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Abstract: This study investigates the forced vibration of functionally graded hexagonal 
nano-size plates for the first time. A quasi-three-dimensional (3D) plate theory including 
stretching effect is used to model the anisotropic plate as a continuum one where small-
scale effects are considered based on nonlocal strain gradient theory. Also, the plate is 
assumed on a Pasternak foundation in which normal and transverse shear loads are taken 
into account. The governing equations of motion are obtained via the Hamiltonian 
principles which are solved using analytical based methods by means of Navier’s 
approximation. The influences of the exponential factor, nonlocal parameter, strain gradient 
parameter, Pasternak foundation coefficients, length-to-thickness, and length-to-width 
ratios on the dynamic response of the nanoplates are examined. In addition, the accuracy of 
an isotropic approximate instead of the anisotropic model is studied. The dynamic behavior 
of the system shows that mechanical mathematics-based models may get better results 
considering the anisotropic model because the dynamic response can cause prominent 
differences (up to 17%) between isotropic approximation and anisotropic model. 
 
Keywords: Functionally graded materials, dynamic deflection, nonlocal train gradient 
theory, Winkler-Pasternak elastic foundation. 

1 Introduction 
Forced vibration occurs in different ways in industry. Although it is desirable in some 
cases such as vibrating conveyors but in most cases it is unpleasant. Different kinds of 
dynamic forces can act on our system such as impulse loading or harmonic force. 
Systems under these dynamic loading can have unfavorable and malicious behaviors. 
Therefore, it is essential to have deep study on this topic. Basically, in studying 
engineering structures, it is desirable to use the simplest possible methodology with 
acceptable errors in the results because in engineering unlike some sciences, we are not 
looking for exact answer. This lack of attention to exact solutions and focus on simple 
engineering techniques may cause some unacceptable errors in engineering design. One 
of the possible approximations that may cause inaccurate results is replacing the material 
properties of anisotropic materials such as triclinic or monoclinic materials with the 
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properties of isotropic ones. Although in several cases this approximation is wisely but it 
cannot be generalized to all cases. Hence, in the present investigation, we study the 
accuracy of replacing isotropic approximation for forced vibration of functionally graded 
materials (FGMs). 
FGMs are new class of advanced composite materials in which the properties vary 
continuously or exponentially along a direction or more. Variable properties along the 
directions help these types of materials to have the appropriate benefits such as thermal 
resistance, high strength, etc. together. The mechanism of operation of these materials 
usually cover for tolerates the acceptable temperature by a phase while the second one 
gives an expedient mechanical property. Usually two types of FGMs modeling have been 
studied in the past decades 1) power-law function (P-FGM) 2) exponential function (E-
FGM). The operation of different micromechanical schemes to estimate the effective 
materials properties of FGMs recently developed by Karami et al. [Karami, shahsavari, 
janghorban et al. (2019)] for free vibration of curved microbeams. Thermo-elastic 
vibration analysis of FGMs was analyzed by Aria et al. [Aria, Rabczuk and Friswell 
(2019)] considering isogeometric analysis (IGA). Chen et al. [Chen, Yang and 
Kitipornchai (2016)] reported the free and forced vibrations of FGM beams including 
porosity effect. Simsek et al. [Şimşek and Aydın (2017)] studied forced vibration of FGM 
microplates where the equations were solved in time domain by means of Newmark’s 
method. Static and dynamic deformations of thick FGM plates were proposed by Qian et 
al. [Qian, Batra and Chen (2004)] using meshless local Petrov-Galerkin method. 
Applications of three different elastic foundations on free vibration of FGM plate was 
proposed by Shahsavari et al. [Shahsavari, Shahsavari, Li et al. (2018)] and solved 
analytically using Galerkin method. Due to its many uses in the coating, military, reactor, 
turbine, etc., FGM has been much more studied than these previous reviews [Pan (2003); 
Ramirez, Heyliger and Pan (2006); Song, Kitipornchai and Yang (2017); Barati (2018)]. 
According to the reviewed studies on the FGMs, there is no study on the forced vibration 
of E-FGM nano-size plate made of beryllium crystal under a sinusoidal dynamic load 
even at macro-scale. 
Nanotechnology has prominent advantages for developers who are working to make 
people’s lives easier. This relatively new technology has led to the construction of 
subatomic or nanostructured structures that have a variety of applications in medicine, 
electronics, mechanics, solar cells, etc. Therefore, in the field of mechanical engineering, 
the study of the behavior of nanoscale structures has been of great importance. Three 
different method are suggested to predict the mechanics of these structures (i.e., 
experimental testes, molecular dynamics (MD) simulation and non-classical theories). 
Experimental tests and MD simulation have more complexity compared to non-classical 
theories, which has led to the development of this category of theories in recent years. 
Because in engineering, reducing the complexity of computing, which leads to time and 
cost savings, it is important. 
Two small-scale dependent non-classical theory was proposed by Askes and Aifantis et al. 
[Askes and Aifantis (2009)] for the first time. Nonlocal strain gradient theory captures 
nonlocality and strain gradient size-dependency together by adding two extra parameters on 
the classical relation. By accounting for both stress and strain gradient effects, this theory 
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available to have both stiffness softening and hardening mechanism of nanostructures. MD 
simulation results and the calibration between the results of the mentioned model and 
experimental data have proved the accuracy and availability of nonlocal strain gradient 
theory to study the nanostructures. Hence a large number of investigations have been done 
on the static, dynamic and stability of nano-size particles, beams, plates and shells. Some of 
them reported in the following: Forced resonant vibration of FG nanoplate was studied by 
Nami et al. [Nami and Janghorban (2014)] using nonlocal and strain gradient elasticity 
theory separately. Application of elastic waves in graded nonlocal strain gradient 
timoshenko beam was proposed by Li et al. [Li, Hu and Ling (2015); Sahmani, Aghdam 
and Rabczuk (2018)] proposed a non-classical model to study the static response of 
graphene nanoplatelets reinforced FG microplates including nonlinear terms. Dynamic 
response of FG nanotube using nonlocal strain gradient theory was reported by Farajpour et 
al. [Farajpour, Ghayesh and Farokhi (2018)]. It is clear that size-dependent studies of 
nanostructures using mentioned particular non-classical model are very high, but little 
research has been done based on nonlocal strain gradient model in sub-atomic structures for 
anisotropic materials, while no study cover the dynamic deflection of hexagonal nanoplate 
including Winkler-Pasternak elastic foundation. 
In the current work, by adopting a quasi-3D plate model in conjunction with the nonlocal 
strain gradient theory including two small-scale parameters, the equations of motion are 
obtained and solved analytically for forced vibration of the nanoplate with all simply-
supported edges. 

 

Figure 1: Schematic of FGM anisotropic nanoplates resting on pasternak foundation 
subjected to dynamic transverse sinusoidal mechanical load 

2 Mathematical modeling 
In the current work a nano-size plate made of FG anisotropic material is assumed 
including thickness h, length a and width b (Fig. 1). 
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2.1 Nonlocal strain gradient theory 
For several years, some of the researchers have been used strain gradient theory with one 
length scale parameter to study different phenomena. This theory had the advantage of 
simplicity in comparison with several other size-dependent theories although it did not 
have enough accuracy. In 2009, Askes et al. [Askes and Aifantis (2009)] focused on 
another size-dependent theory which had two length scale parameters which can be 
written as below, 

2 2 2 2
1 21 1ij ijkl klQσ ε   − ∇ = − ∇    

 (1)  

where ℓ1 and ℓ2 denote the scale coefficients whose capture the nonlocality and strain 
gradient size-dependency, respectively.  
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Figure 2: Changing the exponential factor along the z-direction of FG anisotropic nanoplate 

2.2 Functionally graded anisotropic materials 
For a hexagonal material, the elastic constants are given as [Batra, Qian and Chen (2004)] 
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 (2)  

Some materials that have been produced in recent decades have been able to open their 
way to the industry over time. A class of them is FGM that is considered by researchers 
for their outstanding properties. In this type of material, we are faced with a continuous 
change in properties such as modulus of elasticity in one of the material directions 
although recently the variation of properties in more than one direction is also studied. 
These variations can be occurred in different ways. In this article, exponential variation 
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for elastic constants is chosen. The following relation proposed by Pan et al.  is utilized to 
estimate the effective material properties of anisotropic materials [Pan (2003)]: 

0 exp( ( ))
2ij ij
hQ Q zη= +  (3)  

in above equation η is the exponential factor which presents the material gradient along 
the z-direction (see in Fig. 2); η=0 represents the homogenous case, and η<0, η>0 
represent, respectively, the graded soft and stiff materials. For an FG anisotropic 
nanoplate, Eq. (3) is rewritten as: 
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where 
2 21 , 1µ µ λ   ℜ = − ∇ ℜ = − ∇   

 (5)  

herein 2
1µ =   and 2

2λ =  . According to the isotropic approximation, the following relation 
are presented to examine the effective material properties of the FG nanoplate as below: 
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in which the Young’s modulus and Poisson’s ratio of the beryllium crystal are 
approximated as E=287 GPa ν=0.32, respectively, and the density is ρ=1850 kg/m3 
[Batra, Qian and Chen (2004)]. 

2.3 Kinematics 
İn the current work a five-unkown dependent refined plate model is utilized in which the 
in-plane and out of plane displacements are defined as below  

0

0

( , , , ) ( , , ) ( )

( , , , ) ( , , ) ( )

( , , , ) ( , , ) ( , , ) ( ) ( , , )

b s

b s

b s

w wu x y z t u x y t z f z
x x

w wv x y z t v x y t z f z
y y

w x y z t w x y t w x y t g z x y tϕ

∂ ∂
= − −

∂ ∂
∂ ∂

= − −
∂ ∂

= + +

 

(7)  



612                                                                              CMC, vol.62, no.2, pp.607-629, 2020 

  

herein u, v and w denote the displacements along the x, y and z-direction, respectively; f(z) 
is a shape function which must be tending the shear strains at the top and bottom surfaces 
of the studied plate to zero and is defined as below:  

3
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5( )
4 3
z zf z

h
= − +  

(8)  

where 
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 (9)  

According to the mentioned displacement field (Eq. (7)), the non-zero strains are 
expressed as below: 
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2.4 Equations of motion 
The Hamilton’s principle is adopted as 

0
( ) 0

t
U K V dtδ − + =∫  (12)  

in which U is strain energy, K indicate the kinetic energy and V denotes the work done by 
applied forces. The first variation of strain energy can be written as 
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in above relation the stress resultants (N, M, and Q) are expressed by: 
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The first variation of kinetic energy is defined as follows 
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herein 
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The first variation of work done by external forces can be approximated as: 

0 0
( )

a b
V q w dydxδ δ= −∫ ∫  

(17)  

in which q denotes the distributed transverse load. By inserting Eqs. (13), (15) and (17) 
into Eq. (12), the following equilibrium equations are obtained: 
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The governing equations of motion in terms of the displacements for a nanoplate 
considering all independent elastic components are expressed by inserting Eq. (14) into 
Eqs. (18)-(22) which are reported in the appendix. 

3 Solution procedure 
The Navire method is employed here to solve the governing equations for FG hexagonal 
nanoplate including simply-supported edges as follow, 
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where α=mπ/a, β=nπ/b. The simply-supported boundary conditions using the present 
plate model are defined as below: 
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(29)  

By using the aforementioned method, the matrix form for the solution of forced vibration 
of the nanoplates can be expressed as, 
[ ] [ ]K X F=  (30)  
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in which [K] indicates the stiffness matrix. It is important to noted that, the weakness of 
the present solution procure is inability to solve the arbitrary boundary conditions and all 
independent elastic constants for the nanoplates. Hence the numerical based methods 
such as differential quadrature method, finite element analysis, IGA, etc. are suggested to 
solve the present model for different anisotropic materials such as triclinic material and 
different boundary conditions. 
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Figure 3: Comparison of the present model with the results of nonlocal strain gradient 
classical plate model (E=380 GPa, ρ=2370 kg/m3, ν=0.3, a=10, a/h=100, µ=λ=1) 

4 Numerical results 
In this section, the numerical results for the forced vibration of rectangular nanoplates 
made of FG anisotropic material on the basis of a quasi-3D plate model in conjunction 
with the general nonlocal strain gradient theory are presented. As the first example, in Fig. 
3, the dynamic deflection of simply supported rectangular nanoplates under sinusoidal 
loading is discussed based on present methodology and classical plate theory (CPT). 
From this figure, one can find the accuracy of present method. It can be seen that our 
numerical results predict the deflection correctly. 
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Figure 4: Time variation of transverse motion of FG anisotropic nanoplates considering 
exponential factor, (a=10 nm, a/h=20, µ=λ=1 nm2) 

In Fig. 4 the deflections of a specific point versus time for FG anisotropic nanoplate 
subjected to sinusoidal loading including both nonlocal and gradient parameters are 
studied. In this figure, different types of FG anisotropic nanoplate are considered by 
changing the exponential factor from negative to positive numbers. The sinusoidal 
behavior of nanoplate may be predictable because of our engineering sense of a macro 
plate under sinusoidal loading. This figure shows that with the increase of exponential 
factor from negative values to positive ones, the deflections are decrease. From this 
conclusion one can find that increasing the exponential factor will cause increment in the 
stiffness of FG anisotropic nanoplates. 
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Figure 5: The effects of nonlocal parameter on the phase plots vs. deflection for the 
forced vibration of FG anisotropic nanoplates, (a=10 nm, a/h=20, λ=0 nm2) 

Fig. 5 depicts the variations of deflections versus the rate of deflections, known as phase 
plot considering nonlocal parameter. In this figure, three types of FG anisotropic 
materials are studied: 1-Graded soft material (negative exponential factor) 2-
Homogenous material (zero exponential factor) 3-Graded stiff material (positive 
exponential factor). For first two types some elliptical behaviors can be seen but for the 
third one, circular behavior is achieved. This conclusion is independent of the value of 
nonlocal parameter. In addition, by increasing the nonlocal parameter, both elliptical and 
circular paths become larger. It is important to note that from the knowledge of authors, 
these shapes are not unchangeable. With changing the number of studied points some 
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other shapes may be achieved. Therefore, in this figure we do not draw lines and we only 
use points to show the results. 
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Figure 6: The effects of strain gradient parameter on the phase plots vs. deflection for the 
forced vibration of FG anisotropic nanoplates, (a=10 nm, a/h=20, µ=0 nm2) 

Phase plot vs. deflection for forced vibration of FG anisotropic nanoplates is illustrated in Fig. 
6 for different strain gradient parameters. Also, this figure covered the behavior of three types 
of graded anisotropic materials. As it is seen, by increasing the strain gradient parameter, the 
elliptical path becomes smaller. This conclusion does not depend on the type of FG 
anisotropic nanoplate. From this figure, it may be found that for the strain gradient parameters 
more than 4, the results can be assumed to be constant with a good approximation. 
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Figure 7: Time variation of transverse motion of FG anisotropic nanoplates considering 
length-to-thickness ratio, (a=10 nm, µ=λ=1 nm2) 

Fig. 7 shows the effect of length-to-thickness ratio on the time variation of transverse 
motion of homogenous as well as both soft and stiff grade anisotropic nanoplates. It can 
be seen that thicker nanoplates have smaller amplitude of the transverse vibration 
compered to thinner ones. It means that increasing the length-to-thickness ratio increases 
the deflection of the nanoplates. This conclusion is independent of type of material.  
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Figure 8: Time variation of transverse motion of FG anisotropic nanoplates considering 
width-to-length ratio (a=10 nm, a/h=20, µ=λ=1 nm2) 
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The effect of width-to-length ratio on the time variation of transverse motion of FG 
anisotropic nanoplate as well as homogenous one is plotted in Fig. 8. It has been 
observed that square nanoplates (b/a=1) have a smaller deflection than the rectangular 
ones (b/a>1). In other words, increasing the width-to-length ratio will lead to an 
increment in the dynamic deflection. From this figure, it may be found that for the width-
to-length ratio more than 3, the results can be assumed to be constant with a good 
approximation. Again, this observation dose not depends on exponential factor values. 
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Figure 9: Time variation of transverse motion of FG anisotropic nanoplates vs. the effect 
of elastic foundation (a=10 nm, a/h=20, kW=2×1016 N/m3, kP=9 N/m, µ=λ=1 nm2) 

Fig. 9 presents the influence of elastic foundation on the time variation of transverse 
motion of nanoplates including homogenous, soft and stiff graded type of anisotropic 
material. As can be seen considering elastic foundation can decrease the dynamic 
deflection of the system under the sinusoidal loading. It is revealed that the greatest 
deflection of the nanoplates is obtained for the plate without foundation followed by 
Winkler foundation, and Pasternak foundation, respectively. Note that, the Winkler 
foundation only includes linear layer of elastic foundation while the Pasternak one 
includes both linear and shear layer of elastic foundation. 
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Figure 10: Time variation of transverse motion of stiff graded anisotropic nanoplates 
including the isotropic and anisotropic approaches (a=10 nm, a/h=20, η=1, µ=λ=1 nm2) 
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The accuracy of replacing isotropic approximation for material properties instead of 
anisotropic one for time variation of transverse motion of stiff graded nanoplate is studied 
and the results are plotted in Fig. 10. This figure shows a prominent difference between 
the two approaches that it maybe shows that it is better to model the structures with 
anisotropic nature. To have a better understanding of this issue phase plot vs. deflection 
for forced vibration of homogenous and graded anisotropic nanoplates is illustrated in Fig. 
11 for both models. 
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Figure 11: Phase plot vs. deflection of FG anisotropic nanoplates including the isotropic 
and anisotropic approaches (a=10 nm, a/h=20, µ=λ=1 nm2) 

In Fig. 11, a comparison between anisotropic and isotropic models is made including 
nonlocal and strain gradient parameters. As it can be seen in this figure, significant 
differences between the results are achieved. Although these differences may be 
predictable for graded stiff/soft materials because of the influences of power index in FG 
anisotropic materials but the existence of differences for homogenous case attracts 
attention to itself. Another interesting point is that these differences are occurred in all 
studied deflections so one may see the inaccuracy of isotropic model especially for 
graded soft materials. 

5 Conclusions 
The essence of the current work lies in the development of a quasi-3D nonlocal strain 
gradient model for forced vibration analysis of nano-size plates made of FG anisotropic 
materials. The nanoplates is resting on Winkler-Pasternak elastic foundation. The 
governing equations and boundary conditions are obtained using Hamilton’s principle 
and solved analytically for all simply-supported edges. The numerical illustrations 
concern the dynamic deflections of homogenous, soft and stiff graded anisotropic 
nanoplates including small-scaling parameters. The numerical results reveal that the 
elastic foundation can decrease the deflection of the system under the sinusoidal loading. 
Also, increasing the nonlocal parameter decreases the stiffness of the plate that leads to 
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an increment on the deflection while the opposite behavior is reported for increasing the 
strain gradient parameter. Furthermore, increasing the exponential factor from negative 
value to positive one decreases the dynamic deflection of the nanoplates. In other words, 
that the greatest deflection of the nanoplates is observed for the soft graded nanoplate 
followed by homogenous nanoplate, and stiff graded nanoplate, respectively. In addition, 
the dynamic deflection of the nanoplate decreases by increasing the length-to-thickness 
ratio and the square nanoplates have a smaller amplitude of vibration compared to 
rectangular ones. 
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in which  
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1 1 1 1 1

2 2 2 2 2
2

3 3 3 3 3 2

4 4 4 4 4 2
2

5 5 5 5 5 2

1

; ( ,

ij ij ij ij ij

hij ij ij ij ij

ijij ij ij ij ij
h

ij ij ij ij ij

ij ij ij ij ij

A B C D E z f g g
A B C D E g zg fg g g gg

Q dz i jA B C D E z z fz g z gz
A B C D E f zf f g f gf
A B C D E g gz gf gg g

−

  ′ 
   ′ ′ ′ ′ ′ ′   
   ′=
   ′   
   ′  

∫ ) (1,2,...6)=    (A6) 
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