

Computers, Materials & Continua CMC, vol.62, no.2, pp.893-904, 2020

CMC. doi:10.32604/cmc.2020.06216 www.techscience.com/journal/cmc

A Formal Method for Service Choreography Verification Based
on Description Logic

Tingting Zhang1, 2, 3, *, Yushi Lan2, Minggang Yu1, Changyou Zheng1 and Kun Liu1

Abstract: Web Services Choreography Description Language lacks a formal system to
accurately express the semantics of service behaviors and verify the correctness of a
service choreography model. This paper presents a new approach of choreography model
verification based on Description Logic. A meta model of service choreography is built to
provide a conceptual framework to capture the formal syntax and semantics of service
choreography. Based on the framework, a set of rules and constraints are defined in
Description Logic for choreography model verification. To automate model verification,
the UML-based service choreography model will be transformed, by the given algorithms,
into the DL-based ontology, and thus the model properties can be verified by reasoning
through the ontology with the help of a popular DL reasoned. A case study is given to
demonstrate applicability of the method. Furthermore, the work will be compared with
other related research.

Keywords: Service choreography, WS-CDL, meta-concept model, description logic,
formal verification.

1 Introduction
In recent years, the industry and researchers have proposed a new service composition
construction based on Choreography. On this basis, the implementation of each part
based on service orchestration is automatically generated [Khadka, Bramhananda and
Pires (2013); Mendling and Hafner (2009); Cui, Zhang, Cai et al. (2018)]. In order to
realize the automatic implementation mechanism of service choreography, the WS-CDL
(Web Services Choreography Description Language) [Kavantzas, Burdett and Ritzinger
(2015); Sheng (2015)] language is designed. It is a service-oriented description language
based on global perspective, which defines a set of services from a global perspective.
The rules of collaboration and interaction must be followed. However, WS-CDL, as an
XML-based descriptive language, lacks formalized models and verification mechanisms,
and it is difficult to ensure the correctness of collaboration and interaction. The
correctness of the service orchestration model directly affects all participants involved in
the interaction, which has a great impact on the implementation of the later system

1 PLA Army Engineering University, Nanjing, China.
2 The 28th Research Institute of China Electronics Technology Group Corporation, Nanjing, China.
3 Southeast University, Nanjing, China.
* Corresponding Author: Tingting Zhang. Email: zhangtings@sohu.com.

mailto:zhangtings@sohu.com

894 CMC, vol.62, no.2, pp.893-904, 2020

[Boehm (1981)]. Web services composition and verification methods based on deductive
reasoning [Wang, Li and Li (2008); Madani and Nematbakhsh (2009); Shi and Chang
(2008)] use logic formulas to describe systems and their properties, and use some axioms
and inference rules to verify that the system has certain properties. The previous research
lacking verifications on the consistency, integrity and state accessibility of the service
choreography model.
This paper proposes a service choreography model verification method: DLV-CM based
on description logic. Firstly, the conceptual model of service choreography is built by
extending the WS-CDL normatively, then the consistency, integrity and reasoning
deduction rules of the model are proposed. On this basis, the verification problem of the
service choreography model is transformed into SHION (D) [Horrocks and Sattler (2007)].
DL [Brachman and Schmolze (1985); Schmidt and Smolka (1991)] reasoning problem, by
means of the inference engine such as Pellet to realize the consistency, integrity and state
accessibility verification of the service choreography model.
This paper is organized as follows: Section 1 builds a WS-CDL-based service
choreography model, and gives the model integrity, consistency, and state reachability
reasoning rules; Section 2 introduces the SHOIN (D)-based service choreography model.
Then illustrates the conversion algorithm from the service choreography model to
SHOIN (D), as well as the conversion algorithm from the reasoning deduction rules to
the Semantic Web Rule Language (SWRL) [Parsia (2005); Dong, Wang and Chen (2010)].
And defines the query verification statement based on the Simple Protocol and RDF
Query Language, SPARQL according to the type of the conflict problem; Section 3
demonstrates the modeling and verification process of WS-CDL service choreography
model based on description logic in a case; The last section summarizes the full text.

2 WS-CDL-based service choreography formal modeling method
This section summarizes the main ideas of service choreography, builds a conceptual
model of service choreography based on WS-CDL, and demonstrates the model with
consistency, integrity and reasoning deductive rules, all of which provide a formal basis
for model verification.

2.1 WS-CDL-based service choreography meta-concept model
Definition 1 Choreography (Cho). It describes the contract between the participants on
the cooperation between services, which is the consensus on the global interaction
process and constraint rules. Also, it describes the interoperability process between cross-
system and cross-organizational services.
The service choreography is represented as a triad: , ,Cho N Ro S=< > .
Where: N represents the name of the choreography; Ro represents all the roles involved
in the choreographer; S is the session included in the choreography.
Definition 2 Session (S). A group of basic interaction activities that perform specific
functions is the basic unit that constitutes service choreography.
The session is represented as a four-tuple: , , ,S N Act Ro Pr=< > .

A Formal Method for Service Choreography Verification 895

Where: N is the session name; Act is all activities that complete the session function; Ro
is the role contained in the session; and Pr is the condition that makes sure the session to
be carried out.
The concept in the meta-concept model comes from WS-CDL, and extends the concepts
of session, atomic session, compound session, and port based on the purpose of formal
modeling and verification of service choreography. Tab. 1 gives a detailed definition and
description of each major concept.

Table 1: Service choreography concept
Name Definition Description
Participant Par=<N,Ro> Describe the entities that participate in service

collaboration. A participant can play multiple roles. ‘N’
is the name (the same below), and ‘Ro’ is the included
role.

Role

Ro=<N,Op,Ch,Va> Enumerate the roles that participants may play to
participate in the interaction. ‘Op’ provides the action
for the character, ‘Va’ is a local variable, and channel
‘Ch’ is also associated with the character.

Activity Act=<N,Ca > Describe the actions performed in the orchestration.
‘Ca’ is a classification of activities divided into basic
activities and structural activities.

Precondition P=<N, Boolean> Describe the preconditions for session execution. The
condition is of the Boolean type.

Guard G=< P, S > Describe the binding of the guard condition to the
session. Contains ‘P’ and corresponding session ‘S’

Variable Va=<N,Ro> Describe the variables contained in a role. Contains the
variable name ‘N’ and the role it belongs to.

Operation Op=< N,Ro> Describe the actions that the role has. Including the
operation name ‘N’ and the role.

Channel

Ch=<N,Ro,Loc,Int>

Define where and how the interaction takes place.
Contains the connected role ‘Ro’, the channel location
‘Loc’, and the basic interaction ‘Int’ that occurs on the
channel.

Interface

In=<N,Par>

An interface corresponds to a role and contains multiple
ports. ‘Par’ is the participant to which the interface
belongs.

Port Po=<N,In> Describe the path of interaction between roles. ‘In’ is
the interface

Among them, activities are divided into basic activities (Abas) and structural activities
(Astr). Abas is the basic unit of activity for participating in service interactions, including
NoAction, SilentAction, Interaction, Assign and Perform. Astr combines the basic
activities it contains in a structured way. Astr is defined as follows:

896 CMC, vol.62, no.2, pp.893-904, 2020

1 2

:: ()

. ()

[] [] ()

[][]* ()

str

g rep

A A B Parallel

A B Sequence

p A p B Choice

p p A WorkUnit

=

+

The structure represents parallel activities, sequential activities, selection activities, and
iteration activities, respectively, where the guardian condition p is enforced for the
activity. If the true activity gp is executed in the iterative activity by A , if repp is true after
the execution of the activity A , the activity A will be executed iteratively until it is false.
DL is a family of knowledge-representation-languages with strict formal semantics. It is a
decidable subset of the first-order predicate logic. It contains a set of basic concept
constructors, such as and (), implied (), full-name constraints (∀). Sessions are
divided into Atomic Session (atomS) and Compound Session (comS). Atomic Sessions are
inseparable sessions, and Composite Sessions are composed of Atomic Sessions. Firstly,
we give the definition of the atomS :

1 2 2

1 2 1

1 2 1 2 2

1 2 3

:: () ()
() ()

(.) ()

(. . , @) ()

(. . , @) ()

(. . , . . , @) ()

(, , ,...) ()

atom no

silent

assign

req

resp

req resp

perform

S Ro S
Ro S

assign Ro x e S

request Ro x Ro y Ch Ro S

respond Ro x Ro y Ch Ro S

req resp Ro x Ro y Ro v Ro u Ch Ro S

Cho x x x S

τ

−

= ∅

=

→

←

− → ←

()NULLψ

noS is an empty behavior on the character Ro ; silentS is a dummy behavior performed on the
character Ro that does not have any effect on the current session; assignS is an assignment
behavior on the role Ro , the value e is assigned to the variable x; reqS is the request
interaction behavior between role 1Ro and 2Ro , 1Ro that sends request x to 2Ro through the
channel 2@Ch Ro , 2Ro receives the request and saved in x; req respS − stands for the request-
response interaction behavior between role 1Ro and 2Ro , 1Ro sending a response x through
the channel 2@Ch Ro , 2Ro receives the request and saves it in y; 2Ro sends the
answer u to 1Ro through the channel 1@Ch Ro , 1Ro receives the request and saves it in v ;

performS stands for the call to the session Cho, 1 2 3, , ,...x x x stands for the actual parameter when
the call is being executed; NULL stands for a null session, or the termination of the session.
A Compound Session is composed of Atomic Sessions through a connection relationship,
and a Composite Session can form a larger Composite Session. The Composite Session is
defined as follows:

A Formal Method for Service Choreography Verification 897

1 2

1 2

1 1 2 2

:: ()

. ()

[] [] ()

[][]* ()

com parallel

sequence

choice

g rep workunit

S S S S

S S S

p S p S S

p p S S

=

+

parallelS represents two concurrently executed sessions; sequenceS stands for 2 consecutively
executed sessions; choiceS indicates the session selected for execution. The session 1S is
executed when the guardian condition is true, and the session 2S is executed when
guardian condition 2p is true; workunitS indicates the iterative execution session. If gp is a true
session, then S will be executed. If the session S is completed, if it is true, then the
session S will be iteratively executed until repp is false. Inter-session relationship
constraints satisfy the following DL expressions:

;

;

.

no silent assign req resp req resp perform atom

parallel sequence choice workunit com

atom com

S S S S S S S NULL S
S S S S S
S S S

−       
   

 

2.2 Field rule description
A domain rule is a description of constraints in a particular domain that is used to
maintain business structure or to control and influence business behavior, providing
validation criteria for the model validation process. This paper divides the domain rules
of service collaboration into three categories: consistency rules, integrity rules and
deductive inference rules. The domain rules are not fixed and will be continuously
enriched and refined by domain experts in practical applications.
The consistency of the model includes multiple aspects, such as syntax consistency,
semantic consistency, etc. Consistent reasoning based on Tableaux algorithm can slove
the problem of consistency verification such as Subsumption, Equivalent, Satisfiability
and so on [Wang, Dong and Zhu (2013)]. In this paper, the consistency of the model is
defined as two aspects: whether there is behavioral semantic conflict inside the applied
conceptual model; whether there exists semantic contradiction between the applied
conceptual model and the meta-conceptual model.
Based on the characteristics of service orchestration model integrity analysis, this paper
focuses on the following service orchestration model integrity constraint rules based on
the WS-CDL statute:

1 : 1 .comR Choreography Contain Session≥ .
2 : 1 .comR Session Support Activity≥ .
3 : 2 . 2 . .comR Channel Link Role Channel Link Role≥ ≤  
4 : 1 .comR Interaction Depand Channel≥ .
5 : 1 . .comR Participant Implement Role≥
6 : 1 _ . 1 _ . .comR Role Belong to Participant Role Belong to Participant≥ ≤  
7 : 1 . 1 . .comR Interface Bind Role Interface Bind Role≥ ≤  

898 CMC, vol.62, no.2, pp.893-904, 2020

8 : 1 . .comR Role Own Port≥
9 : 1 . .comR Role Provide Operation≥

The deductive inference rules defined in this paper are mainly for the state reachability
verification of the service choreographer model. Deductive inference rules are given as
shown follows: , 'p aS S→
The deductive inference rules between sessions are as follows:

,atom true aR
a NULL→

：
' , '

' , '

p a

struct p a

S S S T T TR
S T

≡ → ≡
→

：

1 ,.seq true aR
a S S→

：
, '

2 , '. .

p a

seq p a

S SR
S T S T

→
→

：

, '

, '

p a

parallel p a

S SR
S T S T

→
→

：
1

1

, '
1 1

, '
1 1 2 2 1[] []

p a

choice p a

S SR
p S p S S

→
+ →

：

,

,[][]*

g

g

p NULL

nonblock p NULL
g rep

S SR
p p S NULL

¬

¬

→

→
：

, '

, '[][]*

g rep

g rep

p p a

norepeat p p a
g rep

S SR
p p S S

∧¬

∧¬

→

→
：

, '

, '[][]* .[]*

g rep

g rep

p p a

repeat p p a
g rep rep

S SR
p p S S p S

∧

∧

→

→
：

The ‘atom’ rule specifies the indivisibility of the atomic session; the ‘struct’ rule specifies
the application of the isomorphism in the session deduction; the ‘seq’ rule refers to the
final representation of the atomic session being executed sequentially; the ‘par’ rule
refers to the final expression of the parallel execution of the basic session; The ‘choice’
rule means that if the session 1S is executed by the execution of the basic session a , then
the ‘choice’ session 1 1 2 2[] []p S p S+ can be expressed as '

1S ; the ‘no-block’ rule means that if
gp is false, and the [][]*g repp p S work is in the no-blocking mode, then the session

executed iteratively will be shipped directly; the ‘no-repeat’ rule means it gp is true and
repp is false, and the execution of S via the basic session a is performed as 'S , then the

session executed iteratively will be expressed as 'S via the execution of a ; the ‘repeat’
rule means that if gp and repp are true simultaneously, and The execution of S is
expressed as 'S via the basic session a , then the session executed iteratively is performed
as '.[]*repS p S via a , where[]*repp S means it repp is true then S will be executed iteratively.

3 Service choreographer model and deductive inference rule conversion algorithm
SWRL combines the sublanguage Datalog of OWL DL and RuleML. It is a semantic rule
description language that combines DL and Horn clauses. Not only does it realize the
representation of the rule knowledge, but also it maintains efficient reasoning of DL
language. Moreover, due to Tableau algorithm supports ontology reasoning of additional

A Formal Method for Service Choreography Verification 899

SWRL rules, this paper uses SWRL as the rule language of SHOIN(D) deductive
inference rules. The rule of conversion algorithm Construct RSWRL can be constructed
as follows:

Algorithm Construct RSWRL
Input: Deductive reasoning rules of service choreography model
Output: Deductive reasoning rules based on SWRL, RSWRL
begin

Antecedent = {}, Consequent = {}, Clause= {}；
for all concepts C and relations R in prerequisite and conclution,

if C1, C2 has R relation, c1, c2 are individuals of C1, C2, then

Clause = Clause ∪ { 1 1 2 2(,)R C c C c };

else if C has a attribute P (type is t), then
 Clause = Clause ∪ { (,)P C c t };

end for;
for all clauses cl do
 if relation between cl is “and” in prerequisite then
 Antecedent = Antecedent ∪ { 1 2cl cl∧ };

 else if relation between cl is “or” in prerequisite then
 Antecedent = Antecedent ∪ { 1 2cl cl∨ };

else if relation between cl is “and” in conclution then
 Consequent = Consequent ∪ { 1 2cl cl∧ };

else if relation between cl is “or” in conclution then
 Consequent = Consequent ∪ { 1 2cl cl∨ };

end if;
end for;

RSWRL= Antecedent∪Consequent;
return RSWRL;
end

The concepts, concept attributes, and concepts in the premise and conclusions are all
converted into the pre-questions and results of the Horn clause. The pre-requisites and
results of the Horn clause are combined into the conditions and inferences of the SWRL
by logical connectors. For example, for the rule atomR , the converted SWRL expression is:

(,)
(,)

(,)
(,)

atom

atom

Guard Session S Precondition p
Excuting Session S S a
Boolean Precondition p true

SessionDeduction S a NULL

∧

∧
→

900 CMC, vol.62, no.2, pp.893-904, 2020

4 Case analyses
This section takes the shopping order choreographer model in e-commerce as an example.
Under the guidance of the meta-concept model, the application conceptual model is
constructed. Based on SHOIN(D), the consistency, integrity and state reachability of the
model are verified by using Pellet.

4.1 The construction of service choreographer application concept model
The customer sends a purchase order request to the seller. After receiving the request, the
seller will review the customer’s credit record with the bank and check the supplier’
inventory at the same time. If the credit is good and the inventory is sufficient, the order
will be accepted, otherwise the order will be rejected.
The service director involves four roles: Buyer, Seller, Bank and Supplier. According to
Definition 2, the interaction activity between roles can be divided into five sessions by
function: poRequestS , creditCheckS , invCheckS , poResponseS , poRejectS .
Firstly, the Buyer sends an order request ‘po’ to Seller via the channel Ch@Seller. After
receiving the request, Seller sends a confirmation message ‘poAck’ to the Buyer via the
channel Ch@Buyer. The Buyer sets its order status variable to “sent” and the Seller will
place his order status, the variable of which is set to “received”.

(. . , @).

(. . , @).

(. " ").

(. " ").

poRequest req

resp

assign

assign

S S Buyer po Seller po Ch Seller
S Buyer poAck Seller poAck Ch Buyer
S Buyer poState sent
S Seller poState received

= →

←

=

=

The session creditCheckS completes the credit inquiry function, Seller sends a credit inquiry
request ccReq to the Bank, and the Bank gives a reply ccResp=“good”/“bad” to the
request. Finally, the Bank and the Seller set the relevant state variables to "sent" and
"received" respectively.

(. . , . . , @).

(. " "/" ").

(. " ").

(. " ").

creditCheck req resp

assign

assign

assign

S S Seller ccReq Bank ccReq Seller ccResp Bank ccResp Ch Seller
S Seller ccResp good bad
S Bank ccState sent
S Seller ccState received

−= → ←

=

=

=

The session invCheckS completes the inventory query function, the Seller sends an inventory
inquiry request to the Supplier, and the supplier returns the inventory status
icResp=“sufficient”/“short” to Seller, and assigns values to the relevant state variables
respectively.

(. . , . . , @).

(. " "/" ").

(. " ").

(. " ")

invCheck req resp

assign

assign

assign

S S Seller icReq Supplier icReq Seller icResp Supplier icResp Ch Seller
S Seller icResp sufficient short
S Supplier icState sent
S Seller icState received

−= → ←

=

=

= .

If the customer has good credit and sufficient inventory, the Seller will respond to the
Buyer to accept the order, and the status of the order is set to “completed”.

A Formal Method for Service Choreography Verification 901

(. . , @).

(. " ").

(. " ").

poResponse resp

assign

assign

S S Buyer poResp Seller poResp Ch Buyer
S Buyer poState completed
S Seller poState completed

= ←

=

=

If any of the customer’s credit history and inventory status cannot be met, then the Seller
will respond to the Buyer to reply a rejection of the order, and the status of the order is set
to “uncompleted”.

(. . , @).

(. " ").

(. " ").

poReject resp

assign

assign

S S Buyer poResp Seller poResp Ch Buyer
S Buyer poState uncompleted
S Seller poState uncompleted

= ←

=

=

Based on the business process, the service choreography combining all sort of sessions
are built as follows:

.().()poRequest creditCheck invCheck poResponse poRejectCho S S S S S= +

The guardian conditions for each session are:

(. " " . " ") ;
creditCheck invCheckp p

Buyer poState sent Seller poState received
=
= = ∧ =

(. " " . " "

. . " ") ;
(. " " . " "

. . " ").

poResponse

poReject

p Seller ccResp good Seller icResp sufficient
Seller ccState Seller icState received

p Seller ccResp bad Seller icResp short
Seller ccState Seller icState received

= = ∧ = ∧

= =
= = ∨ = ∧

= =

4.2 Model reasoning and verification
In the case of consistency and integrity verification of the service choreography model,
taking

1conR , 1comR as an example, enter the SPARQL query command under the Pellet
console:
SELECT ? a ?b WHERE{? a xmlns: Sequence? b. ? b xmlns: Sequence? a.} and
SELECT ? a WHERE{? a rdf:type xmlns: Choreography. UNSAID{? a xmlns: Contain ?
b.}.}
The results show that there is no case of violation of

1conR , 1comR (Due to space limitations,
the corresponding reasoning interface is no longer given here). Both types of rules are
verified one by one until all possible inconsistencies and incompleteness are excluded.
In the service accessibility model state reachability verification, the reasoning process of
Cho is first given (where the rule used in the step inference is given in < >, in which *a
represents several consecutive basic sessions).

902 CMC, vol.62, no.2, pp.893-904, 2020

*

*

,
2

,

:
.().()

.().()

(). ()

poQuest creditCheck invCheck poResponse poReject

true a
creditCheck invCheck poResponse poReject atom seq

true a
creditCheck invCheck poResponse poReject

Step1
Cho S S S S S

NULL S S S S R R

S S S S

= +

→ + < >

→ +

、

6C< >

* (. . , . . , @).
(. " ").
(. " ").

a req resp Buyer po Seller po Buyer poAck Seller poAck Ch Buyer
assign Buyer poState sent
assign Seller poState received

= − → ←
=
=

*

*

,

,
5

(). ()

(). ()

. ()

creditCheck

creditCheck

creditCheck invCheck poResponse poReject

p a
invCheck poResponse poReject atom parallel

p a
invCheck poResponse poReject

Step2 :
S S S S

NULL S S S R R

S S S C

+

→ + < >

→ + < >

、

* (. . , . . , @).
(. " ").
(. " ").

a req resp Seller ccReq Bank ccReq Seller ccResp Bank ccResp Ch Seller
assign Bank ccState sent
assign Seller ccState received

= − → ←
=
=

...
.().()

...
poRequest creditCheck invCheck poResponse poReject

Step
Cho S S S S S

NULL

= +

→ →

If the guardian condition of the session is met and the basic session of each session is
successfully executed, then the state represented by the session is reachable. If each step
of the Cho is successfully executed, the final state is terminated after a number of
intermediate states.
The reasoning results are shown in Fig. 1

Figure 1: Pellet engine-based modeling model reachability verification results

A Formal Method for Service Choreography Verification 903

5 Conclusions and future works to do
This paper builds a conceptual model of service choreography based on WS-CDL
specification, and proposes the consistency, integrity and state reachability deductive
inference rules. On this basis, the method of transforming the verification problem of
service director model into DL inference problem based on SHION(D) is proposed. The
automatic inference engine is used to realize data consistency, integrity verification and
rule-based logical reasoning. The main innovations of this paper are shown below:
(1) The extended WS-CDL builds a WS-CDL-based service choreography meta-concept
model, and gives related concepts and relationships between concepts.
(2) The consistency, integrity and state reachability verification methods for the service
choreography model are proposed and the corresponding verification rules are given.
(3) The service choreography model verification method DLV-CM based on SHOIN(D)
is proposed. The DLV-CM has the description ability, automation degree and verification
efficiency of the traditional system verification method, and supports the decidability of
reasoning and the reuse of knowledge.
Compared with the complete semantic description and verification of WS-CDL, DLV-
CM only focuses on some key issues of service coding. The service director meta-
concept model and the DLV-CM verification method attempt to model and verify the
consistency, integrity and state reachability of the service director model as simple as
possible on the basis of absorbing the core idea of WS-CDL, and therefore ignore Some
of the more advanced concepts and mechanisms in WS-CDL, such as exception handling
and finalize blocks. Extending the service choreography conceptual model and
incorporating more concepts of WS-CDL will be the next step of our working group. At
the same time, we are also actively exploring the possibility of verifying more model
attributes under the DLV-CM framework.

Acknowledgement: This work is supported by the National Natural Science Fund
number 61802428.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Boehm, B. (1981): Software Engineering Economics. Prentice-Hall, USA.
Brachman R. J.; Schmolze, J. G. (1985): An overview of the KL-ONE knowledge
representation system. Cognitive Science, vol. 9, no. 2, pp. 171-216.
Cui, J. H.; Zhang, Y. Y.; Cai, Z. P.; Liu, A. F.; Li, Y. Y. (2018): Securing display path
for security-sensitive applications on mobile devices, Computers, Materials & Continua,
vol. 55, no. 1, pp. 17-35.
Dong, Q. C.; Wang, Z. X.; Chen, J. (2010): Method of checking capability model based
on description logic. Systems Engineering and Electronics, vol. 32, no. 2, pp. 533-539.

904 CMC, vol.62, no.2, pp.893-904, 2020

Horrocks, I.; Sattler, U. (2007): A tableau decision procedure for SHOIQ. Journal of
Autimated Reasoning, vol. 39, no. 3, pp. 249-276.
Kavantzas, N.; Burdett, D.; Ritzinger, G.; Fletcher, T.; Lafon, Y. et al. (2005): Web
services choreography description language version 1.0.
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/.
Khadka, R.; Sapkota, B.; Pires, L. F. (2013): Model-driven approach to enterprise
interoperability at the technical service level. Computers in Industry, vol. 64, no. 5, pp.
951-965.
Mendling, J.; Hafner, M. (2009): From WS-CDL choreography to BPEL process
orchestration. Journal of Enterprise Information Management, vol. 21, no. 5, pp. 525-542．
Madani, Z.; Nematbakhsh, N. (2009): A logical formal model for verification of web
service choreography. Proceedings of 12th International Conference on Computer and
Information Technology, pp. 448-453.
Parsia, B. (2005): Cautiously approaching SWRL.
https://pdfs.semanticscholar.org/aebd/132b9b7707aa9560744294af1c7148007624.pdf.
Sheng, Q. Z. (2015): Web services composition: a decade’s overview. Information
Sciences, vol. 280, no. 5, pp. 218-238.
Shi, Z. Z.; Chang, L. (2008): Reasoning about semantic web service with an approach
based on dynamic description logics. Chinese Journal of Computers, vol. 31, no. 9, pp.
1599-1611.
Schmidt, S. M.; Smolka, G. (1991): Attributive concept descriptions with complements.
Artificial Intelligence, vol. 48, no. 1, pp. 1-26.
Wang, J. H.; Li, Z. J.; Li, M. J. (2008): Composing semantic web services with
description logics. Chinese Journal of Computers, vol. 19, no. 4, pp. 967-980.
Wang, Z. X.; Dong, Q. C.; Zhu, W. X. (2013): An approach for conceptual analysis on
capability requirements consistency and reasonability. Chinese Journal of Computers,
vol. 36, no. 1, pp. 10-21.

	A Formal Method for Service Choreography Verification Based on Description Logic
	Tingting Zhang0F , 2, 3, *, Yushi Lan2, Minggang Yu1, Changyou Zheng1 and Kun Liu1
	2.1 WS-CDL-based service choreography meta-concept model
	2.2 Field rule description

	3 Service choreographer model and deductive inference rule conversion algorithm
	4 Case analyses
	4.1 The construction of service choreographer application concept model
	4.2 Model reasoning and verification

	5 Conclusions and future works to do
	References

