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Abstract: In this paper, we address the frequency estimator for 2-dimensional (2-D) 
complex sinusoids in the presence of white Gaussian noise. With the use of the sinc 
function model of the discrete Fourier transform (DFT) coefficients on the input data, a 
fast and accurate frequency estimator is devised, where only the DFT coefficient with the 
highest magnitude and its four neighbors are required. Variance analysis is also included 
to investigate the accuracy of the proposed algorithm. Simulation results are conducted to 
demonstrate the superiority of the developed scheme, in terms of the estimation 
performance and computational complexity. 
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1 Introduction 
Parameter estimation from sinusoids is an of importance research topic in numerous areas 
of science and engineering [Kay (1993); Marple (1987); Quinn and Hannan (2001)]. It 
refers to accurately estimating the parameters of interested from a finite number of 
measurements, which consists of the sinusoidal signal and noise. Since amplitudes and 
phases of sinusoids are easily obtained by determined frequencies, the frequency 
estimation is an essential step. Moreover, due to the nonlinearity in the signal model, 
estimating frequencies is a difficult task and has attracted much attention [Stoica and 
Moses (2005); So, Chan, Chan et al. (2005); So and Chan (2006)]. 
In this work, we address a fundamental problem, referred to as estimating the frequency 
of a 2-dimensional (2-D) single complex-tone in the presence of additive white Gaussian 
noise. Subspace methods including multiple signal classification (MUSIC) [Schmidt 
(1986); Huang, Wu, So et al. (2012); Odendaal, Barnard and Pistorius (1994); Li, 
Razavilar and Liu (1998)] and estimation of signal parameters via rotation invariance 
techniques (ESPRIT) [Roy, Paulraj and Kailath (1986); Van, Vanderveen and Paulraj 
(1998); Axmon, Hansson and Sornmo (2005); Rouquette and Najim (2001)] are proposed 
to obtain the accurate frequency estimation. However, these solvers involve extensive 
computations because peak search in the full range frequency domain is required. Sun et 
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al. [So, Chan, Lau et al. (2010)] suggests principal-singular-vector utilization for modal 
analysis (PUMA), which utilizes linear prediction of 2-D multiple exponentials to 
achieve optimal estimation performance in only high signal-to-noise ratio (SNR). 
Although all these methods can provide the optimal performance, they suffer from the 
high complexity, especially in the case of big data [Wu (2018)].  
Then the class of interpolating on discrete Fourier transform (DFT) coefficients, is 
devised, which is shown efficient by means of estimation performance and computational 
requirements. Among this class of methodologies, a coarse estimation and then a fine-
tune step are required, where the former one is usually realized by finding the index of 
the peak magnitude of DFT spectrum, and the latter one refers to interpolation on DFT 
peak to improve the estimation accuracy. In Quinn et al. [Quinn (1997); Provencher 
(2010); Candan (2013, 2015)], different interpolation schemes are developed with the use 
of DFT peak and its neighbor bins. Although these methods can achieve the optimal or 
nearly optimum estimation performance, they can apply only for the one-dimensional 
single complex-tone. 
In the paper, a 2-D non-iterative and accurate frequency estimator (2-D NIA) is proposed. 
Here, a new interpolation criterion is devised by utilizing the relationship of ratios of 
midway magnitudes to the largest one. For the estimation of the first dimensional 
frequency, the left-and-right neighbors of DFT peak is employed, while the up-and-low 
neighbors of the peak is used to obtain the second dimensional frequency estimate. The 
variance analysis is also provided, which indicates the high performance of our method. 
The rest of this paper is organized as follows. The NIA method is derived in Section 2, 
whose variance analysis is also provided in Section 3. Computer simulations in Section 4 
are carried out to show that the developed methods can attain Cramer-Rao lower bound 
(CRLB). Finally, conclusions are drawn in Section 5. 

2 Proposed method 
Without loss of generality, the 2-D observations are modeled as:  

, ,exp( ( ))  ,  0,1, , 1,     n=0,1, ,N-1m n m ny A j m n q m Mω ν= + + = −           (1) 

where A  is the unknown complex amplitude, (0, 2 )ω π∈  denotes unknown frequency 
in the first dimension, while (0, 2 )ν π∈  is the unknown frequency in the second 
dimension and ,m nq  is the independent and identically distributed (IID) noise term 
following the 2-D zero-mean complex white Gaussian distribution with unknown 
variance 2

NMσ . Without loss of generality, we assume that M N≠ . Given the MN  

samples of m,ny , our task is to find the unknown frequency parameters, namely,{ },ω ν . 

Consider the 2D-DFT on the observed data y  , while 1 2( , )L L are the coordinate of the 
largest peak of the spectrum, then the true frequencies can be described by 

1=2 L
M
δω π +

                 (2) 
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2=2 L
N
µν π +

                 (3) 

where , [ 0.5,0.5] [ 0.5,0.5]δ µ ∈ − × −  is the residual. The estimates of ω  and ν , 

namely, ω  and ν , can be obtained by estimating δ  and µ , respectively. 

The 1 2 th( , )k k  DFT coefficients can be expressed by: 

1 2 1 2

1 2 1 2

1 1

,
0 0

, ,

exp( ) exp( )

        =X +Q

N M

k k m,n k k
n m

k k k k

Y y j m j nθ θ
− −

= =

 = − − 
 

∑ ∑
             (4) 

where 
1 2

1 22 , 2k k
k k
M N

θ π θ π= = ,  
1 2,k kQ is the Fourier coefficient of the noise part and 

1 2

1 2 2
, 1 2

1 2 2

sin( ( )) sin( ( ))exp( ( , ))
sin( ( )) sin( ( ))

1
k k

1

L k L kX A j k k
L k L k

N N

π δ π µφ π πδ µ

− − − −
= ×

− − − −
           (5) 

denotes the DFT of noise-free terms with 

1 2 1 1 2 2
( 1) ( 1)( , ) ( ) ( )M Nk k L k L k

M N
π πφ δ µ− −

= + − + + −             (6) 

Ignoring the noise term, the midway of the 1 2 th( , )L L DFT coefficient and 1 2 th( 1, )L L−  
as well as 1 2 th( 1, )L L+ , can be expressed as: 

1 2 ,1 2,
sin( ) sin( )exp( )

sin( ) sin( )
L LL LY A j

N N

πδ πµφ π πδ µ
= ⋅               (7) 

1 2 0.5,1 2

2
0.5,

2

sin( ( 0.5, )) sin( )exp( )
sin( ( 0.5, )) sin( )

L LL L
LY A j
L

N N

π δ πµφ π πδ µ
−−

+
= ⋅

+
            (8) 

1 2 0.5,1 2

2
0.5,

2

sin( ( 0.5, )) sin( )exp( )
sin( ( 0.5, )) sin( )

L LL L
LY A j
L

N N

π δ πµφ π πδ µ
++

−
= ⋅

−
            (9) 

Let 0.5,1 2

,1 2

1
L L

L L

Y
r

Y
+=  and 0.5,1 2

,1 2

2
L L

L L

Y
r

Y
−=  with x  being the magnitude of the complex value x . 

We have 

,1 2 1, 2

1 2
(1 2 ) (2 1) cos( ) cos( )sin sin 0
2 2

L L L L

r r
M M Y Y

π δ π δ πδ πδ− +   − = − =   
   

         (10) 
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Utilizing the product-to-sum identities, (10) is rewritten as 

0.5, 0.5,1 2 1 2

0.5, 0.5,1 2 1 2

tan tan
2

L L L L

L L L L

Y Y

M M Y Y
πδ π + −

+ −

−   =   
    +

            (11) 

According to (2) and (11), the estimate of ω , denoted byω̂ , is 

0.5, 0.5,1 2 1 2

1

0.5, 0.5,1 2 1 2

1ˆ 2 tan tan
2

L L L L

L L L L

L

Y Y

M Y Y
πω θ+ −

+ −

−
 −  = +    + 

           (12) 

where 1tan ( )− ⋅  denotes arc-tangent operator. 

Similarly, the midway the midway of the 1 2 th( , )L L  DFT coefficient and 1 2( , 1)thL L − as 
well as 1 2( , 1)thL L + are 

1 2 0.5 , 0.51 2

2
,

2

sin( ( 0.5, ))sin( )exp( )
sin( ) sin( ( 0.5, ))

L LL L
LY A j
L

N N

π µπδφ π πδ µ
− −

+
= ⋅

+
          (13) 

1 2 0.5 , 0.51 2

2
,

2

sin( ( 0.5, ))sin( )exp( )
sin( ) sin( ( 0.5, ))

L LL L
LY A j
L

N N

π µπδφ π πδ µ
+ +

−
= ⋅

−
          (14) 

Let , 0.51 2

,1 2

1
L L

L L

Y
l

Y
+= and , 0.51 2

,1 2

2
L L

L L

Y
l

Y
−= , using (7), we still can obtain 

1 2
(1 2 ) (2 1)sin sin 0

2 2
l l

N N
π µ π µ− +   − =   
   

            (15) 

According to (2) and (15), the estimate of ν , denoted byν̂ , is 

, ,1 2 0.5 1 2 0.5

2

, 0.5 ,1 2 1 2 0.5

1ˆ 2 tan tan
2

L L L L

L L L L

L

Y Y

N Y Y
πν θ+ −

+ −

−
 −  = +    + 

           (16) 

Then in this method, the estimates of ω  and ν  can be easily obtained by (12) and (16). 

3 Variance analysis 
As discussed in Aboutanios et al. [Aboutanios and Mulgrew (2005)], the Fourier coefficients 
of additive white Gaussian noise are IID zero-mean Gaussian distributed variables with 
variance 2MNσ . Furthermore, it is proved that the noise term kQ  is ( ln( ))O MN MN , 
where ( )O ⋅  denotes the asymptotic notation [Chen and Hannan (2010)]. 

In the following, we first discuss the variance analysis for the first dimension frequency 
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estimation. Let 
1 2 1 2 1 20.5, 0.5, 0.5,L L L L L LY X Q± ± ±= + . Then we introduce a new variable 1δ , 

which is defined as 

0.5, 0.5,1 2 1 2

0.5, 0.5,1 2 1 2

1
L L L L

L L L L

Y Y

Y Y
δ + −

+ −

−
=

+
               (17) 

From (12) and (17), we can devise the relationship between δ  and 1δ , which is 

1
12 tan tan

2M
πδ δ−   =     

              (18) 

Therefore, the variance analysis of δ  can be devised easily form that of 1δ . As N →∞ , 
we have from (13) 

0.5, 0.5,1 2 1 2

0.5, 0.5,1 2 1 2
1 0.5, 0.5,2 1 2

0.5, 0.5,1 2 1 2

0.5, 0.5,1 2 1 2
0.5, 0.5,1 2 1 2

1

1 1
ˆ

1 1

L L L L

L L L L

L L L L

L L L L

L L L L

L L L L

Q Q
X X

X X

Q Q
X X

X X

δ

+ −

+ −

+ −

+ −

+ −

+ −

+ − +

=

+ + +

           (19) 

Then according to findings in [18], when 1 0.5, 2

1 0.5, 2

1L L

L L

Q

X
±

±

 , it can be expanded as 

0.5, 0.5,1 2 1 2

0.5, 0.5,1 2 1 2

1 1 (1)L L L L

L L L L

Q Q
O

X X
± ±

± ±

  + = −ℜ + 
  

             (20) 

where { }xℜ  is the real part of x . For large data size MN , (19) is simplified as

( )
( )

( )

( )

0.5, 0.5, 0.5, 0.5,1 1 2 1 2 1 22

0.5, 0.5, 0.5, 0.5,1 2 1 2 1 21 2

0.5, 0.5,1 2 1 2

0.5, 0.5,1 1 22

0.5, 0.5,1 2 1 2

0.5, 0.5,1 1 22

1

1

ˆ

12

   11

L L L L L L L L

L L L L L L L L

L L L L

L L L L

L L L L

L L L L

X X Z Z

X X Z Z

Z Z
X X

Z Z
X X

δ

δ

+ − + −

+ − + −

+ −

+ −

+ −

+ −

− − −
=

+ − +

− −
+

=
− +

+

           (21) 

where 
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{ }1 0.5, 2

0.5, 0.5, 0.5, 21 2 1 1 22
1 0.5, 2

0.5,= = exp( )L L

L L L L L L

L L

L

Q
Z X Q j

X
φ+

+ + +

+

  ℜ ℜ − 
  

          (22) 

{ }1 0.5, 2

0.5, 0.5, 0.5, 21 2 1 1 22
0.5,1 2

0.5,= = exp( )L L

L L L L L L

L L

L

Q
Z X Q j

X
φ−

− − +

−

  ℜ ℜ − 
  

          (23) 

With the use of the discussion in Aboutanios et al. [Aboutanios and Mulgrew (2005)], (21) 
is further rewritten as 

( )

( )

0.5, 0.5,1 2 1 2

0.5, 0.5,1 1 22

0.5, 0.5,1 2 1 2

0.5, 0.5,1 1 22

1 1

1

1ˆ

11 ( ln( ))

L L L L

L L L L

L L L L

L L L L

Z Z
X X

Z Z O N N
X X

δ δ
+ −

+ −

+ −

+ −

−

 
 = − − 

+  
 
 × + + + 

+  

          (24) 

Expanding and simplifying (21) yields 

( ) ( )
0.5, 0.5,1 2 1 2

0.5, 0.5, 0.5, 0.5,1 1 2 1 1 22 2

1 1

( 1) (1 )ˆ L L L L

L L L L L L L L

Z Z

X X X X

δ δ
δ δ + −

+ − + −

− +
= + +

+ +
           (25) 

Since mQ  is zero-mean Gaussian distributed, the bias of 1̂δ , denoted by 1̂( )Bias δ , is 

{ }{ }
( )

{ }{ }
( )

1 0.5, 22

0.5, 0.5,1 1 22

1 0.5, 22

0.5, 0.5,1 1 22

1 1 1

0.5,

0.5,

ˆ ˆ( ) ( )

( 1) exp( )
             

2

(1 ) exp( )
             0

2

L L

L L L L

L L

L L L L

L

L

Bias E

E Q j

X X

E Q j

X X

δ δ δ

δ φ

δ φ

+

+ −

−

+ −

−

= −

− ℜ −
=

+

+ ℜ −
+ =

+

                       (26) 

which indicates the unbiasedness of the proposed estimator. 

Since { }1 0.5, 22

2

0.5,var exp( )
2L L L

MNQ j σφ
± ±

 ℜ − =  [Kay (1993)], the variance of δ ,

1̂var( )δ  is 



 
 
 
Two-Dimensional Interpolation Criterion Using DFT Coefficients                         855 

2 2
1

1 2
2 1 1

(4 1)ˆvar( )
2 1 1 24 sinc sinc

2 2
A MN

δ σδ
δ δ

+
=

 + −    +        

           (27) 

The variance of ω , ˆvar( )ω , has the form of 

( )

2 2 2 2

2 2 2

(1 2 ) (1 2 )(1 4 )sin sin cos
2 2ˆvar( )

4 cos cos
2

M
M M M

M

π δ π δ πδδ
ω

ππ ρ πδ

− +     +      
     =

 
 
 

         (28) 

Similarly, the variance of ν , ˆvar( )ν , has the form of 

( )

2 2 2 2

2 2 2

(1 2 ) (1 2 )(1 4 )sin sin cos
2 2ˆvar( )=

4 cos cos
2

N
N N N

N

π µ π µ πµµ
ν

ππ ρ πµ

− +     +      
     

 
 
 

                (29) 

4 Simulations 
To verify the correctness of the interpolation formulas, computer simulations have been 
conducted. We employ the mean square error (MSE) of ω̂  and ν̂  as the performance 
metrics, which are defined as { }2ˆ( )E ω ω−  and { }2ˆ( )E ν ν− , respectively. The 2-D 
complex sinusoid is generated according to (1), while the corresponding parameters are

2 exp( 0.5)A j= , =0.967ω  and =2.48ν . The Cramer-Rao lower bound (CRLB) [So 
and Chan (2006)] is included as the benchmark while comparisons with PUMA [So, 
Chan, Lau et al. (2010)] and ESPRIT [Sun and So (2004)] methods are also provided. 

  
Figure 1: The MSE of ω̂  vs. SNR         Figure 2: The MSE of ν̂  vs. SNR  
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Figure 3: The bias of ω̂  vs. SNR 
The stopping criterion of the PUMA algorithm is a fixed three iterations. All results are 
simulated using Inter(R)Xeon(R)CPUE5-1603 v3@2.8 GHz and based on 5000 Monte 
Carlo trials with a data length of 20M =  and 20N = . 
First of all, we investigate the performance of the proposed methods in different noise 
conditions. The MSEs and biases of ω̂  and ν̂  versus SNR are plotted in Figs. 1-4. It is 
observed in Fig. 1 and Fig. 2 that the proposed method is superior to the other two 
estimators since it can attain CRLB fastest. Fig. 3 and Fig. 4 also verifies this result since 
our approach can provide stable estimates when SNR>-5 dB, but those of the other 
methods are SNR>0 dB. 
Then the estimation performance and the computational cost versus the data length M
are studied. Here all parameters are set to as the same with the previous experiment. The 
stopwatch timer is utilized to measure the operation times of all methods. It is indicated 
in Fig. 5 and Fig. 6 that our method can still provide a high estimation accuracy. 
Furthermore, it can be seen in Fig. 7 that in the case of nearly optimal estimation 
performance, the complexity of our approach is significantly lower than those of the 
PUMA and ESPRIT methods. It is worth to point out that in the case of varying N , the 
results are similar. 
Third, the estimation performance for different δ  and µ  is examined with 1 3L = , 

2 8L =  and the SNR is 10 dB. We vary δ  when µ  is fixed to -0.1, while in the case 
of varying , 0.08µ δ =  is selected. It is shown in Fig. 8 and Fig. 9 that the gap 
between the MSE of the proposed method and CRLB is smallest than the other two 
estimators, in all values of δ  and  µ . 
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Figure 4: The bias of ν̂  vs. SNR             Figure 5: The bias of ω̂  vs. M  

 

      Figure 6: The bias of ν̂  vs. M     Figure 7: The computational cost vs. M  
In summary, in the scenarios of different SNR and offsets, the MSEs of the proposed 
method attain CRLB, indicating the optimal performance. Meanwhile, compared with 
other estimators, our methods have the lowest complexity. 

  
     Figure 8: The MSE vs. δ                             Figure 9: The MSE vs. µ  



 
 
 
858                                                                              CMC, vol.62, no.2, pp.849-859, 2020 

5 Conclusion 
In this paper, an accurate frequency estimators of 2-D measurements using Fourier 
coefficients interpolation are proposed, which can attain lower complexity than that of 
existing methods. Computer simulations show that the proposed algorithms perform 
superior to PUMA and ESPRIT methods in terms of high accuracy and low complexity. 
Moreover, it is indicated that with the increasing observation data set, the computational 
complexity of our methods has the smaller rate of complexity than that of other methods, 
which can be applied in big data. 
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