
Computers, Materials & Continua CMC, vol.61, no.3, pp.929-950, 2019

CMC. doi:10.32604/cmc.2019.07876 www.techscience.com/cmc

XML-Based Information Fusion Architecture Based on Cloud
Computing Ecosystem

I-Ching Hsu1, *

Abstract: Considering cloud computing from an organizational and end user computing
point of view, it is a new paradigm for deploying, managing and offering services
through a shared infrastructure. Current development of cloud computing applications,
however, are the lack of a uniformly approach to cope with the heterogeneous
information fusion. This leads cloud computing to inefficient development and a low
potential reuse. This study addresses these issues to propose a novel Web 2.0 Mashups as
a Service, called WMaaS, which is a fundamental cloud service model. The WMaaS is
developed based on a XML-based Mashups Architecture (XMA) that is composed of
Web 2.0 Mashups technologies, including Web Data, Web API, Web Interaction, and
Web Presentation to associate with existing service models. To demonstrate the
feasibility of this approach, this study implemented a Ubiquitous Location-based Service
System (ULSS) that is a cloud computing application developed based on WMaaS to
provide continuous and location-based schedule information for organization monitoring
and end user needs.

Keywords:Web 2.0 mashups, open data, XML, cloud computing.

1 Introduction
Cloud computing has become one of the most promising information solutions and
business trends in recent years. The first to introduce the term cloud computing was
Google’s CEO Eric Schmidt. The term refers to the important and long-term trend in
computing over the Internet. Many institutions and companies provide definitions and
solutions for cloud computing [Dillon, Wu and Chang (2010)]. However, there is still no
widely accepted definition of cloud computing. The NIST [NIST (2019)] defines three
types of cloud computing service models: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS). SaaS provides services to cloud clients,
while IaaS and PaaS provide services to cloud application developers. Cloud computing
applications generally incorporate combinations in the three different service models.
Cloud computing is service-oriented architecture providing a set of distributed
heterogeneous cloud resources delivered via the Internet to cloud computing developers
for facilitating the rapid building cloud computing applications. Considering cloud
computing from a software engineering point of view, it is a new paradigm for deploying,

1 Department of Computer Science and Information Engineering, National Formosa University, Huwei
Township, Yunlin County 632, Taiwan.

*Corresponding Author: I-Ching Hsu. Email: hsuic@nfu.edu.tw.



930 CMC, vol.61, no.3, pp. 929-950, 2019

managing and offering services through a shared infrastructure. Web 2.0 Mashups offer
entirely new opportunities for information system developers by integrating cloud
resources to facilitate the rapid building new generation of information systems over the
Internet. The development of the existing cloud computing environment lack a uniform
approach to cope with the heterogeneous information fusion, including various cloud
computing resources, cloud client constraints, and cloud computing middleware. This
leads cloud computing to inefficient development and a low potential reuse. The Web 2.0
Mashups provide a catalytic solution to this problem.
Within the last few years, the Internet has greatly changed our way of sharing resources
and information. As well known, Web 2.0 is recognized as the next generation of web
applications proposed by O’Reilly [O’Reilly (2005)]. The main feature of Web 2.0
applications is that they provide a medium for the sharing and exchange of Web
resources [von Alberti-Alhtaybat and Al-Htaybat (2016); Simeonova (2018)], such as
knowledge, data, Web Multimedia, Web Data and Web API. These resources can be
considered regarded as cloud resources. They allow cloud computing developers to take
advantage of these resources to reduce the cost or produce new integrated solutions by
associating with resources, which they could not have provided on their own.
Additionally, many studies adopt Web 2.0 technologies to build web-based applications
in various domains [Iannone (2019); Wu, Huang, Li et al. (2019)].
To address heterogeneous issues of cloud computing, this study argues that Web 2.0
Mashups can be adopted as a common scheme to uniformly integrate cloud resources via
a fundamental cloud service model. The fundamental cloud service model is Web 2.0
Mashups as a Service, called WMaaS, which developed based on an XML-based
Mashups Architecture (XMA). The XMA is composed of Web 2.0 Mashup technologies,
including Web Data, Web API, Web Interaction, and Web Presentation, to remove the
heterogeneous issues of cloud computing ecosystem. Additionally, WMaaS can also be
combined with existing service models, SaaS, PaaS, and IaaS to facilitate cloud
computing applications development. This implies at least two requirements for the
development of the XMA. The first is heterogeneity. It can present a metamodel to
integrate Web 2.0 Mashups technologies into cloud computing applications
independently from the SaaS, PaaS, and IaaS. The second is performance. It can facilitate
to develop a generalized cloud computing architecture to promote adequate Web-based
information transcoding for various clients.
This study makes three main contributions. First, an XML-based Mashups Architecture
(XMA) based on XML technologies is presented to cope with the heterogeneous issues of
cloud computing. Second, the XMA is adopted to develop a novel service model, Web
2.0 Mashups as a Service (WMaaS), which enables cloud developers to combine cloud
resources that are distributed over the Internet to create new cloud applications that can
satisfy customers’ needs. Third, a cloud computing application, Ubiquitous Location-
based Service System (ULSS), is implemented based on WMaaS to provide continuous
and location-based schedule information for organization monitoring and end user needs.
The ULSS carries out to integrate four emerging research areas: Web 2.0, Open Data,
Cloud Computing, and Ubiquitous Context-awareness [Hsu (2013a)].
The remainder of paper is organized as follows. The next section presents some related



XML-Based Information Fusion Architecture Based on Cloud 931

works. Section 3 presents an XML-based Mashups Architecture (XMA) based on XML
technologies. Section 4 describes Web 2.0 Mashups as a Service (WMaaS). In Section 5, the
study implemented a Ubiquitous Location-based Service System (ULSS) to demonstrate the
feasibility of WMaaS. Finally, summary and concluding remarks are included.

2 Related work
In recent years, more and more cloud service providers have published APIs that enable
Web application and APP developers to easily integrate open data and web services,
instead of developing them by themselves. Mashups can be considered to have an
important medium in the evolution of Web 2.0 era. In the past years, there are many
studies to discuss the mashups application in various domains [Boulakbech, Messai, Sam
et al. (2016); Ghiani, Paternò, Spano et al. (2016); Zhang, Fu, Sun et al. (2016); Zhong,
Fan, Tan et al. (2018); Wang, Wu and Hsu (2019)]. In Ghiani et al. [Ghiani, Paternò,
Spano et al. (2016)], system developers can create new mashups by existing interaction
components via a graphical environment. A mobile-application prototype [Boulakbech,
Messai, Sam et al. (2016)] is implemented adopted mashups Web services to provide
customized touristic plans. In Lee [Lee (2015)], authors focus on web services mashup to
develop novel algorithms for the automatic discovery and composition of Web APIs. It
should be noted that above-mentioned studies did not provide a complete, flexible, and
versatile mashup architecture to facilitate software development. In Chavarriaga et al.
[Chavarriaga, Jurado and Rubio (2017)], authors propose an XML-based domain specific
language approach for client-side Web applications. This study proposes the XML-based
Mashups Architecture (XMA) based on XML technologies is revealed to cope with the
heterogeneous, flexible, and versatile issues of mashup applications.
Cloud computing is an emerging paradigm where computing resources are offered over
the Internet. There are two problems of using cloud computing resources. Cloud resource
providers cannot easily publish their services for cloud users, and cloud users cannot
easily find useful cloud resources. These problems result from the heterogeneous cloud
resources. The Mobile Ubiquitous Brokerage as a Service (MUBaaS) [Yan, Sun, Liu et al.
(2016)] permits n-devices of a user to access diverse cloud services. The Workflow
platform as a service (WaaS) [Fan, Hussain and Hussain (2015)] supports users to define,
and integrate workflow based applications to facilitate the rapid development of cloud
computing. In Herbold et al. [Herbold and Hoffmann (2017)], authors propose the model-
based testing as a service to deal with the complexity of the Web service based on using
cloud infrastructures. Additionally, many studies of integrating cloud services
architecture with various application domains have been reported recently by researchers
[Mohamadi Bahram Abadi, Rahmani and Alizadeh (2018); Borangiu, Trentesaux,
Thomas et al. (2019); Deng, Ren, Liu et al. (2019); Feng, Wu, Zhang et al. (2019)].
The service models of cloud computing are usually classified as Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) [Chakraborty,
Ramireddy, Raghu et al. (2010)]. IaaS provides the hardware and administrative services
that are required to store cloud applications and a physical platform for running cloud
applications. These infrastructure resources, including computer server, storage system,
network equipment, and data center, offer basic storage and computing capabilities as



932 CMC, vol.61, no.3, pp. 929-950, 2019

standardized services over the Internet. The cloud developers would typically deploy their
applications on the infrastructure. Typical examples are Amazon EC2 (Elastic Cloud
Computing) Service and S3 (Simple Storage Service) where compute and storage
infrastructures are available to public access as a utility.
PaaS provides an integrated environment or middleware using which cloud developers
can implement and deploy cloud applications without the cost or need to purchase
hardware or software. In Kryukov et al. [Kryukov, Demichev and Polyakov (2016)],
authors suggest that the traditional global grid systems will be transferred to creating
convenient and efficient means of access to the distributed cloud resources. Usually, a set
of development tools and services are run on servers in the cloud. Practical examples
include Google App Engine, Microsoft Windows Azure platform, Salesforce Force.com,
and Aneka. Google App Engine provides a python or java runtime environment and APIs
using which developers can build Web applications on the same scalable systems that
power Google applications. SaaS provides on-demand access to web-based applications
that are maintained centrally by a provider.
Hadoop is a cloud computing platform that is an open source project under the Apache
Software Foundation. Map Reduce and HDFS (Hadoop Distributed File System) are the
two cores of Hadoop; the former enables distributed computing, and the latter achieves a
distributed file system with the advantages of high fault tolerance. The YARN is a kind
of cluster manager that is proposed in Hadoop 2 version. Apache Spark is also an open-
source platform that adopts in-memory technique, and finally stores the computing results
in the hard disk, thus the I/O time can be reduced. The Apache Mesos is a new distributed
system core of Hadoop. Mesos regards the multi-node resources as a single high-
performance computer, including the CPU, memory, hard disk and other computing
resources [Saha, Beltre and Govindaraju (2018)]

3 XML-based mashups based on cloud ecosystem
Mashup is now a major Web 2.0 culture. To develop WMaaS, this study first needs to
concrete the concept of the Web 2.0 Mashups. An XML-based Mashups Architecture
(XMA) is proposed to include Web Data layer, Web API layer, Web Interaction layer,
and Web Presentation layer. This research also describes that XML should form the
backbone of XMA in support of technologies relevant to the function of each layer.

3.1 XML-based mashups architecture
XMA is developed based on XML technologies, including XML, XML Schema, XSLT,
XPath, RDF, OWL, and Namespace. This architecture is depicted in Fig. 1, which can be
represented in four layers: Web Data layer, Web API layer, Web Interaction layer, and
Web Presentation layer. The XML-based technologies are adopted across the four layers.
XMA provides a flexible infrastructure that developer can dynamically add, replace, and
remove components in each layer. Each layer contains multiple technologies, all of them
providing a service suitable to the function of that layer. WMaaS can cope with
heterogeneous information fusion, which is mainly due to use of XML technologies.



XML-Based Information Fusion Architecture Based on Cloud 933

Figure 1: XMA developed based on XML-based technologies for cloud ecosystem

Because all layers are involved when a request is sent from a cloud client to a cloud
computing application, upper layers must rely on lower layers to process cloud resources
over the Internet. Web Data layer is widely used to distribute users regarding changes of
contents at some SaaS website. Web API layer is used to facilitate data exchange
between cloud computing applications and allow the creation of new applications. The
Web Interaction layer supports interactive web technologies. The Web Presentation layer
provides independence from differing data representations by translating the format for a
specific cloud client from an application format to a valid markup language.
Fig. 2 shows the semantic structure between XML and Web 2.0 Mashups as a UML class
diagram. The UML class diagram has as goal to give a graphical overview of the domain
concepts and the relations among them. The components of Web 2.0 Mashups include
Cloud Resource, Web Interaction, and Web Presentation. There are two primary Cloud
resources, namely data resource and service resource. Web Data is a typical cloud data
resource, while Web API is a typical cloud service resource. There is dependency
relationship, annotated with a “core technology” stereotype, from Web 2.0 Mashups to
XML. Its semantic indicates that XML is a core technology of Web 2.0 Mashsups and
implies that a change to XML may cause a change in Web 2.0 Mashups.



934 CMC, vol.61, no.3, pp. 929-950, 2019

Figure 2: UML class diagram for XML-based mashups architecture

3.2 Web presentation
Web presentation technologies are mainly to provide a valid markup language for a
specific cloud client. Markup languages include HTML, XHTML, XForm, KML, WML,
and VoiceXML. These presentation markup languages are all based on XML standard to
facilitate visually precise in Web 2.0 Mashups except for HTML. There are a number of
different approaches in which data can be extracted from web pages to facilitate the reuse
of data [Varlamov and Turdakov (2016)]. Tab. 1 lists some of the most popular
presentation markup languages.

Table 1:Markup languages for Web representation

XML-based
language

description Cloud Client

HTML No Publishing language for Web 1.0 Web browser
XHTML Yes Publishing language for Web 2.0 Various cloud

client devices
XForms Yes An XForms-based web form processes

XML data using the Model-View-
Controller approach that separates
presentation, purpose and content.

Various cloud
client devices

KML Yes Expressing geographic annotation and
visualization

Google earth,
Google map

WML Yes Publishing language forWAP phone WAPmobile device
VoiceXML Yes Publishing language for voice phone Voice phone



XML-Based Information Fusion Architecture Based on Cloud 935

3.3 Web interaction
Cloud computing applications require more interactive web technologies than traditional Web
systems. AJAX (Asynchronous JavaScript and XML) is not a new technology or language,
but a new framework that combines various existing technologies, including XML, XHTML,
XMLHttpRequest, and JavaScript. With the promotion of the XML and JavaScript, the AJAX
framework becomes a basic ingredient in web 2.0 applications. It supports a more interactive
navigation of Web 2.0 application has enhanced online collaboration and sharing information
among users. Tab. 2 lists related technologies adopted by AJAX.

Table 2: Related technologies in AJAX

technology description
Javascript JavaScript is used in client-side development to enable

interactivity to HTML/XHTML pages.
XML XML allows users to define their own elements and attributes.

The primary purpose of XML is to facilitate the sharing or
exchange of structured data across different information systems
or platforms.

XMLHttpRequest XMLHttpRequest object can be used to create a GET or POST
request asynchronously to communicate directly with the server.

XHTML XHTML a reformulation of HTML 4.0 based on XML standard,
which is intended to replace HTML to produce web documents.

CSS CSS (Cascading Style Sheets) is a widely used mechanism for
adding style (e.g. fonts, colors, spacing) to Web-based
documents, including HTML-based, XHTML-based, and XML-
based documents.

DOM DOM is used to parse XML-based document that fetches from
server, such as Web Feeds.

JSON JSON a lightweight computer data interchange format that a
text-based and human-readable format for representing simple
data structures.

3.4 Web data
Web Data contains three types of data: Wed Feed, Open Data, and Linked Data. A Web
Feed contains a structured information source, which is written in XML to provide
machine-readable content on the Web [Hsu (2013b)]. This means that Web Feeds can be
used to automatically transfer information from one website to another, without any
human intervention. One major feature of Web 2.0 is to adopt Web Feeds to build a more
maintainable and cooperative Web. Web Feeds allow both websites to publish frequently
updated content such as Weblog, news headlines, real time information or Podcasts. RSS
and Atom are currently the two main formats of Web Feed.
The intent of the Open Data motivation is similar to the other “open” motivations, for
example Open Source, Open content, and Open Access. The Open Data is available on the



936 CMC, vol.61, no.3, pp. 929-950, 2019

Internet with an open license [Berners-Lee (2009)]. Therefore, Open Data can be regarded
as a kind of cloud resource. Anyone can use open source to facilitate the implementation of
their information systems to reduce development costs and time. At present, the main
provider of open data is from government agencies. Open Data provided by the government
is filtered, and its availability and reliability are high. Such Open Data is called Open
Government Data (OGD) [Máchová, Hub and Lnenicka (2018)]. In recent years, many
countries are actively providing OGD to their citizens to promote the reuse of OGD [Vracic,
Varga and Curko (2016); Nascimento, Da Rocha and Garcia (2018); Saxena (2019);
Taiwan (2019); Talukder, Shen, Hossain Talukder et al. (2019)].
Linked Data is simply about using the Web to create typed links between data from
different cloud resources [Bizer, Universität, Heath et al. (2009)]. The term Linked Data
was coined by Tim Berners-Lee in the following principles [Berners-Lee (2009)]:
(1) Use URIs as names for things
(2) Use HTTP URIs so that people can look up those names.
(3) When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL)
(4) Include links to other URIs so that they can discover more things.
The Resource Description Framework (RDF) [W3C (2014)] is a standard model for data
description and interchange on the Semantic Web applications. The SPARQL [W3C (2013)]
is a query language for RDF. SPARQL can be used to express queries across diverse RDF-
based data sources. According to the third principle, a Linked Data is a RDF-based
document that can be queried by SPARQL to extract useful information. The RDF is
developed based on XML. A RDF-based document has to meet the requirements of Well-
formed XML. That is to say a Linked Data document also has to meet the Well-formed
XML standard. In recent years, many studies [Nogales, Sicilia, Sánchez-Alonso et al. (2016);
Kobayashi, Kume, Lenz et al. (2018)] adopted Linked Data to describe the relationship
between different cloud resources to facilitate development of Web applications.
Linked Open Data (LOD) is a kind of Linked Data that meet the features of Open Data.
As a result, LOD can benefit from both Linked Data and Open Data. LOD Cloud has
published by major contributor, the Linking Open Data community project [W3C (2016)],
has emerged as a collection of interlinked LOD datasets on the web. The new version of
COD Cloud has been published in 2014, which contains 570 LOD datasets [Mital, Pani,
Damodaran et al. (2015)]. In the LOD Cloud, there are many well-known LOD datasets,
such as DBpedia, FOAF, W3C, GeoNames, etc. DBpedia is the largest LOD dataset
containing extracted data from Wikipedia. It contains about 3.4 million concepts
described by 1 billion RDF-based relationships. Many novel studies and applications are
developed using DBpedia to get more useful information to enhance their usability and
innovation [Zhu, Ren, Liu et al. (2016)].

3.5 Web API
Web 2.0 Mashups use Web API technologies to facilitate data exchange between
applications and allow the creation of new applications. Most of the Web APIs are
constructed based on the Web Services architecture [Sun, Rossing, Sinnema et al. (2010)].



XML-Based Information Fusion Architecture Based on Cloud 937

They hide the detailed Web Services protocols from the developers and make it easier for
the developers to use. Web service composition is a new paradigm to develop Web-based
systems [Jeong, Rana, Hsu et al. (2016)]. The following are five main types of Web APIs.
The detailed comparisons of the five Web APIs are shown in Tab. 3.

3.5.1 XMLHttpRequest
XMLHttpRequest is not a web service technology but a Web API that provides scripting
languages to transfer XML or other text data between a client and a server. It is used to
communicate asynchronously with a server-side component and dynamically update the
source of an HTML page based on the response data. The data returned from
XMLHttpRequest calls are often provided by third-party database servers. Besides XML-
based format, XMLHttpRequest can be used to process data in other formats such as
HTML, JSON, or plain text. For example, Google Map API uses Javascript
XMLHttpRequest objects to send HTTP requests and receive responses from server.
Google Maps API is one of the most widely known Web API among current Web 2.0
Mashup applications.

3.5.2 XML-RPC
XML-RPC is a remote procedure calling employing HTTP as the transportation protocol.
It is a protocol for exchanging XML-based messages in a distributed environment. XML-
RPC provides a standard for heterogeneous programs to communicate with each other
regardless of their implementation language and system platform. An XML-RPC
message is an HTTP-POST request. A request executes on the server and the body of the
request is coded in XML-based format. The response value of the request is also
formatted in XML.

3.5.3 Simple object access protocol
Simple Object Access Protocol (SOAP) is another communications protocol for Web
services that emerged immediately after the XML-RPC. It is developed to address some
of the limitations of XML-RPC, including only for RPC over HTTP, not easily
extendable, and no support WSDL. SOAP adopts XML Base [Marsh (2001)] to
determine a base URI for relative URI references used as values in message items. A
SOAP binding describes how an underlying protocol is used to transport SOAP messages.
Most of the current Web Services adopt SOAP over HTTP.

3.5.4 Representational state transfer
Representational State Transfer (REST) is a style of software architecture used to
describe how Web resources, such as web service, web page, text, database, or website,
are defined and addressed. REST is often used in a looser sense to describe service
interfaces. Many of current Web services are developed on REST style, called REST-
based Web services. The main advantages of REST-based Web services are lightweight,
human readable, and easy to build [Barbaglia, Murzilli and Cudini (2017)].



938 CMC, vol.61, no.3, pp. 929-950, 2019

3.5.5 SPARQL endpoint
SPARQL Endpoint [W3C (2017)] is a conforming SPARQL protocol service, which
enables users to query a RDF-based dataset with the SPARQL language. The SPARQL
Annotations in WSDL (SPDL) provides a specification for allowing SPARQL query
indicates a specific URL associated with parameters to invoke web services and bind the
returned information to SPARQL results. Additionally, some existing projects [Sbodio,
Martin and Moulin (2010)] provide SPARQL Web Service or APIs for different
programming languages to invoke SPARQL query.

Table 3: The comparison of various Web APIs

XMLHttpRequest XML-RPC SOAP REST SPARQL
Endpoint

Web API Yes Yes Yes Yes Yes
Web Services No Yes Yes Yes Yes
Specification Yes Yes Yes No Yes
Architecture No No No Yes No
XML binding
message

No Yes Yes No Yes

Data format XML, text, JSON XML XML XML,
text,
JSON

XML, RDF

Many well-known companies, such as Google, Facebook, Microsoft, Yahoo, Amazon,
and eBay, have published APIs based on web standards that allow users to access their
cloud services and data. Tab. 4 lists some of the most popular Web APIs.

Table 4: The most popular websites for Web API

Web API Cloud service model Category Web API Protocol Data format
Google Apps SaaS, PaaS various services XMLHttpRequest, SOAP,

REST,
XML, RSS,
JSON, KML,
Atom

datahub.io PaaS, PaaS Linked Open
Data Cloud

SOAP, REST, XML-RPC XML,
JSON,CSV, RDF

DBpedia SaaS, PaaS Wikipedia,
Linked Open
Data

REST,
SPARQL endpoint

RDF

Facebook SaaS, PaaS Social network SOAP, REST XML, JSON
Microsoft
Virtual Earth

SaaS, PaaS Mapping
services

XMLHttpRequest KML, GeoRSS

Flickr SaaS, PaaS Photo sharing
service

SOAP, REST, XML-RPC XML, JSON, RSS

Amazon SaaS, PaaS, IaaS E-commerce SOAP, REST, XML
eBay SaaS, PaaS Online auction

marketplace
SOAP, REST XML

Del.icio.us SaaS, PaaS Social bookmark REST XML, RSS
Yahoo
Geocoding

SaaS, PaaS Yahoo Maps
Geocoding
service

REST XML



XML-Based Information Fusion Architecture Based on Cloud 939

4 Web 2.0 mashups as a service
The components of WMaaS, shown in Fig. 1, are described in the previous section. This
section describes how WMaaS can be as a service model, and associated with existing
service models of cloud computing. This study presents a stack framework, shown in Fig.
3, to locate and represent relevant service models of cloud computing. The layers IaaS,
PaaS, and SaaS represent current service models of cloud computing. The top layer is
cloud devices that are increasingly connected to the cloud SaaS applications. Therefore,
the same web content needs to be rendered differently on various cloud devices.
Heterogeneous issues span all the upper three layers. There are four characteristics of
cloud computing lead to heterogeneous issues. The WMaaS are used to cope with these
heterogeneous issues summary in Tab. 5.

Table 5:WMaaS supports cloud computing character

Cloud computing character heterogeneous issue WMaaS

service-oriented computing

paradigm

various kinds of remote service

protocols

Web API

on-demand virtualization various kinds of resources are

organized in a virtual way

Web Data

more interactive web

technologies

various kinds of interaction Web Interaction

board Internet access various kinds of cloud clients Web Presentation

Figure 3: Cloud computing stack

The WMaaS is an extension of the Web 2.0 Mashups in which cloud resources are given
well defined meaning, better enabling SaaS, PaaS, IaaS, and various cloud participants to
work in cooperation. Additionally, the WMaaS can combine with existing cloud service
models, SaaS, PaaS, and IaaS to facilitate the development of cloud computing
applications. Fig. 4 shows the service-oriented architecture that is associated with various
cloud participators and different cloud computing service models.



940 CMC, vol.61, no.3, pp. 929-950, 2019

Figure 4:WMaaS associated with various cloud participators

5 Implementation and evaluation
Section 5.1 developed a Ubiquitous Location-based Service System (ULSS) based on the
proposed Web 2.0 Mashups as a Service (WMaaS). The example is explained in detail,
and help the reader better understand the WMaaS and how it can be adopted. Section 5.2
evaluated the ULSS based on the development of WMaaS.

5.1 Ubiquitous location-based service system based on WMaaS
Web 2.0 Mashups use Web API technologies to facilitate data exchange between
applications and allow the creation of new applications. Most of the Web APIs are
constructed based on the Web Services architecture [Sun, Rossing, Sinnema et al. (2010)].
They hide the detailed Web Services protocols from the developers and make it easier for
the developers to use. Web service composition is a new paradigm to develop Web-based
systems [Jeong, Rana, Hsu et al. (2016)]. The following are five main types of Web APIs.
The detailed comparisons of the five Web APIs are shown in Tab. 3.
This section demonstrates the feasibility of WMaaS, we implemented a Ubiquitous
Location-based Service System (ULSS) that is a cloud computing application to provide
a continuous and location-based schedule information for personal needs. The main
components of ULSS include: Location-Based Service Platform (LBS Platform), GPS
Network, and Cloud Client. The Location-based Service Platform consists of the ULSS
Portal Website that is deployed in Hadoop cloud computing environment to community
inquiry for validated members. In the ULSS, GPS information are collected through the
mobile phone and transferred to the Location-based Service Platform for storage. The
dataflow-oriented architecture of ULSS is depicted in Fig. 5. The related technologies of
WMaaS are used in ULSS summary in Tab. 6.



XML-Based Information Fusion Architecture Based on Cloud 941

Table 6: The related Web 2.0 technologies employed in ULSS
Web 2.0
Technology

Service Type
(WMaaS)

Description

XML Web Feed
(cloud resource)

The schedule and GPS location information are described in
XML format for data sharing and transformation.

Atom Web Feed (cloud
resource)

The Google Calendar information is described in Atom format
to support to Google Calendar API.

XML Open Data (cloud
resource)

The PM2.5 Open Data contains real-time PM 2.5 information
presented in XML, which is provided by the Open Government
Data of Taiwan.

RDF Linked Data (cloud
resource)

The introduction information of Taipei city presented in RDF-
based Linked Data, which is offered by DBpedia.

AJAX Web Interaction A sample client was built using XHTML and AJAX to query
the Google Calendar, and display the location information in
real-time.

XHTML Web Presentation The location-based service information is rendered in XHTML
for desktop PC.

Google
Calendar

Web Presentation/
Web API

The schedule information, such as date, time, subject and
location, can be displayed in Google calendar by the Google
Calendar API.

Google Map Web Presentation/
Web API

The location information can be displayed in Google Map by
the Google map API.

Open
Government
Data(Taiwan)

Web API (cloud
resource)

The Open Government Data of Taiwan [Taiwan (2019)]
provides about twenty-one thousand open datasets. User can
access these open data through Web API.

DBpedia SPARQL (cloud
resource)

DBpedia is the largest LOD dataset in the LOD cloud project.
User can use SPARQL endpoint to access the RDF-based
Linked Data.

Hadoop Cloud Computing is a PaaS for developing web applications that provides Web
APIs to retrieve the various services, including data store, Google Accounts, Google Map,
Google Calendar and Google email. Hadoop cloud computing environment also supports
a web-based administration console for the SaaS developers to easily build, maintain, and
extend their web applications.
Location-Based Service Platform (LBS Platform) is a website that provides the dynamic
schedule information transcoding and inquiry. It uses XML-based documents and web
services technologies to facilitate reusability of schedule information. The LBS Platform
builds in a Hadoop cloud computing environment, which is composed of Transcoding
Agent, user information and schedule information. The Transcoding Agent listens to the
cloud client request to acquire schedule information from the data store. It then converts
the schedule information into an XML-based document that is accepted by a cloud client.
Additionally, The Transcoding Agent can call the Web API and SPARQL endpoint to
access the Open Data and Linked Data.
GPS Network is composed of GPS satellite, GPS receiver, and Wi-Fi/GPRS base station.
Mobile phone serves as a GPS receiver to receive location information form GPS stations.



942 CMC, vol.61, no.3, pp. 929-950, 2019

The mobile phone is connected to the ULSS and the location information is sent through
the Wi-Fi/GPRS network.
Cloud Client interacts with the Location-Based Service Platform through internet
connections to retrieve the schedule information. Various client devices, including
desktop PC, personal digital assistants (PDA), mobile phone, and notebook, are
increasingly connected to the Internet. The same schedule information needs to be
rendered differently on various client devices.

Figure 5: The dataflow-oriented ULSS architecture

The following steps explain the message flow illustrated in Fig. 5:
1. Each user has a personal mobile device associated with a unique user ID as the

personal identification.
1.1 Mobile phone receives the location information form GPS satellites.
1.2 The location information is encoded to an XML-based document, as shown in Fig. 6,

and then the XML-based document is imported into LBS Platform through the
WiFi/GPRS base stations.

2. The LBS Platform filters the personal location information, and then calls Google
Calendar API to save them into personal Google calendar.

3. The step is a pull-based interaction scheme that accomplishes the following tasks:
3.1 The various cloud devices, such as mobile phone or desktop PC, can send a request to

LBS Platform with the user ID to browse the personal schedule information.
3.2 The LBS Platform invokes Transcoding Agent to acquire the schedule information form

data store, and then converts this information into an XML-based schedule document.
3.3 The Transcoding Agent calls Google Calendar API to acquire the personal

Google calendar.



XML-Based Information Fusion Architecture Based on Cloud 943

3.4 The Transcoding Agent calls Google Map API to get Google Map information.
3.5 The Transcoding Agent accesses the PM2.5 Open Data through calls the Web API of

Taiwan’s Open Government Data. And then, it parses the PM2.5 Open Data to
extract local PM2.5 information based on the current location of user.

3.6 The Transcoding Agent accesses the Taipei city Linked Data through calls the
SPARQL endpoint of DBpedia. And then, it parses the RDF-based Linked Data to
get the introduction of Taipei city.

The above information, including personal schedule, local PM2.5 information, Taipei city
introduction, and Google map, will be converted to various XML-based documents, such
as Atom (shown as Fig. 7) or XHTML document, to display in mobile phone and desktop
PC, respectively.

<?xml version="1.0" encoding="utf-8" ?>
<schedule id="mu78919011>
<user id="wp321892">
<name> Yii-Ching Shue</name>
<title>GPS satellite positioning</title>
<item>
<subject> Day Trip</subject>
<time>Fri, 06 April 2018 16:12:16 GMT <time>
<device> iPhone (3289-329-7810A)</device>
<longitude>120.429481</longitude>
<latitude>23.702141</latitude>
…..
</item>
</employee>
</schedule>

Figure 6: Partial code of XML-based schedule information



944 CMC, vol.61, no.3, pp. 929-950, 2019

<?xml version='1.0' encoding='UTF-8'?>
<feed xmlns='http://www.w3.org/2005/Atom'

xmlns:openSearch='http://a9.com/-/spec/opensearchrss/1.0/'
xmlns:gCal='http://schemas.google.com/gCal/2005'>

<id>http://www.google.com/calendar/feeds/yiiching.shue%40gmail.com/public/basic</id>
<updated>2018-04-06T14:50:18.000Z</updated>
<category scheme='http://schemas.google.com/g/2005#kind'

term='http://schemas.google.com/g/2005#event'/>
<title type='text'>yiiching.shue@gmail.com</title>
…….
<entry>
<id> ….</id>
<published>2018-04-06T11:04:47.000Z</published>
<updated>2018-04-06T11:04:47.000Z</updated>
<category scheme='http://schemas.google.com/g/2005#kind'

term='http://schemas.google.com/g/2005#event'/>
<title type='html'> GPS satellite positioning </title>
<suXMAry type='html'> Fri, 06 April 2018 16:12:16 GMT </suXMAry>
<content type='html'>
longitude :120.429481, latitude :23.702141
</content>
<link rel='self' type='application/atom+xml' ….. />
<author>
<name>Yii-Ching Shue</name>
<email>yiiching.shue@gmail.com</email>
</author>
</entry>
</feed>

Figure 7: Partial code of Atom-based calendar feed

5.2 Evaluation
This section evaluates the Ubiquitous Location-based Service System (ULSS) for Web
2.0 Mashups as a Service (WMaaS) against our requirements. The requirements include
heterogeneity and performance, which have been mentioned in Section 1.

5.2.1 Heterogeneous evaluation
The heterogeneous assessment contains Cloud Resources independence, Web Presentation
independence, and Web Interaction independence. The study adopts WMaaS as a
generalized architecture of cloud computing applications. Tab. 6 shows significant
comparisons between the Web 2.0 technologies and WMaaS based on the heterogeneity.
The independence of the platform and the hardware allows for a lightweight and simplified
evolution of more complex web-based applications in the cloud computing ecosystem.



XML-Based Information Fusion Architecture Based on Cloud 945

Furthermore, the constructs in the proposed WMaaS and ULSS are not specifically
designed to match one particular cloud computing application. Therefore, they can support
the heterogeneity to develop various Web 2.0-based cloud computing applications.

5.2.1 Representational state transfer
This section presents a preliminary experiment for evaluating the performance of the
ULSS based on Hadoop cloud computing environment. This investigation employs an
Hadoop Distributed File System (HDFS) as the file system, which can be set up to
generate duplicates automatically, thus minimizing the risk of data loss. As shown in Fig.
8, a Hadoop/Spark cluster is composed of a master node and six data nodes. Each node
consists of Intel core i7-8700 CPU, 32 GB memory, and 2 TB hard disk. HDFS is used
for the cluster file system.
The Cluster Manager is the resource managers responsible for deploying the resources.
Standalone resource manager is built in Spark and the developer can also choose other
resource managers according to requirements. The study performs implementation and
testing in three different cloud cluster computing environment, including Spark
Standalone, Spark on YARN and Spark on Mesos.

. Figure 8: Hadoop/Spark cluster architecture

Performance evaluation of ULSS contains the Web-based information transcoding time,
Google Calendar API execution time, Google Map API execution time, PM2.5 open data
transcoding time, SPARQL endpoint execution time, and Internet transmission time. The
same experiment will be executed on the Spark Standalone, Spark on YARN and Spark
on Mesos, respectively. This experiment evaluated the ULSS as a personal schedule



946 CMC, vol.61, no.3, pp. 929-950, 2019

broker that processed data size from 1 GB to 7 GB. Fig. 9 shows the integrated test
results obtained from Spark on Standalone, YARN, and Mesos, which indicate that the
ULSS under YARN mode works more efficiently than either Standalone or Mesos. This
is mainly because that YARN can achieve better performance than Spark Standalone in
resource scheduling, which provides different schedulers for selection, such as Capacity
Scheduler and Fair Scheduler. Moreover, YARN is suitable for running with large
numbers of nodes and highly complex data. Mesos is mainly responsible for providing
proper resources for the assigned task, which will be used by the original application to
run executor. Therefore, Mesos can be adopted to run multiple computing services. It can
allocate proper sources dynamically through fine-grained mode, thus avoiding idle
allocated resources. Notably, the threshold for Spark was about 5GB. When dataset size
was lower than the threshold, the computing time is significant linear trend in the size of
dataset. Conversely, when the dataset size increases exceeded this threshold, computing
time increased very rapidly.

Figure 9: Performance comparison for Spark on YARN, Mesos, and Standard

6 Conclusion and future work
This study proposed a novel Web 2.0 Mashups as a Service, called WMaaS. The WMaaS
is a fundamental cloud service model that is developed based a XML-based Mashups
Architecture (XMA) to remove the heterogeneous issues of cloud computing.
Additionally, WMaaS can also be associated with existing service models, SaaS, PaaS,
and IaaS to facilitate organization monitoring and end user needs development. The main
purpose of this study was to investigate how Web 2.0 Mashups technologies can be used
to develop a novel service model of cloud computing ecosystem.
This study argues that Web 2.0 Mashups can be adopted as a common scheme to
integrate cloud resources uniformly using a fundamental cloud service model. This study
also demonstrates XML is a core technology of Web 2.0 Mashups. While, the main
limitation of XML is that it emphasizes syntax and format rather than semantics and
knowledge. XML provides an application-independent and syntactic structure for
describing data and resource. Even though XML has the advantage of surface syntax for



XML-Based Information Fusion Architecture Based on Cloud 947

structured Web Data and Web APIs, it lacks the computer-interpretability to support
knowledge representation for organizational and end user computing applications
development. One future work is to investigate how to integrate Semantic Web
technologies [De Vocht, Softic, Verborgh et al. (2017); Selvan, Vairavasundaram and
Ravi (2019)], such as RDF Schema, OWL and Ontology, into WMaaS to facilitate the
development of intelligent cloud computing.

References
Barbaglia, G.; Murzilli, S.; Cudini, S. (2017): Definition of REST web services with
JSON schema. Software - Practice and Experience, vol. 47, no. 6, pp. 907-920.
Berners-Lee, T. (2009): Linked data. http://www.w3.org/DesignIssues/LinkedData.html.
Bizer, C.; Universität, F.; Heath, T.; Berners-Lee, T. (2009): Linked data-the story so
far. International Journal on Semantic Web and Information Systems, vol. 5, no. 3, pp. 1-22.
Borangiu, T.; Trentesaux, D.; Thomas, A.; Leitão, P.; Barata, J. (2019): Digital
transformation of manufacturing through cloud services and resource virtualization.
Computers in Industry, vol. 108, pp. 150-162.
Boulakbech, M.; Messai, N.; Sam, Y.; Devogele, T.; Etienne, L. (2016): SmartLoire: a
web mashup based tool for personalized touristic plans construction. 25th IEEE International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises.
Chakraborty, R.; Ramireddy, S.; Raghu, T. S.; Rao, H. R. (2010): The information
assurance practices of cloud computing vendors. IEEE IT Professional vol. 12, no. 4, pp. 9-37.
Chavarriaga, E.; Jurado, F.; Rubio, F. D. (2017): An approach to build XML-based
domain specific languages solutions for client-side web applications. Computer
Languages, Systems and Structures, vol. 49, pp. 133-151.
De Vocht, L.; Softic, S.; Verborgh, R.; Mannens, E.; Ebner, M. (2017): Social
semantic search: A case study on web 2.0 for science. International Journal on Semantic
Web and Information Systems, vol. 13, no. 4, pp. 155-180.
Deng, Z.; Ren, Y.; Liu, Y.; Yin, X.; Shen, Z. et al. (2019): Blockchain-based trusted
electronic records preservation in cloud storage. Computers, Materials and Continua, vol.
58, no. 1, pp. 135-151.
Dillon, T.; Wu, C.; Chang, E. (2010): Cloud computing: issues and challenges. 24th
IEEE International Conference on Advanced Information Networking and Applications.
Fan, H.; Hussain, F. K.; Hussain, O. K. (2015): Semantic client-side approach for web
personalization of SaaS-based cloud services. Concurrency and Computation: Practice
and Experience, vol. 27, no. 8, pp. 2144-2169.
Feng, D.; Wu, Z.; Zhang, Z.; Fu, J. (2019): On the conceptualization of elastic service
evaluation in cloud computing. Journal of Information Technology Research, vol. 12, no.
1, pp. 36-48.
Ghiani, G.; Paternò, F.; Spano, L. D.; Pintori, G. (2016): An environment for end-user
development of web mashups. International Journal of Human Computer Studies, vol. 87,
pp. 38-64



948 CMC, vol.61, no.3, pp. 929-950, 2019

Herbold, S.; Hoffmann, A. (2017): Model-based testing as a service. International
Journal on Software Tools for Technology Transfer, vol. 19, no. 3, pp. 271-279.
Hsu, I. C. (2013a): Multilayer context cloud framework for mobile Web 2.0: a proposed
infrastructure. International Journal of Communication Systems, vol. 26, no. 5, pp. 610-625.
Hsu, I. C. (2013b): Personalized web feeds based on ontology technologies. Information
Systems Frontiers, vol. 15, no. 3, pp. 465-479.
Iannone, A. E. (2019): Ballet education for the web 2.0 generation: A case for using
youtube to teach elementary-school-aged ballet students. International Journal of
Technoethics, vol. 10, no. 1, pp. 37-48.
Jeong, H. Y.; Rana, O. F.; Hsu, C.-H.; Jeong, Y.-S. (2016): Cloud computing for
mobile environments. Concurrency and Computation: Practice and Experience, vol. 28,
no. 10, pp. 2753-2755.
Kobayashi, N.; Kume, S.; Lenz, K.; Masuya, H. (2018): RIKEN MetaDatabase: a
database platform for health care and life sciences as a microcosm of linked open data
cloud. International Journal on Semantic Web and Information Systems, vol. 14, no. 1,
pp. 140-164.
Kryukov, A. P.; Demichev, A. P.; Polyakov, S. P. (2016): Web platforms for scientific
research. Programming and Computer Software, vol. 42, no. 3, pp. 129-141.
Lee, Y.-J. (2015): Semantic-based web API composition for data mashups. Journal of
Information Science and Engineering, vol. 31, no. 4, pp. 1233-1248.
Máchová, R.; Hub, M.; Lnenicka, M. (2018): Usability evaluation of open data portals:
Evaluating data discoverability, accessibility, and reusability from a stakeholders’
perspective. Aslib Journal of Information Management, vol. 70, no. 3, pp. 252-268.
Marsh, J. (2001): XML base. http://www.w3.org/TR/xmlbase/.
Mital, M.; Pani, A. K.; Damodaran, S.; Ramesh, R. (2015): Cloud based management
and control system for smart communities: a practical case study. Computers in Industry,
vol. 74, pp. 162-172.
Mohamadi Bahram Abadi, R.; Rahmani, A. M.; Alizadeh, S. H. (2018): Server
consolidation techniques in virtualized data centers of cloud environments: a systematic
literature review. Software - Practice and Experience, vol. 48, no. 9, pp. 1688-1726.
Nascimento, F. R. A.; Da Rocha, J. C.; Garcia, A. C. B. (2018): Automated evaluation
of open government data portals: a case study. International Journal of Electronic
Government Research, vol. 14, no. 3, pp. 57-72.
NIST. (2019): Cloud computing. https://www.nist.gov/itl/cloud-computing.
Nogales, A.; Sicilia, M.-A.; Sánchez-Alonso, S.; Garcia-Barriocanal, E. (2016):
Linking from Schema.org microdata to the Web of Linked Data: an empirical assessment.
Computer Standards and Interfaces, vol. 45, pp. 90-99.
O’Reilly, T. (2005): What is web 2.0.
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.



XML-Based Information Fusion Architecture Based on Cloud 949

Saha, P.; Beltre, A.; Govindaraju, M. (2018): Exploring the fairness and resource
distribution in an Apache Mesos environment. 11th IEEE International Conference on
Cloud Computing.
Saxena, S. (2019): Open Government Data (OGD) in Iran, Lebanon and Jordan: a
comparative approach. VINE Journal of Information and Knowledge Management
Systems, vol. 48, no. 1, pp. 47-61.
Sbodio, M. L.; Martin, D.; Moulin, C. (2010): Discovering semantic web services using
SPARQL and intelligent agents. Journal of Web Semantics, vol. 8, no. 4, pp. 310-328.
Selvan, N. S.; Vairavasundaram, S.; Ravi, L. (2019): Fuzzy ontology-based
personalized recommendation for internet of medical things with linked open data.
Journal of Intelligent and Fuzzy Sys, vol. 36, no. 5, pp. 4065-4075.
Simeonova, B. (2018): Transactive memory systems and web 2.0 in knowledge sharing:
A conceptual model based on activity theory and critical realism. Information Systems
Journal, vol. 28, no. 4, pp. 592-611.
Sun, C. A.; Rossing, R.; Sinnema, M.; Bulanov, P.; Aiello, M. (2010): Modeling and
managing the variability of web service-based systems. Journal of Systems & Software,
vol. 83, no. 3, pp. 502-516.
Taiwan. (2019): Open government data. http://data.gov.tw/.
Talukder, M. S.; Shen, L.; Hossain Talukder, M. F.; Bao, Y. (2019): Determinants of
user acceptance and use of open government data (OGD): an empirical investigation in
Bangladesh. Technology in Society, vol. 56, no., pp. 147-156.
Varlamov, M. I.; Turdakov, D. Y. (2016): A survey of methods for the extraction of
information from web resources. Programming and Computer Software, vol. 42, no. 5,
pp. 279-291.
von Alberti-Alhtaybat, L.; Al-Htaybat, K. (2016): Investor relations via web 2.0 social
media channels: a qualitative study of middle eastern corporations and investors. Aslib
Journal of Information Management, vol. 68, no. 1, pp. 33-56.
Vracic, T.; Varga, M.; Curko, K. (2016): Effects and evaluation of open government
data initiative in Croatia. 39th International Convention on Information and
Communication Technology, Electronics and Microelectronics.
W3C. (2017): Sparql endpoint description.
https://www.w3.org/wiki/SparqlEndpointDescription
W3C. (2013): SPARQL 1.1 query language. http://www.w3.org/TR/sparql11-query/
W3C. (2014): Resource Description Framework (RDF). https://www.w3.org/RDF/
W3C. (2016): SweoIG/TaskForces/CommunityProjects/LinkingOpenData.
https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
Wang, X.; Wu, H.; Hsu, C.-H. (2019): Mashup-oriented API recommendation via
random walk on knowledge graph. IEEE Access, vol. 7, pp. 7651-7662.
Wu, S.; Huang, C.; Li, L.; Crestani, F. (2019): Fusion-based methods for result
diversification in web search. Information Fusion, vol. 45, pp. 16-26.



950 CMC, vol.61, no.3, pp. 929-950, 2019

Yan, M.; Sun, H.; Liu, X.; Deng, T.; Wang, X. (2016): Delivering web service load
testing as a service with a global cloud. Concurrency and Computation: Practice and
Experience, vol. 27, no. 3, pp. 526-545.
Zhang, C.; Fu, W.; Sun, T.; Ji, Y. (2016): Resolving web services mismatch in mashup.
Wireless Personal Communications, vol. 86, no. 4, pp. 1781-1796.
Zhong, Y.; Fan, Y.; Tan, W.; Zhang, J. (2018): Web service recommendation with
reconstructed profile from mashup descriptions. IEEE Transactions on Automation
Science and Engineering, vol. 15, no. 2, pp. 468-478.
Zhu, C.; Ren, K.; Liu, X.; Wang, H.; Tian, Y. et al. (2016): A graph traversal based
approach to answer non-aggregation questions over DBpedia. Lecture Notes in Computer
Science, vol. 9544, pp. 219-234.


	5 Implementation and evaluation
	6 Conclusion and future work
	References

