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Abstract: The stability of Non-Linear Feedback Shift Registers (NFSRs) plays an 
important role in the cryptographic security. Due to the complexity of nonlinear systems 
and the lack of efficient algebraic tools, the theorems related to the stability of NFSRs are 
still not well-developed. In this paper, we view the NFSR with periodic inputs as a 
Boolean control network. Based on the mathematical tool of semi-tensor product (STP), 
the Boolean network can be mapped into an algebraic form. Through these basic theories, 
we analyze the state space of non-autonomous NFSRs, and discuss the stability of an 
NFSR with periodic inputs of limited length or unlimited length. The simulation results 
are provided to prove the efficiency of the model.  Based on these works, we can provide 
a method to analyze the stability of the NFSR with periodic input, including limited 
length and unlimited length. By this, we can efficiently reduce the computational 
complexity, and its efficiency is demonstrated by applying the theorem in simulations 
dealing with the stability of a non-autonomous NFSR. 
 
Keywords: Non-Linear Feedback Shift Register (NFSR), Boolean Network (BN), Semi-
Tensor Product (STP), transition matrix, stability, periodic input. 

1 Introduction 
Non-liner feedback shift registers (NFSRs), a generalization of Linear feedback shift 
registers (LFSRs) [Golomb (1982)], have many advantages, such as efficient 
implementation, large period and good statistical performance. They can be successfully 
applied in the coder/decoder, stream cipher and pseudo-random number generator. As a 
main block of a coder/decoder, each feedback function of the NFSR represents a 
decoding algorithm [Massey and Liu (1964)], which can be aptly used in many 
communication applications, such as mobile communications and satellite 
communications [Riad and Ke (2018)]. In addition, by virtue of their large period, the 
NFSRs are also used to design a stream cipher, in which the controlling NFSRs are 
cascaded with controlled NFSRs, such that the outputs of the controlling NFSRs are the 
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inputs of the controlled NFSRs [Zhong and Lin (2016)], as demonstrated by Grain [Hell, 
Johansson and Meier  (2007)], Trivium and Mickey. Furthermore, NFSRs are of great 
interest because they show good statistical performance on the generation of pseudo-
random sequences, which are hard to break by current cryptanalysis attacks [Zeng, Yang, 
Wei et al. (1991)]. 
Nonlinear systems have been applied in many fields [Li, Wu, Zhao et al. (2018); Han, 
Tian, Huang et al. (2018); Qiu, Chai, Liu et al. (2018); Wang, Liu, Qiu et al. (2018)] in 
which the stability analysis is a main component in the research of the controlled 
nonlinear system [Xu, Xiang and Sachnev (2018); Tang, Ling, Yao et al. (2018)]. Since 
stable NFSRs can limit error propagation during the process of decoding, the security of 
NFSRs can be well-developed through the use of the theories of stability of nonlinear 
systems. NFSRs consists of two basic kinds, autonomous NFSRs (without input) and 
non-autonomous NFSRs (with inputs). Some studies focus on the stability of autonomous 
NFSRs [Mowle (1966, 1967); Ma, Qi and Tian (2013); Zhong and Lin (2015)], while less 
attention is given to the non-autonomous NFSRs. Massay and Liu introduced the concept 
of stability of non-autonomous NFSR, and designed a progress-driven stable version of 
an NFSR [Massey and Liu (1964)]. Due to the lack of efficient mathematical tools, 
research achievements in this field are rare. In 2012, Cheng and his co-workers 
introduced a new method to achieve the algebraic form of a Boolean network by using 
the semi-tensor product (STP) [Cheng and Qi (2010)]. Thanks to the mathematical tool, 
some problems, in fields such as physics [Gao, Li, Peng et al. (2013); Gao, Deng, Zhao et 
al. (2017); Li (2016)] and system science [Gao, Shi, Yang et al. (2014); Gao, Deng, Zhao 
et al. (2017); Li, Yan and Karimi (2018)], involving Boolean control networks, can be 
converted into algebraic problems. This is also very helpful for analyzing non-
autonomous NFSRs [Gao, Liu, Lan et al. (2018)]. Based on these contributions, Zhong et 
al. [Zhong and Lin (2016)] proposed a novel way to study the stability of NFSRs, via a 
technique that has lower computational complexity than the exiting method. However, 
due to the complexity of controlled non-linear systems, the study of stability of the NFSR 
with different kinds of input has yet to reach a satisfactory conclusion. 
On the basis of these efficient mathematical tools, this paper mainly describes the state 
transition of the non-autonomous NFSR. In order to achieve a less computationally 
complex method, we focus on the transition matrix of the NFSR corresponding with 
different periodic input sequences during the process of expression. Based on these 
works, we can provide a method to analyze the stability of the NFSR with periodic input, 
including limited length and unlimited length. 
This paper is organized as follows. In Section 2, some basic concepts and related 
definitions are introduced. Section 3 provides the main results including a description of 
the stability of an NFSR with periodic input. We also discuss the stability of an NFSR 
with periodic input of limited length and unlimited length, respectively. Section 4 ends 
the paper with a brief conclusion.  
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2 Background 
2.1 Semi-tensor product (STP) 
The STP is a more general form of a matrix product that allows us to perform a matrix 
product when the size of the column of one matrix is not equal to the size of the row of 
the other. The definition is defined as follows: 
Definition 2.1.1. Assume that M is a matrix of dimensions m n× , N is a matrix of 
dimensions p q× , and let a  be the least common multiple of n and p. The STP of M and 
N is defined as 

( )( )a a
n p

M N M I B I= ⊗ ⊗                                                                                                 (1) 

where ⊗  is the Kronecker product and kI  is an identity matrix of dimension k .  

Obviously, if n p= , then the STP of M and N in Definition 2.1 will result ina 
conventional matrix product. For the sake of convenience, the symbol “” can be 
omitted from the definition unless specifically required.  

2.2 Boolean network (BN) and Boolean control network (BCN) 
These autonomous NFSRs can be regarded as a Boolean network, which consists of 
Boolean functions with finite logical variables. The variables in a Boolean network can 
be classified as “1” and “0”. So an autonomous NFSR can be described as a Boolean 
network as follows: 

1 2( 1) ( ( ), ( ),..., ( )), ( 1, 2,... )i i nx t g x t x t x t i n+ = =                                                                   (2) 

where ( 1, 2,..., )ig i n=  are logical functions, and ( )( 1,2,..., )ix t i n=  are the states of the 
nodes ( 1, 2,..., )i i n=  in the time t.  
Non-autonomous NFSR is the autonomous NFSR with an input sequence, which can be 
expressed as a Boolean control network with n nodes and m inputs as 

1 2 1( 1) ( ( ), ( ),..., ( ), ( ),..., ( ))( 1, 2,... )i i n mx t G x t x t x t u t u t i n+ = = ,                                            (3) 

where ( 1,2,..., )iG i n=  are logical functions with inputs, 1 2( ), ( ),..., ( )nx t x t x t  are the states 
of nodes ( 1,2,..., )i i n=  in the time t, and 1 ( ),..., ( )mu t u t  are the inputs in the time t. 

Denote 1 2( ) { ( ), ( ),..., ( )}nx t x t x t x t=  as the state of the network in the time t. Through the 
NFSR (2) and the NFSR (3), we can then describe the state of Boolean (control) network 
in the time 1t +  according to the state ( )x t .  
In order to effectively describe the state of the network in the time t, we transform the 
network into an algebraic form, and introduce the definitions related to the transfer of the 
logic-based problems into algebraic problems below.  

Assume that kI  can be represented as }{ 1,2,...i
k kI i kδ= = , where i

kδ  is the ith column of 

an identity matrix. The logical variables “0” and “1” can be denoted by 2
2

0
1

δ
 

=  
 

 and 
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1
2

1
0

δ
 

=  
 

, respectively. Through the use of the mathematical tool, the STP, a Boolean 

function can be transferred into an algebraic form. 
Definition 2.2.1. Given a Boolean function 1( ,..., ,..., )i ng x x x  with logical variables 

1,..., ,...,i nx x x , it can be further expressed as a multi-linear form via the STP, 

1 1( ,..., ,..., ) ,..., ,..., ,i n i ng x x x Mx x x=                                                                                  (4) 

where g  is the logical function, 2 ( 1, 2,..., )ix I i n∈ = , and M is the structure matrix of g , 
which is expressed as  

1 2 2

1 2 2

......

... 11 1 ... 1
n

n

j

j

a aa a
M

aa a a
 

=  −− − −  
                                                                           (5) 

with 0  1 ( 1, 2,...., 2 )n
ja or j= = . 

Through the use of the STP, a Boolean function can be represented as a muti-linear form. 
We then denote the structure matrix corresponding to the node ix  by a 2 2n×  matrix 

iM . Through Definition 2.2.1, any Boolean function in NFSR (2) can be represented as 

1( 1) ( )... ( )... ( ) ( )i i i n ix t M x t x t x t M x t+ = = ,                                                                     (6) 

where 1, 2,...,i n= . 
Based on the properties of the STP, a further transformation of the algebraic form of the 
Boolean (control) network is shown as follows, such that a Boolean network can be 
converted into a conventional discrete-time linear system. 
Definition 2.2.2. Assuming 1 (( ) )n

i ix tt x== , the NFSR (2) has an equivalent algebraic 
representation  

1 2( 1) ( ) ( )... ( ) : ( )nx t M x t M x t M x t Lx t+ = = ,                                                                   (7) 

where 1 2 2

2 2 2
[ , ,..., ]n

n n n

ii iL δ δ δ= , { }1 2
,..., 1, 2,..., 2n

ni i ∈  is the transition matrix of NFSR 

(2), a 2 2n n×  matrix, satisfying 

1( ) ( )n
ij j iCol L Col M== ,                                                                                                     (8) 

where 1,...,i n= , 1,..., 2nj = . For convenience, according to the special properties of 
the STP, the transition matrix L can be rewritten as 1 22 2

[ , ,..., ]n nL i i iδ= . 

When the input sequence is added into the autonomous NFSR, the study is turned into a 
non-autonomous NFSR. 
Similarly, if we assume that 1 (( ) )n

i ix tt x== , the algebraic representation of the non-
autonomous NFSR is performed as shown in the following cases. We begin with discuss 
the algebraic representation of a non-autonomous NFSR with multi-steps. 
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Case 1: If there exists a series of input sequence ( )iu t in a period 1,...,i l= , after l steps, 
the state of non-autonomous NFSR in the l-th step can be solved as 

1 2( 1) ( ) ( ) ( )... ( ) ( )l lx t L u t u t u t x t+ =  ,                                                                                 (9) 

where ( )x t  is state of the system in the time t, the 2( )iu t I∈  represents the input in the 

ith step, and ( )lL  is a 2 2n n l+×  matrix. Through the transition matrix L , we can 
naturally get the state of the NFSR with a regular periodic input sequence. 
If, however, when there exist a series of inputs  1 2( ), ( ),..., ( )mu t u t u t  in one step, the 
state transition of the NFSR with single step can be performed as follows: 
Case 2: Assume there exists a series of inputs 1 2( ), ( ),..., ( )mu t u t u t  of the system, after one 
step, the NFSR (3) with the input in time t can be described as an algebraic representation, 

1 2( 1) ( ) ( )... ( ) ( )mx t Lu t u t u t x t+ =  ,                                                                                   (10) 

where ( )x t  is the state of the network in time t, the 1 2( ), ( ),..., ( )mu t u t u t  are inputs of 

the network in one step, and 
2n mL +
  is the transition matrix of NFSR (10). 

In most cases, there only exists one input per step in the NFSR. Thus, NFSR (10) can be 
rewritten as 

( 1) ( ) ( )x t Lu t x t+ =  ,                                                                                                         (11) 

where L  is a 12 2n n+×  matrix, which consists of transition matrix L  and matrix 
( )L L L≠ , namely the matrix [ ]L L L= , and ( )u t  is the only input in one step. 

Case 2 is a special situation of Case 1. In this paper, we will focus on the state transition 
under Case 1.  

3 Results 
3.1 State of the NFSR with input 
In this subsection, we mainly focus on the description of the transition matrix so that we 
can describe the state transition of a stable NFSR with different input sequences. Since 
the logical variables in a system can be classified as “0” and “1”, the corresponding 
inputs and transition matrices are also different. Next, we analyze the state transition in 
the circumstances of the two different kinds of input. 
Theorem 3.1.1. Consider NFSR (11) with single input. Let the logical variables 2

2δ  and 
1
2δ  correspond to the logical variables “0” and “1”, respectively, and denote the 

corresponding transition matrix of logical variables “0” and “1” by 0L  and 1L . When 
2
2( )u t δ= , NFSR (11) can be rewritten as  

2
2( 1) ( )x t L x tδ+ =  ,                                                                                                          (12) 

where  0( ) ( )Col Lu Col L= , and 12nL M +∈ . Here, we note that 0Lu L= , satisfying  
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2
2( 1) ( ) ( )x t L x t Lx tδ+ = = ,                                                                                              (13) 

where  
2nL M∈ . 

Conversely, if the input is 1
2δ , then NFSR (11) can be rewritten as 

1
2( 1) ( )x t L x tδ+ =  ,                                                                                                           (14) 

where 1( ) ( )Col Lu Col L≠ , and 11 2nL M +∈ . Similarly, we note that  1 1L u L= , satisfying 
1
2( 1) ( ) ( )x t L x t Lx tδ+ = = ,                                                                                               (15) 

where 
2nL M∈ . 

Proof. Let us consider NFSR (11), where ( )Lu t  is different in different circumstances. 
Since the L  is a 12 2n n+×  matrix and ( )u t  is a 2 1×  matrix, the ranks of matrices are 
not equal, so we use the STP to determine the product of  L  and ( )u t . By the definition 

of the STP, L  is split into two equal blocks, namely [ ]L L L= , which are 2 2n n×  
matrices, respectively. The effects of different input are considered in the following 
cases.         

Case 1: If 2
2( )u t δ= , then the matrix product of L  and 2

2δ  can be defined as  

2
2

0
1

L L L Lδ   
 

= = 
 

  .                                                                                               (16) 

The input “0” is a invalid input. 

Case 2: If the input is “1”, then the product between L  and 1
2δ  is defined as  

1
2

1
0

L L L Lδ   
 

= = 
 

  .                                                                                               (17) 

The input “1” is a valid input.                                                                                              
Next, we provide an example to illustrate the different effects for the inputs of “0” and 
“1”. It should be noted that, in most cases, the logical relationship between the state 
nodes and inputs is exclusive-or A B+ . Thus, we assume that the logical relationship 
between the state nodes and inputs is the exclusive-or in the following examples.  
Example 3.1.2. Consider a 4-stage autonomous NFSR, in which the network consists of 
feedback functions 

1 2

2 3

3 4

4 1 2 3 2 3

( 1) ( )
( 1) ( )
( 1) ( )
( 1) ( ) ( ) ( ) ( ) ( )

x t x t
x t x t
x t x t
x t x t x t x t x t x t

+ =
 + =
 + =
 + = + + +

,                                                               (18) 

where ( )( 1, 2,3, 4)ix t i = , are states of the nodes. 
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The corresponding algebraic representation can be expressed as, 
( 1) ( )x t Lx t+ = ,                                                                                                             (19) 

where the transition matrix 16[2 4 6 8 10 12 13 15 1 3 5 7 9 11 14 16]L δ= . 

The BN(19) with single input can be represented as 

1 2

2 3

3 4

4 1 2 3 2 3

( 1) ( )
( 1) ( )
( 1) ( )
( 1) ( ) ( ) ( ) ( ) ( ) ( )

x t x t
x t x t
x t x t
x t x t x t x t x t x t u t

+ =
 + =
 + =
 + = + + + +

,                                                     (20) 

where ( )( 1, 2,3, 4)ix t i =  are states of the nodes i, and u(t) is the single input. 

With the periodic inputs, the corresponding algebraic representation of the non-
autonomous NFSR (20) can be described as 

( 1) ( ) ( )x t Lu t x t+ =  ,                                                                                                        (21) 

where L  satisfies .  

16[1 3 5 7 9 11 14 16 2 4 6 8 10 12 13 15 2 4 6 8 10 12 13 15 1 3 5 7 8 11 14 16]L δ=     (22) 

The aim of this example is to illustrate the different effects caused by the different inputs 
“0” and “1”. When the input is “0”, NFSR (21) can be further expressed as  

2
2 0( 1) ( ) ( )x t L x t L x tδ+ = =  ,                                                                                             (23) 

where 2
2δ  is the logical variable corresponding to the input “0”, and the matrix 0L  is 

0 16= [2 4 6 8 10 12 13 15 1 3 5 7 8 11 14 16]L L δ= .                                                   (24) 

On the other hand, when the input is “1”, NFSR (21) can be further described as  
1
2 1( 1) ( ) ( )x t L x t L x tδ+ = =  ,                                                                                           (25) 

where 1
2δ  is the logical variable corresponding to the input “1”, and the matrix 1L  is 

1 16=L [1 3 5 7 9 11 14 16 2 4 6 8 10 12 13 15]L δ= .                                                  (26) 

If we divide the transition matrix L  into two matrices L  and L  of the same dimensions 
4 42 2× , respectively, i.e.,   L L L =  

 , then we note that 0L L=  and 1L L= , which 

effectively illustrates the theorem mentioned above. 

3.2 Limited length of periodic input 
The periodic input sequence can be classified as limited or unlimited in length according 
to their length properties. In this subsection, we analyze the problem of the limited length 
of periodic inputs, where the short-period repeats finite times. Then, based on the stability 
of the NFSR, we focus on the state transition after periodic input in a stable NFSR. 
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The definition for representing the method of limited length of periodic input is shown 
as follows: 
Definition 3.2.1. Assume that there exists a series of periodic input sequences, written as 

1 2 1 2 1 2

1 2

, ,..., , , ,..., ,..., , ,...,c c c

st nd kth

i i i i i i i i i
  

,                                                                              (27) 

where 1 2, ,..., ci i i are all the logical numbers in a period, and k is the number of times the 
period repeats. For convenience, we will denote the periodic input sequence by 

1 2( , ,..., ) _ci i i k , in which the sequence includes k folds of a period, and the length of the 

periodic input is l c k= ⋅ . The k folds means the period is repeated k times. 
For example, if there exists a fold of periodic input including logical numbers 
(0,0,1,1,0) , which repeat 8 times, which performed as  

1 2 8

0,0,1,1,0,0,0,1,1,0,...,0,0,1,1,0
st nd th

  

,                                                                                    (28) 

then the sequence of periodic input is denoted by (0,0,1,1,0) _ 8.        

Next, we analyze the state transition generated by limited length of periodic input sequence. 

Theorem 3.2.2. Given the previously assumed periodic inputs 1 2( , ,..., ) _ci i i k , assume 

there exists a matrix Θ , which satisfies  

1 1

1 1

=L L L...
1 1 1

c c

c c

i i i
i i i

−

−

     
     − − −    

Θ                                                                    (29) 

where 0  1i orα = , 1, 2,...,cα = , are logical numbers in a complete short-period, k  is 
the number of times the short-period repeats, and Θ represents the transition matrix of 
NFSR (9). 

NFSR (9) with input sequence 1 2( , ,..., ) _ci i i k  can be further expressed as 

( 1) ( )kx t x t+ = Θ ,                                                                                                          (30) 

where k is a positive integer. 
Proof: Beginning with the state (0)x , the state transition attached to a periodic input of 
one fold is performed as 

1

2 2 1

1 1

     (0)
(1) (0)
(2) (0)

...
( 1

(1)

( ) ) (( ) .. ).. 0c c c

c

c

x

x c

x
x L u x
x L u L u L u x

L u L u L u x c L ux L uc x−

→ =

→ =
→

− =

=

→ = =
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Constructing a matrix 1...
c

cL u L uΘ =


 



    , we can conclude that  

( 1) ( )x t x t+ = Θ .                                                                                                            (31) 
If the input sequence increases to k folds, namely, there exists a series of periodic input 
sequence 1 2( , ,..., ) _ci i i k , based on the Eq. (30) and starting from the state 0x , the 
corresponding state transition can be constructed as 

2

2
1

2

(0) ( ) (0) (2 ) ( ) (0) ... ( ) (0)
( 1) (1) (2 1) ( 1) (1) ... ( 1)= (1)

...
( 1) (2 1) ( 1) (3 1) (2 1) ( 1) ...

           (( 1) 1)= ( 1)

k

k

k

x x c x x c x c x x kc x
x x c x x c x c x x kc x

x c x c x c x c x c x c
x k c x c

→ = Θ → = Θ = Θ → → = Θ

→ + = Θ → + = Θ + = Θ → → + Θ

− → − = Θ − → − = Θ − = Θ − →

→ + − Θ −

 

Therefore, we can conclude that  

( 1) ( )kx t x t+ = Θ ,                                                                                                          (32) 

where the Θ  satisfies 

1 1

1 1

...
1 1 1

c c

c c

i i i
L L

i i i
L −

−

     
     − − −    

Θ =         ,                                                               (33) 

where, 0  1i orα = , 1, 2,...,cα = .                                                                                      

The matrix Θ  is the transition matrix of the network, which is helpful in transferring the 
network into a linear representation. The value of the matrix Θ  is influenced by the 
periodic input and the length of the attractor is also affected by the length of these inputs. 
After periodic inputs of length-c in a fold, the NFSR can generate length-kc attractors 
(k=1,2,...c).  
According to Theorem 3.2.2, we can determine the state after kc steps in an NFSR with 
periodic inputs. In the calculation of the kΘ , we compute 2Θ = Θ Θ at first, then 
compute 4 2 2Θ = Θ Θ ,..., and by this analogy, we can get the value of the matrix kΘ . 
In the process of the calculation, the computational complexity is 2(log )O l . 

Next, we provide an example to illustrate Definition 3.2.1 and Theorem 3.2.2. 
Example 3.2.3. Consider the feedback functions of the NFSR from Example 3.1.2. If 
there exist a series of inputs sequence (111101000110010) in a period, the expression of 
the non-autonomous NFSR can be described as  

1 2

2 3

3 4

4 1 2 3 2 3

( 1) ( )
( 1) ( )
( 1) ( )

( 1) ( ) ( ) ( ) ( ) ( ) ( )i

x t x t
x t x t
x t x t
x t x t x t x t x t x t u t

+ =
 + =
 + =
 + = + + + +

                                                (34) 
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where { 1 15, }i i i Z ∗≤ ≤ ∈ , and ( )iu t  is the ith logical variable attached to the ith 

logical number in the input sequence (111101000110010), which are ordered as 
1 2( , ,..., )cu u u . The aim of this example is to show the state transition in this NFSR with 

periodic input. 
Based on Theorem 3.2.2, we begin by calculating the value of the matrix Θ  as follows: 

.L L L L LL L L L L L L LL LΘ =                                            (35) 
In Example 3.1.2, we found that, 16[2 4 6 8 10 12 13 15 1 3 5 7 9 11 14 16]L δ=  and 

16= [1 3 5 7 9 11 14 16 2 4 6 8 10 12 13 15]L δ . We can now substitute the values of 

matrix L and matrix L  into the expression of matrix Θ , and through the definition of the 
matrices product, calculate the matrix Θ  as follows: 

16[3 13 6 10 7 8 16 11 12 4 1 5 9 15 14 2]δΘ = .                                                     (36) 

When the period repeats k times, which means there exists a periodic input sequence 
(111101000110010) _ k , the state transition can be expressed as  

( 1) ( )kx t x t+ = Θ .                                                                                                          (37) 

Through the above equation, we can calculate the state in the NFSR after periodic inputs.  
For the state 1

16δ , we want to find the state after the periodic input  

(111101000110010) _ 8 . Through Theorem 3.2.2, we can determine the value in the 

matrix to be 8 [8 13 11 4 7 1 16 3 12 10 6 5 9 14 15 2]Θ = . Note that we should 
calculate 2log 8  times in this method, while we would calculate eight times in the 
traditional method. The convenience of multiple matrices production is more obvious if 
the k is large enough. Then, we calculate the state after the periodic input 
(111101000110010) _ 8 , in which 8 1 8

16 16( 1)x t δ δ+ = Θ = . 

Based on Theorem 3.2.2, when k=5, we note that 1 5 1
16 16δ δ= Θ . We then find the state 1

16δ  
can return to the initial state after 75 state transitions, and the length of the corresponding 
attractor is 75. At this moment, the NFSR described in the system (34) reaches stability. 

3.3 Unlimited length of periodic input 
In the previous section, we analyzed the periodic input with limited length, but in the 
actual application, unlimited-time input sequences are more likely. Therefore, we now 
consider the stability of NFSR with unlimited length of periodic input. Then we introduce 
a method for representing the unlimited length of periodic input sequence. 
Definition 3.3.1. Let the symbol “∞ ” expresses the periodic input 1 2, ,..., ci i i  repeated 
unlimited folds. The logical variable without predecessors is called the starting number. 
In the previous assumed input sequence, when the starting logical variable is 1i , the input 
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sequence can be represented as 1 2( , ,..., ) _ci i i ∞ , indicating that the period input repeats 
unlimited times. 
Because of the unlimited length of the periodic input, the starting number is different, the 
input sequence is also different. This means that given an unlimited input sequence, 
which started with different logical numbers, may produce a different order in a period, 
such as 1 2 1,( , ,..., ) _c ci i i i− ∞ , 2 3 1( , ,..., , ) _ci i i i ∞ , ..., 1 2 1( , ,..., , ) _c c ci i i i− − ∞ .      

Considering the above analysis, c corresponding transition matrices ( 1, 2,..., )i i cΘ =  in 
the network with input preciously assumed are defined as follows: 
Definition 3.3.2. Let 1 1 2 1,( , ,..., ) _c cS i i i i−= ∞ , 2 2 3 1( , ,..., , ) _cS i i i i= ∞ ,..., 

1 2 1( , ,..., , ) _c c c cS i i i i− −= ∞ , in which the starting nodes are different, and let the matrix 

Θ attached to the different inputs sequence 1 2, ,..., cS S S  be denoted by 1 2, ,..., cΘ Θ Θ , 
such that  

2 1

2 1

31 2

1 3

1

2

1 1

1 1

2

... ,
1 1 1

... ,
1 1 1

...

... ,
1 1 1

c

c

c c

c c
c

i i i
L L

i i i

i

L

i i
L L

i i i

i ii
L L

i

L

L
i i

−

−

     
     − − −    

    
    − − −    

    
    − − −  

Θ =

Θ

Θ =


=



 

 

 





     

     

     

                                                           

 

(38) 

where L  is a 12 2n n+×  matrix, and 1 2, ,..., ci i i  are logical variables in the one period. 

Accordingly, we can construct a corresponding representation of the NFSR with a 
periodic input of unlimited length as follows, 

1

2

( 1) ( )
( 1) ( )

...
( 1) ( )c

x t x t
x t x t

x t x t

+ = Θ
+ = Θ

+ = Θ

,                                                                                                            (39) 

where ( )x t  and ( 1)x t +  are states of the network in the time t and 1t + . 
From the point of cryptographical security in NFSRs, the stability is a fundamental 
condition, and the maximum period is preferable. Next, employing Definition 3.3.1, we 
provide a method to check the stability of the NFSR with periodic input of unlimited 
length so that we can enhance the cryptographical security. 
Theorem 3.3.3. Assume an NFSR has a series of periodic input of unlimited length. Let 
iα  be the starting input node in a period of the input sequence, and denote αΘ as the 
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transition matrix corresponding to the starting number iα . Given a state 

2
( 1, 2,..., 2 )n

i niδ = ,  the non-autonomous NFSR is in stability if and only if,      

2 2n n
i k i

αδ δ= Θ ,                                                                                                                 (40) 

where {1,..., }cα ∈ , and 
2n
iδ  indicates a certain state for the system depicted by Eq. (9). 

The {1,2,..., }k c∈  is the minimum positive number satisfying Eq. (40). 

Proof: As Definition 3.3.1 shows, the different starting nodes correspond to different Θ  
matrices. Therefore, the matrix k

αΘ  mentioned in Eq. (40) is also different. If we let the 
length of a period in the input sequence be c, we can deduce that the length of the 
attractor corresponding to the input with starting node iα  is kc (where {1,2,..., }k c∈ , 

{1,2,..., }cα ∈ ). In other words, the state of the system described in Eq. (40) could 
return to the initial state after kc steps.                                                                                 

Assuming that there exists a previous assumed input sequence 1 2 1( , ,..., , ) _c ci i i i− ∞ , we 
strive to give an algorithm in order to describe the state transition corresponding to the 
different transition matrices. 
Algorithm 3.3.4.  Check stability of the NFSR with unlimited length periodic input 

1. Initialize set 
2n
i

iS δ= , iP = Φ  

2.   For 1α =  to c  do 
3. i iP S= , iX S= , L α= Θ  

4.     For 1k =  to c  do 

5. kX L X=  
6.       If iX P==  

7.          Break 
8.          Output ,kα  

9.     End for 
10.  End for 

When the NFSR is stable, the minimum length of the periodic input sequence is 1 c⋅ , and 
the maximum length is c c⋅ . Through Algorithm 3.3.4, when the starting node of the 
input sequence is iα , the state 

2n
iδ  is stable after kc  steps of transition.  

Example 3.3.5. Consider feedback functions of the non-autonomous NFSR in Example 
3.2.3. If there exists a series of unlimited length periodic input, it is unknown which one 
is the starting node in the input sequence. Assume that the periodic input is 
(111101000110010) _∞ . By different starting nodes, let the input sequence in a period 
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be classified as 1 {111101000110010}S = , 2 {011110100011001}S =  , ...,  

15 {111010001100101}S = . Next, we discuss different matrices attached to different 
starting nodes. According to Definition 3.3.2, let 1 2 15, ,...,Θ Θ Θ  be the transition 
matrices attached to the different input sequence 1 2 15, ,...,S S S . We can calculate the 
value of the matrices respectively as follows: 

1 16[3 13 6 10 7 8 16 11 12 4 1 5 9 15 14 2]δΘ = ,                                                   (41) 

2 16[5 8 10 7 11 1 4 9 14 2 16 13 12 15 3 6]δΘ = ,                                                   (42) 

3 16[9 12 16 3 4 15 14 10 6 8 1 13 5 7 11 2]δΘ = ,                                                   (43) 

4 16[2 11 8 16 15 1 5 10 7 9 13 14 6 12 3 4]δΘ = ,                                                  (44) 

5 16[3 14 6 2 16 10 15 12 13 11 1 8 5 9 7 4]δΘ = ,                                                  (45) 

6 16[9 6 5 11 2 12 15 4 10 16 1 3 14 13 7 8]δΘ = ,                                                  (46) 

7 16[2 4 11 15 9 1 6 5 3 12 8 10 14 13 16 7]δΘ = ,                                                  (47) 

8 16[6 4 7 8 15 5 3 14 11 1 9 2 12 16 10 13]δΘ = ,                                                  (48) 

9 16[5 12 2 8 1 13 4 15 7 14 16 10 6 3 11 9]δΘ = ,                                                   (49) 

10 16[13 10 11 7 16 4 3 15 12 2 6 9 8 5 14 1]δΘ = ,                                                  (50) 

11 16[10 8 4 3 6 11 14 2 15 16 7 9 12 5 1 13]δΘ = ,                                                  (51) 

12 16[4 13 16 15 7 14 5 2 11 8 6 9 1 12 10 3]δΘ = ,                                                 (52) 

13 16[5 8 15 9 12 16 1 14 2 13 7 11 10 3 4 6]δΘ = ,                                                  (53) 

14 16[4 10 9 15 13 14 5 1 3 7 6 16 2 8 11 12]δΘ = ,                                                 (54) 

15 16[7 5 4 14 2 11 13 15 10 3 12 16 6 9 8 1]δΘ = .                                                 (55) 

The above equations demonstrate that the different starting nodes attach to different 
transition matrices. If we then choose the 1

16δ  as the initial state, and apply Algorithm 
3.3.4, the state is stable after the state transitions as follows: 

1 5 1
16 1 16=δ δΘ , 1 5 1

16 2 16=δ δΘ , 1 5 1
16 3 16=δ δΘ , 1 5 1

16 4 16=δ δΘ , 1 5 1
16 5 16=δ δΘ , 1 7 1

16 6 16=δ δΘ , 1 7 1
16 7 16=δ δΘ , 

1 5 1
16 8 16=δ δΘ , 1 2 1

16 9 16=δ δΘ , 1 7 1
16 10 16=δ δΘ , 1 7 1

16 11 16=δ δΘ , 1 7 1
16 12 16=δ δΘ , 1 5 1

16 13 16=δ δΘ , 
1 7 1
16 14 16=δ δΘ , 1 7 1

16 15 16=δ δΘ . 

Thus, the modified non-autonomous NFSR mentioned in this example is stable. 

4 Conclusions 
This paper applies the Boolean network to reduce the computational complexity about the 
method of description, in cases of the state transition in an NFSR with different kinds of 
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periodic input. Notably, we developed a novel method to analyze the stability of the 
system with unlimited length of periodic input. For a non-autonomous NFSR, the more 
stable it is, and the larger the period generated, the more security it will offer when used. 
Developing effective algorithms or approximate techniques for the present approach will 
be a challenging problem in future work. 
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