasonably choose the dominant design variables, sensitivity analysis 

[Camanho, Bowron and Matthews (1998); Li, Gu and Zhao (2017)] was applied to 

establish a ranking of the various parameters according to the influences of the 

parameters on the failure load.  

Because only four parameters (D, e, Sw and t) are related to joint mass, the sensitivity of 

other parameters to the joint mass m will give results of zero, and the sensitivity of other 

parameters to the load transfer efficiency f is only related to their sensitivity to the failure 

load. Therefore, the failure load F instead of the load transfer efficiency f is the objective 

of the sensitivity analysis, and D, e, Sw and t are considered to be dominant design 

variables. In the sensitivity analysis, other dominant design variables are selected from 

other multi-level parameters xi (i=1, 2, ···, n), where n is the number of parameters. The 

sensitivity analysis can be expressed by the following formula, which represents the 

change of the failure load per unit of relative variation of the parameters. 

1 2 1 2
( , , , , , ) ( , , , )

/ /

   +     −   
 =

 

i i k k

i

i i i i

F x x x x x F x x xF
S

x x x x
            (5) 
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where xi refers to the variation of parameter xi. Each xi is determined by the standard 

deviation σ of the factor xi, which is referenced to the maximum deviation of each 

parameter specified in the ASTM D5961 standard [ASTM D 5961 (2013)]. Considering 

the different units of the parameters, a relative non-dimensional increment form /
i i

x x  

was used in the sensitivity analysis to make the object evaluation comparable and fair. 

3.3.2 Feasible region reduction of dominant variables based on the influence mechanisms 

The dimensions of the feasible design region decrease with the decrease in the number of 

optimization variables, and thus, the amount of optimization calculations decreases. 

Another way to reduce the feasible design region is to reduce the feasible region of the 

dominant variables, which also reduces the computational cost. This paper introduces 

influence mechanisms of variables that affect the failure behavior to further reduce the 

feasible design region. This analysis of influence mechanisms involves three aspects: 

fiber orientation, geometry parameters and tightening torque. Each analysis yields 

feasible regions of some dominant variables, and finally, a simplified optimization model 

with various dominant variables for composite bolted joints is obtained. 

3.4 Model decoupling based on variance analysis 

There is still a high amount of computation in the optimization of the composite bolted 

joint because the number of dominant variables is large. As is known, the computation 

cost of an optimization model with n variables is much higher than that of the sum of n 

optimization models with one variable. To reduce the computational complexity, variance 

analysis is performed to study the interaction of variables. If the interaction term is not 

significant, a multivariate optimization can be decomposed into several optimizations 

with fewer variables or a single variable. Specifically, when the number of variables is 

known as n, the interaction term of any two variables is regarded as a factor and the 

quadratic term of the variables is taken into consideration; then, the total number of 

factors is 2n+n(n-1)/2. The experiments of the 2n+n(n-1)/2 factors are arranged with an 

orthogonal table, and the level number of each factor is chosen according to the amount 

of calculations, such as 3. After the failure load of each test is obtained by using the 

failure prediction method presented in Section 3.2.1, variance analysis is carried out to 

determine whether the influence of the interaction term is significant. If the n-1 

interaction terms between a variable and other variables have little influence, the variable 

can be separately optimized, assuming that there are j variables in this case; if the 

interaction terms between mi variables and the other n-mi variables are not crucial, an 

optimization model with mi variables can be separated, assuming the number of 

optimization models in this case is k and i=1...k. Apparently, n=j+m1+…+mk. Finally, 

the original optimization model is decoupled into j+k sub-models, and each sub-model 

has fewer variables than the original one. 

3.5 Conducting optimization with the one by one method 

The sub-models will be solved one by one after the optimization model is decoupled, and 

then, the optimization results converge to a global optimal result. When a sub-model is 
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executed, the variables in the other optimizations remain constant, which substantially 

reduces the computation time and simplifies the optimization procedure. The genetic 

algorithm [Manh and Lee (2014); Dong, Wei, Tian et al. (2017); Dong, Wei and Liu 

(2018)] is adopted for the optimization of sub-models. The optimization schedule is 

illustrated in Fig. 4. 

Start

Initial value of variables

 Predict the failure load 
and failure mode

Genetic operation for value of 
variables

This sub-model is 
optimized?

Updated 
value of 
variables 

and conduct 
next 

optimization

Yes

No

All sub-models are 
optimized?

End

Yes

No

 

Figure 4: Optimization flow chart of the simplified optimization model for composite 

bolted joints 

Step 1. Based on the initial values of the design variables (or the update values of the 

design variables), a genetic algorithm is used to obtain the candidate value of the variable 

being optimized, and the finite element model of a composite bolted joint is built to 

obtain an accurate stress field. Then, a modified characteristic curve method is used to 

predict the failure load and failure mode of the composite bolted joint.  

Step 2. If the failure mode is bearing, but the sub-model has not yet been optimized 

according to the genetic algorithm, a new candidate value will be obtained with the 

genetic algorithm and Step 1 is conducted again; if the failure mode is not bearing, the 

candidate value is abandoned, a new candidate value will be obtained with the genetic 

algorithm, and Step 1 is conducted again; if this sub-model has been optimized by the 

genetic algorithm, the variables are updated and the next sub-model with other variables 

will be optimized until all the sub-models are optimal. 

4 Optimization result 

The three-step optimization strategy is applied to an ideal optimization model of a 

composite bolted joint, including feasible region reduction, model decoupling and one by 

one optimizing for the optimization of the sub-models. 
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4.1 Initial design of the single-bolt double-lap composite joint 

The initial design of the single-bolt double-lap composite joint according to the ASTM 

D5961 standard and the investigations described in Zhang et al. [Zhang, Zhou, Chen et al. 

(2016); Zhang, Liu, Zhao et al. (2014, 2015)] is listed in Tab. 2, and the laminates in the 

joint are made of T800 carbon/epoxy. 

Table 2: Initial design variables of the composite single-bolt double-lap joint 

Variables Initial value Unit Variables Initial value Unit 

D 4.76 mm E11 195 GPa 

e 15 mm E22 8.58 GPa 

Sw 15 mm G12 4.57 GPa 

t 3.7 mm G23 3.15 GPa 

N 0 N·m ν12 0.33 1 

µ 0.4 1 ν23 0.49 1 

η 0 mm XT 3071 MPa 

tply 0.185 mm XC 1748 MPa 

θ1 45 ˚ YT 88 MPa 

θ2 0 ˚ YC 271 MPa 

θ3 -45 ˚ S12 143 MPa 

θ4 0 ˚ S23 104 MPa 

θ5 90 ˚ Ef 340.46 GPa 

θ6 0 ˚ Gf 47.64 GPa 

θ7 45 ˚ vf 0.318 1 

θ8 0 ˚ Vf 0.57 1 

θ9 -45 ˚ Em 3.52 GPa 

θ10 0 ˚ Gm 1.2 GPa 

   vm 0.35 1 

4.2 Reducing the feasible design region to simplify the optimization model 

4.2.1 Selection of dominant design variables 

a) Failure load prediction with the 3D FE model and modified characteristic curve method  

A parametric 3D FE model of the composite bolted joint in the ANSYS® FE code using 

the APDL language [Zhao, Shan, Liu et al. (2017)] was applied as shown in Fig. 5. All 

the components were modeled using the ANSYS® SOLID185 element. The finite 

element model provided stress around the hole for the modified characteristic curve 

method, and the latter could predict failure load and failure mode with the stress. 
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Figure 5: Finite element model for the stress prediction around the hole 

The computational mass m of the joint is 78.4 g, and the failure load F predicted by the 

modified characteristic curve method is 19.08 kN, which is in good agreement with the 

experimental result [Camanho, Bowron and Matthews (1998)] of 20.37 kN with a relative 

error of -6.3%. 

b) Selection of dominant variables based on the sensitivity analysis 

For the single-bolt, double-lap composite bolted joint with the initial parameters 

presented in Tab. 2, Tab. 3 lists the actual increment xi and the results of the sensitivity 

analysis Si (Eq. (5)). Fig. 6 also illustrates the sensitivity analysis results. It follows that 

the Si for the variables θ8, θ5, θ4, v23, t, µ, v12, θ1, θ7, θ9 and θ10 are less than 0.005 kN/1. 

They are trivial variables for the joint failure load, while other variables are of great 

significance, especially the three variables Vf, Ef and XC, which have the largest Si and are 

all larger than 1 kN. 

 

Figure 6: Sensitivity analysis results  
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It can be proven that the majority of influential variables are material parameters, such as 

Vf, Ef, XC, E11, YC, Em, Gm, vm, tply, vf, Gf, S12, G12, S23, G23, E22, XT, YT, and η. The 

optimization design of the composite material parameters is performed by selecting 

excellent material systems rather than investigating a new material system. Optimizing 

the material parameters described above may lead to non-existent materials; therefore, 

this optimization is not regarded as the optimization content of this paper. The dominant 

design variables ultimately include the fiber orientation θ2, θ3 and θ6; geometry 

parameters e, Sw and D; and tightening torque N. 

Table 3: Results of the sensitivity analysis of the design variables 

Variables x Unit S (kN/1) Variables x Unit S (kN/1) 

D 0.01 mm -0.075 E11 3.8 GPa 0.46 

e 0.33 mm 0.117 E22 0.086 GPa 0.113 

Sw 0.33 mm 0.085 G12 0.098 GPa 0.138 

t 0.08 mm 0.017 G23 0.066 GPa 0.129 

N 0.9 N·m 0.351 ν12 0.02 1 0.01 

µ 0.01 1 0.013 ν23 0.046 1 0.02 

η 0.01 mm -0.088 XT 187.4 MPa 0.102 

tply 0.004 mm 0.348 XC 65.8 MPa 1.16 

θ1 0.9 ˚ -0.005 YT 7.7 MPa 0.098 

θ2 0.9 ˚ -0.104 YC 22.4 MPa 0.452 

θ3 0.9 ˚ 0.136 S12 3.9 MPa 0.139 

θ4 0.9 ˚ 0.027 S23 3.7 MPa 0.135 

θ5 0.9 ˚ 0.038 Ef 17.023 GPa 1.193 

θ6 0.9 ˚ 0.066 Gf 2.382 GPa 0.346 

θ7 0.9 ˚ -0.003 vf 0.0159 1 0.347 

θ8 0.9 ˚ 0.042 Vf 0.0285 1 1.369 

θ9 0.9 ˚ 0.004 Em 0.176 GPa 0.432 

θ10 0.9 ˚ -0.003 Gm 0.006 GPa 0.389 

    vm 0.0175 1 0.355 

4.2.2 Reducing the feasible region of dominant variables 

The influence mechanisms of the three kinds of dominant variables were studied to 

reduce the feasible region and thus reduce the amount of optimization calculations. 

a) Fiber orientation 

The various fiber orientations and the significant stress concentration around bolt hole cause 

complex stress status and further lead to different failure modes. The commonly used fiber 

orientations in the engineering industry are 0°, 90° and ±45°. The relationships between 

different fiber orientations and the failure modes of composite bolted joints are discussed. 
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If θ is 0°, as shown in Fig. 7, the fiber direction is parallel to the loading direction. 

Because of the poor matrix and fiber-matrix interface properties, the initial damage at 

point D is easy to propagate along the shear-out plane and leads to a sudden shear-out 

failure. Akatasa et al. [Akatasa and Dirikolu (2004)] and Park [Park (2001)] proved that 

excessive 0° layers in a composite bolted joint caused unexpected failure load reduction 

and shear-out failure mode. 
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Figure 7: Microcosmic failure mode when fiber orientation is 0° 

If θ is 90°, as shown in Fig. 8, the stress at point B is in the same direction as the fibers, 

so that the fibers inhibit damage initiation at point B. Because the matrix properties and 

fiber-matrix interface properties are too small to sustain corresponding stresses in the 

direction perpendicular to the fiber, interface debonding or matrix cracking occurs at both 

points C and D, which leads to tension failure. 
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90°
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Figure 8: Microcosmic failure mode when fiber orientation is 90° 

If θ is 45° or -45°, the angles between fiber direction and stress direction at points B, C 

and D are all 45°, as shown in Fig. 9. Both compressive and tensile stress can be 

decomposed into the longitudinal and transverse directions of fibers, which means the 

fibers bear a significant degree of load at points B, C and D. Thereby, the possibility of 

the occurrence and propagation of damage can be reduced compared with that at the 0° 

and 90° layers. 
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Figure 9: Microcosmic failure mode when fiber orientation is ±45° 

The selection of the stacking sequence is important in composite bolted joint design. The 

reasonable proportion of the 0° layers contributes to increasing the failure load of 

composite bolted joints [Quinn and Matthews (1987)]. The ±45° layers can reduce the 

stress concentration factor and avoid tension and shear-out failure mode. The 90° layers 

are able to prevent shear-out failure and maintain the transverse loading capacity. The 

other suggestion is that the 0° and 90° layers should not be placed at the surface, which 

has the largest bearing stress at point C. In addition, adjacent layers should have different 

fiber orientations to obtain a better interlaminar performance [Quinn and Matthews 

(1987); Collings (1982)]. Therefore, the constraints on the fiber orientations are θi≠θi+1 

and 10%≤ n45/-45/0/90 ≤50%. 

b) Geometry parameters 

The failure behavior and joint mass are influenced by the geometric dimensions. Fig. 10 

illustrates the typical stress status of the central laminate, which shows the effects of the 

geometric dimensions on the failure behavior of a composite joint. Those stress statuses 

are related to four common laminate failure modes in a composite bolted joint, namely, 

bearing, tensile, shear-out and cleavage [Maimi, Camanho, Mayugo et al. (2007); 

Camanho and Matthews (1997)]. 
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Figure 10: Effects of e and Sw on the failure modes of a composite bolt joint 

Obviously, Section A experiences a distributed force, and a high stress concentration is 

exhibited at points D and D’. For the small edge distance Sw, a high stress distribution 

appears at section A, which directly results in a sudden tension failure, as shown in Fig. 

10(b). A sufficient edge distance Sw ensures the stress at section A is low enough to avoid 

catastrophic tension failure. In addition, a short end distance e deteriorates the stress 

states at points B and D, which leads to cleavage or shear-out failure, as shown in Fig. 

10(c). Therefore, the end distance e should be long enough to prevent the laminate from 

experiencing cleavage and shear-out failure. It is worth noting that tension, shear-out and 

cleavage failure always lead to catastrophic structure failure [Chang and Chang (1987); 

Pisano, Fuschi and Domenico (2013)]. However, the bearing damage slowly propagates 

near point C (Fig. 10(d)) with the increase of the external load, which provides a failure 

alert [Chang and Chang (1987); Guo and Nairn (2017)]. Hence, bearing failure is the 

expected failure mode for a composite bolted joint. 

Appropriate e, Sw and D not only contribute to increasing the failure load but also to 

avoiding catastrophic failure. Recent investigations have suggested that the ratios of e/D 

and Sw/D should be greater than 2.5 to ensure the bearing failure mode [Zhang, Liu, Zhao 

et al. (2015); Hart-Smith (1976)]. In addition, the upper limit of e and Sw should be 

restricted to decrease the composite joint mass. In the current work, e/D and Sw/D, 

denoted by  e  and  S , respectively, were studied instead of e and Sw, and the optimized 

ranges of  e  and  S  were set as 2.5≤
e ≤4 and 2.5≤

S ≤4. 

Under an external load, the bending deformation of a bolt leads to the reduction of the 

contact areas between the bolt and laminates. Then, a significant stress concentration occurs 
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at the reduced contact areas, which deteriorates the damage status around the bolt hole and 

decreases the load transfer efficiency. Moreover, the thicker the central laminate, the 

smaller the bending deformation of the bolt, which results in a smaller stress concentration 

at the contact area, as shown in Fig. 11. To obtain the highest bearing load transfer 

efficiency, the recommended thickness of the laminate is 1≤D/t≤2 [Collings (1977)]. 
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Stress 
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Laminate
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Figure 11: Effect of t on the failure of a composite bolted joint 

c) Tightening torque 

The failure load of a composite bolted joint is affected by the tightening torque N. The 

tightening torque causes interlaminar compression pressure around the bolt hole, which 

can inhibit the interlamination damage and bearing damage around the bolt hole, as 

shown in Fig. 12 [Sun, Chang and Qing (2002)]. The tightening torque also increases the 

friction force in a composite bolted joint, which contributes to the failure load 

improvement and prevents the adjacent layers from shear slipping [Phillips (1989); 

Khashaba, Sallam and Shorbagy (2006)]. Furthermore, the tightening torque provides an 

axial preload to the bolt, which can reduce the bending deformation of the bolt and 

relieve the bearing stress concentration at the outer layer of the laminate, as shown in Fig. 

12(d). Thus, the tightening torque N should be included in the optimization, and the 

constraint is 0≤N≤10. 

“   ”is stress caused by load  

(a) Microscopic transverse bearing failure (b) Microscopic longitudinal bearing failure 

 (c) Microscopic shear failure

“         ”is stress caused by N
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Figure 12: Influence of the tightening torque  
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4.2.3 Simplified optimization model for composite bolted joints 

Because of the bolt bending deformation, the bolt-hole bearing stress in the outer layers is 

much higher than that in the inner layers. Therefore, the failure behavior of the joint is 

more affected by the outer layers, and the fiber orientations of the outer layers are 

decisive parameters of the failure behavior in the optimization design process. Thus, this 

paper only takes the fiber orientations of the outer five layers as optimization parameters. 

The final design variables in the present work are D, 
e
, 

S
, N, and θi (i=1, 2, 3, 4, 5). 

The constraint conditions of the optimization variables are based on the discussion in 

Section 4.2.2. Consequently, the simplified optimization model for composite bolted 

joints can be expressed as: 

( ) ( )
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( , , )
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        (6) 

where n is the total number of plies, n±45/0/90 is the number of plies in different fiber 

orientations, and θ is the fiber orientation. 

4.3 Variable decoupling 

The fiber orientation θi can be decoupled from the other four variables D, 
e
, 

S
, and N 

because they are parameters in different levels. These four variables can be transformed 

in the following way: A=d/6, B= 
e , C= 

S , and D=N/5. With the addition of six 

interaction terms, AB, AC, AD, BC, BD, and CD, and four quadratic terms, A2, B2, C2, and 

D2, of the four variables, there are fourteen factors in total. Five levels within the 

constraints are set for each factor for the orthogonal experimental design. Then, the 

failure prediction of models under different orthogonal experiment conditions is carried 

out by using the method presented in Section 3.2, and variance analysis is conducted on 

the failure prediction results. The P value of the significance test for each factor is shown 

in Tab. 4. 

Table 4: P value of the significance test for each factor 

Source Sum of Squares df Mean Square F value P-value 

A 23.53 1 23.53 3433.58 < 0.0001 

B 9.72 1 9.72 1418.98 < 0.0001 

C 232.63 1 232.63 33946.78 < 0.0001 

D 83.52 1 83.52 122.72 < 0.0001 

AB 0.37 1 0.37 53.41 0.0002 

AC 0.62 1 0.62 89.92 0.0003 

AD 0.22 1 0.22 31.55 0.0008 
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BC 0.053 1 0.053 0.078 0.7885 

BD 4.31 1 4.31 6.33 0.0401 

CD 0.48 1 0.48 0.70 0.4306 

A2 1.38 1 1.38 201.91 < 0.0001 

B2 0.79 1 0.79 115.33 < 0.0001 

C2 0.34 1 0.34 49.30 0.0002 

D2 2.10 1 2.10 3.09 0.1224 

From Tab. 4, it can be seen that among the factors that affect the final failure load F of 

the structure, the significant ones are A, B, C, D, A2 and B2. The 6 interaction terms are of 

little significance, which indicates that the four macroscopic geometry variables of the 

joint have little influence on each other in obtaining the extreme value of the final failure 

load F. Therefore, the optimization model can be decoupled into five optimization sub-

models; four of these sub-models are single variable optimizations with variables D, e, Sw, 

and N, and the remaining sub-model is an optimization with 5 fiber orientation variables.  

Optimization sub-model (1): 
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Optimization sub-model (2): 
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Optimization sub-model (3): 
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Optimization sub-model (4): 
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Optimization sub-model (5): 
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4.4 Optimization based on the modified characteristic curve method 

Optimization of the five optimization sub-models for the design of the composite bolted 

joint is performed according to the procedure presented in Section 3.5. The optimization 

history is shown in Fig. 13, where the objective function values are plotted for each 

optimization iteration. There is only one step in optimizing the optimization sub-model (1) 

because the initial design value of 4.76 mm, as shown in Tab. 2, is the best choice from 

the available standard bolt diameters. The other four sub-models require more steps for 

analysis, among which the optimization sub-model (5) has the longest iteration because it 

includes five variables, although each variable only has four candidate values. The 

minimum objective function value of 3.307 in the bearing failure mode is noted.  
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Figure 13: Optimization history of the composite bolted joint 

The optimization design results are shown in Tab. 5 and are compared with those of the 

initial design. It can be seen from Tab. 5 that the bearing failure load of the optimized 

joint is increased by 13.5% and the mass is reduced by 8.7%. Therefore, the proposed 

optimization method for composite bolted joints is meaningful and effective. 
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Table 5: Optimization result and comparison to that of the initial design 

Parameter 
D 

(mm) 

Sw 

(mm) 

e 

(mm) 

N 

(N·M) 

F 

(kN) 

m 

(g) 

Stacking 

sequence 

Failure 

mode 

Initial design 4.76 15.0 15.0 4 19.08 78.4 
[45/0/-45/0/90/0 

/45/0/-45/0]s 
Bearing 

Optimization 4.76 13.8 13.8 7 21.65 71.6 
[45/0/90/0/-45/0 

/45/0/-45/0]s 
Bearing 

5 Conclusions 

This paper presents a three-step optimization strategy based on feasible region reduction, 

model decoupling and the modified characteristic curve method for composite single-bolt 

double-lap joints. The three-step optimization strategy mainly has the following three 

characteristics: (1) the feasible region is reduced from two aspects to reduce the 

computational complexity, (2) the optimization model is decoupled into several sub-

models that are easier to solve to reduce the computation cost, and (3) the modified 

characteristic curve method is applied for failure prediction in the optimization. An ideal 

optimization model for composite bolted joints is established and simplified into the 

optimization model with dominant design variables; then, the simplified optimization 

model is decoupled into 5 sub-models and solved. Comparing the result of optimization 

design with the result of the initial design joint, which is based on the recommendations 

in the ASTM D5961 standard, the final failure load of the optimized composite joint is 

increased by 13.5% and the mass is reduced by 8.7%. This comparison illustrates that the 

proposed optimization strategy is an effective method for minimizing the mass and 

increasing the bearing failure load of composite bolted joints. 
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