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Abstract: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has 
introduced new information about the structure of cells, diseases, and their associated 
biological factors. One of the main uses of scRNA-seq is identifying cell populations, 
which sometimes leads to the detection of rare cell populations. However, the new method 
is still in its infancy and with its advantages comes computational challenges that are just 
beginning to address. An important tool in the analysis is dimensionality reduction, which 
transforms high dimensional data into a meaningful reduced subspace. The technique 
allows noise removal, visualization and compression of high-dimensional data. This paper 
presents a new dimensionality reduction approach where, during an unsupervised 
multistage process, a feature set including high valuable markers is created which can 
facilitate the isolation of cell populations. Our proposed method, called fusion of the 
Spearman and Pearson affinity matrices (FSPAM), is based on a graph-based Gaussian 
kernel. Use of the graph theory can be effective to overcome the challenge of the nonlinear 
relations between cellular markers in scRNA-seq data. Furthermore, with a proper fusion 
of the Pearson and Spearman correlation coefficient criteria, it extracts a set of the most 
important features in a new space. In fact, the FSPAM aggregates the various aspects of 
cell-to-cell similarity derived from the Pearson and Spearman metrics, and reveals new 
aspects of cell-to-cell similarity, which can be used to extract new features. The results of 
the identification of cell populations via k-means++ clustering method based on the 
features extracted from the FSPAM and different datasets of scRNA-seq suggested that the 
proposed method, regardless of the characteristics that govern each dataset, enjoys greater 
accuracy and better quality compared to previous methods. 
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1 Introduction 
With the advent of the new generation of DNA sequencing method, known as next 
generation sequencing (NGS), the quantitative and qualitative knowledge of 
transcriptomes progressed remarkably, through which researchers were able to extract the 
gene expression of cells completely. The parallel and automatic nature of these new 
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processes such as RNA sequencing (RNA-seq) causes the production of millions of 
sequences concurrently, resulting in significant amplification of the operational power. 
Also, sequencing technologies with a high power have considerably reduced the costs of 
sequencing [Wang, Gerstein and Snyder (2010); Nagalakshmi, Waern and Snyder (2010)].  
Single-cell RNA-sequencing (scRNA-seq) is known as a novel technology first presented 
in 2009 [Tang, Barbacioru, Wang et al. (2009)]. This method did not gain popularity until 
2014, i.e., when new protocols were developed, and its sequencing costs diminished. 
ScRNA-seq technology measures the distribution of expression levels for every gene 
throughout the entire population of cells and allows new biological questions to be studied, 
where specific cellular changes in transcriptomes are important. For example, one can 
mention the identification of cell types, heterogeneity of cell responses, confirmation of 
gene expression, and deduction of gene regulatory networks across the cells. There are 
several protocols for using scRNA-seq such as SMART-seq2 [Picelli, Björklund, Faridani 
et al. (2013)], CELL-seq [Hashimshony, Wagner, Sher et al. (2012)], and Drop-seq 
[Macosko, Basu, Satija et al. (2015)]. 
In recent years, the use of scRNA-seq has allowed researchers to describe phenotypic 
heterogeneities observed in certain groups of cells and tissues through cell-by-cell indexing 
from transcriptome heterogeneity [Pouyan and Nourani (2017)]. One of the important uses 
of the results of scRNA-seq is identifying cell populations. In some cases, it results in the 
detection of rare and new cell subsets [Shalek, Satija, Adiconis et al. (2013); Buettner, 
Natarajan, Casale et al. (2015); Grün, Lyubimova, Kester et al. (2015); Nelson, Mould, 
Bikoff et al. (2016); Pellegrino, Sciambi, Yates et al. (2016)], which cannot be identified 
via previously known factors. It can further be employed in various areas such as cancer. 
For example, single-cell RNA-sequencing has been used for the identification of new cell 
subsets in the colon [Grün, Lyubimova, Kester et al. (2015)], fetus [Nelson, Mould, Bikoff 
et al. (2016)], cancer [Patel, Tirosh, Trombetta et al. (2014)], brain [Liu, Nowakowski, 
Pollen et al. (2016); Tasic, Menon, Nguyen et al. (2016)], pancreas [Segerstolpe, 
Palasantza, Eliasson et al. (2016); Wang, Schug, Won et al. (2016)], and immune cells 
[Villani, Satija, Reynolds et al. (2017)]. 
In spite of the hopes developed in this regard, there are challenges that complicate the 
analysis of scRNA-seq data. Some of these obstacles include the stochastic nature of the 
expression of genes, the existence of noise, dropout events, and high dimensions of these 
data. Nevertheless, in recent years, many attempts have been made to overcome these 
computational challenges. 
The proposed method in this paper, which is based on a graph-based Gaussian kernel, extracts 
a set of high-quality features before clustering through a proper fusion of the Pearson and 
Spearman criteria in a new nonlinear space. In fact, the FSPAM aggregates the various 
aspects of cell-to-cell similarity derived from the Pearson and Spearman metrics, and reveals 
new aspects of cell-to-cell similarity, which can be used to extract valuable features. In 
summary, it can be said that, the proposed method can be used both for extracting a high-
quality feature and for identifying accurate cell populations, can be used as a useful tool for 
analyzing and visualizing scRNA-seq data for bioinformatics researchers. 
This paper is organized as follows: Section 2 provides a review of related work. Section 3 
explains the details of the proposed method. In Section 4, experimental results are reported 
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clearly and, by comparing the results with other state-of-the-art methods, we evaluate the 
proposed method. Finally, the conclusion and discussion are presented in Section 5. 

2 Related works 
In most works related to the identification of cell populations in scRNA-seq data, attempts 
have been made to perform cell clustering by developing machine learning techniques. 
Partition clustering methods such as k-means and other distance-based clustering 
algorithms such as hierarchical clustering have been widely used for identifying cell 
populations in scRNA-seq datasets. For example, Jaitin et al. combined a hierarchical 
clustering method and probabilistic hybrid models to classify single-cells of different 
tissues [Jaitin, Kenigsberg, Keren-Shaul et al. (2014)]. 
Kiselev et al. [Kiselev, Kirschner, Schaub et al. (2017)] proposed a clustering method 
called single-cell consensus clustering (SC3), which integrates multiple cluster labels by a 
consensus approach and can improve cell type identification. SC3 combines all the 
different clustering outcomes into a consensus matrix that summarizes how often each pair 
of cells is located in the same cluster. The final result is determined by complete-linkage 
hierarchical clustering of the consensus matrix into k groups.  
Žurauskienė et al. [Žurauskiene and Yau (2015)] presented a modified clustering method 
called pcaReduce for the scRNA-seq data which repeatedly combined the PCA with k-
means to generate a hierarchical tree of cells. This method seeks to establish a connection 
between the reduced representations given by principal components analysis (PCA) and 
the number of resolvable cell types (clusters). 
SINCERA package is another example employing hierarchical clustering, in which the 
Pearson correlation is used for the similarity criterion, while linkage mean is employed for 
the linkage method in default settings. This package presents a generally applicable 
analytic pipeline for processing scRNA-seq data from a whole organ or sorted cells [Guo, 
Wang, Potter et al. (2015)].  
SNN-cliq method presented by Xu et al. [Xu and Su (2015)] uses the shared nearest 
neighbor (SNN) for defining similarity between data points (cell), which performs 
clustering according to an algorithm based on the graph theory. This method models data 
as an SNN graph, with nodes corresponding to data points and weighted edges reflecting 
the similarities between data points. It then finds the ultimate clustering solution by using 
graph-theoretic techniques to cluster the sparse SNN graph.  
Pouyan et al. [Pouyan and Nourani (2016); Pouyan and Kostka (2018)] introduced methods 
called RAFSIN and RAFSIL, employing a random forest algorithm for clustering cell 
populations. RAFSIN uses random forests for identifying the dependence of cell markers 
and modeling cell populations based on the cell network concept. This cellular network 
helps to discover what types of cells exist in the tissue. RAFSIL method is also an approach 
based on the random forest for learning cell-to-cell similarities from scRNA-seq data. 
RAFSIL runs a two-stage method in which the features related to the scRNA-seq data are 
created after learning the similarities. This method is designed such that it can be adapted 
and developed, whereby the similarities obtained from RAFSIL can be used in projects 
associated with data analysis such as dimension reduction, visualization, and clustering. 
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Li et al. [Li, Zhang, Wong (2019)] introduced clustering methods based on evolutionary 
multiobjective. They proposed an evolutionary multiobjective ensemble pruning algorithm 
(EMEP) that addresses those realistic restrictions. The EMEP algorithm first applies the 
unsupervised dimensionality reduction to project data from the original high dimensions to 
low-dimensional subspaces; basic clustering algorithms are applied in those new subspaces 
to generate different clustering results to form cluster ensembles. Also, Li et al. [Li and 
Wong (2019)] provided a multiobjective evolutionary clustering based on adaptive non-
negative matrix factorization (MCANMF) for multiobjective single-cell RNA-seq data 
clustering. Firstly, adaptive non-negative matrix factorization is proposed to decompose 
data for feature extraction. After that, a multiobjective clustering algorithm based on 
learning vector quantization is proposed to analyze single-cell RNA-seq data. 
The mentioned methods, for precise the identification of cell populations, have used 
solutions for overcoming some computational challenges associated with scRNA-seq data. 
One of these challenges is the high dimension of this type of data, i.e., the sheer number of 
features (genes). The process of reducing the number of features and removing noise from 
data, which is the outcome of the data dimension reduction process, can significantly 
improve the ability to separate cell populations [Van Der Maaten, Postma and Van Den 
Herik (2009)]. To achieve this aim, various methods have been developed trying to 
visualize scRNA-seq data to identify cell populations through dimension reduction. Most 
of these methods use well-known tools such as PCA and t-SNE [Van Der Maaten and 
Hinton (2008)] for this aim. The PCA is considered a linear conversion method of data. 
Therefore, it may not be practical in many scRNA-seq datasets with a nonlinear nature 
where one cannot present the gene expression data as a linear combination of 
interrelationships between two cells. 
One of the nonlinear techniques that is currently used is t-SNE coupled with Euclidean 
distance, which can unveil the global structure and obtain many local structures of data 
with large dimensions. For example, a method called viSNE has been presented for 
reducing the dimensions of scRNA-seq data, which operates based on t-SNE, and maps 
high dimension cytometry data to two dimensions while preserving the structure [Amir, 
Davis, Tadmor et al. (2013)]. Nevertheless, unlike PCA, t-SNE does not learn an explicit 
map between high and low dimension spaces. This suggests that the points that are close 
to each other in high dimension spaces will also be close to each other in the low 
dimensions obtained, while most global relations cannot be interpreted directly [Wagner, 
Regev and Yosef (2016)]. Note that, according to the developers, t-SNE is a global 
visualization tool, and not a dimension reduction method, which has not been designed for 
dimension reduction in the scRNA-seq data. Furthermore, the Euclidean distance criterion 
which is used as the default distance criterion in most methods functions poorly on the data 
with high dimensions [Aggarwal, Hinneburg and Keim (2001); Beyer, Goldstein, 
Ramakrishnan et al. (1999)], and may not be useful for scRNA-seq data [Xu and Su (2015)]. 
Therefore, new and sometimes hybrid machine learning methods and the combination of 
distance criteria should be used in this type of data so that one can reduce the data 
dimensions more appropriately to perform a suitable and precise clustering. 
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3 Proposed method 
One of the ultimate goals of analyzing scRNA-seq data is identifying cell populations. 
Analyzing scRNA-seq data is a sophisticated procedure faced with issues such as the 
intrinsic probability of gene expression, existence of noise data, dropout events, and high 
dimensions. Each of these issues can cause diminished efficiency and accuracy in 
identifying cell populations. Therefore, they should be prepared for final clustering using 
preprocessing techniques such as filtering, dimension reduction, and data reconstruction. 
The input of the process of scRNA-seq data analysis is typically a matrix called the 
normalized gene expression matrix as 𝑋𝑋𝑔𝑔×𝑛𝑛 , which has 𝑔𝑔  rows and 𝑛𝑛  columns. In the 
mentioned matrix, 𝑔𝑔 and 𝑛𝑛 represent the number of genes and number of cells, respectively, 
where the number of genes amounts to tens of thousands of genes, while the number of 
cells varies between hundreds to millions of cells in some datasets. This sheer number of 
genes, which is considered as features of the problem, results in excessive dimensions for 
this type of data. Therefore, the process of their analysis for identifying the cell populations 
becomes complicated. One of the most important measures taken in identifying cell 
populations is dimension reduction, where using machine learning techniques, a set of 
features are extracted which can support separation of cell populations. Considering the 
intrinsic complexity of scRNA-seq datasets, use of classic machine learning methods may 
not prove very effective. Therefore, by developing these methods and presenting novel 
approaches, this complexity should be overcome. 
The proposed method, called FSPAM here, presents a complete preprocessing step for 
clustering and identifying cell populations from scRNA-seq data, whose focus and 
contribution are related to extracting proper features for reducing the dimensions of this 
type of data. Since typically in scRNA-seq data, one cannot define a linear relationship 
between the important cellular markers, in FSPAM attempts have been made to overcome 
this problem through the graph theory. The proposed method, based on a graph-based 
Gaussian kernel and PCA, extracts a final set of features in three stages with a proper fusion 
of different correlation criteria. It is indeed a reduced set of markers or highly important 
genes which can help us in identifying cell populations in the clustering stage. The general 
procedure employed in the proposed method has been demonstrated in Fig. 1. 
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Figure 1: The overall schema of the proposed approach for identifying cell populations 

In the rest of this section, each of the stages of the proposed method is explained thoroughly. 

3.1 Gene filtering 
One of the challenges in scRNA-seq data analysis is the noise propagation which is due to 
amplification error during the inverse transcription stage in RNA-seq experiments. Noise 
propagation emerges as excessive growth of zero and close to zero values in the dataset, 
creating problems in scRNA-seq data analysis. Therefore, typically in the first stage of the 
analysis of this type of data, a filter is applied to these data so that the features and genes 
that are most probably noise would be removed from the dataset of interest. The rest of the 
operations are then performed on the genes with a high degree of importance. 
Here, we have used frequency filtering (FRQ) [Pouyan and Kostka (2018)] to select the 
genes, in which we consider only the genes that are expressed in a specific fraction of cells. 
Specifically, here we experimentally identify and eliminate the genes regarded as noise 
that have been expressed in less than 5% of all cell samples, and keep the remaining cells 
as significant features to be used in the subsequent stages. 

3.2 Computing cell-to-cell distance matrix 
In this stage, using the Pearson and Spearman correlation coefficient criteria, the cell-to-
cell distance matrix is calculated. Each of these matrices shows an aspect of the correlation 
and cell-to-cell relationship in each dataset.  
The Pearson correlation coefficient, known as the moment correlation coefficient or zero 
order correlation coefficient, is used to determine the magnitude, type, and direction of the 
relationship between two distance or relative variables, or a distance variable and relative 
variable. It is calculated by the Eq. (1). 



 
 
 
FSPAM: A Feature Construction Method to Identifying Cell Populations                                   383 

(1)  𝑟𝑟 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦)𝑖𝑖

�∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥)2i ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦)2i
 

where, 𝑥𝑥 and 𝑦𝑦 are the variables of interest and 𝑥𝑥 and 𝑦𝑦 are their mean. The closer the 
absolute value of the correlation coefficient to 1, the stronger the relationship between the 
two variables is. In contrast, the correlation coefficient close to zero indicates that there is 
a very weak relationship between 𝑥𝑥 and 𝑦𝑦 variables. The Pearson correlation coefficient is 
a parametric method which is typically used for data with a normal distribution or a large 
amount of data. If we encounter ranked data or abnormally distributed data, the Spearman 
correlation coefficient is usually used, in which the rank of variables is used to calculate 
the magnitude of the relationship between two variables. In some way, it can be considered 
equivalent to the Pearson coefficient nonparametric method. Accordingly, the related 
equation can be considered as Eq. (1), in which the rank is used instead of the value of a 
variable [Hauke and Kossowski (2011); Kowalski (1972)]. 
Since we intend to present a data-driven approach in this paper, which deals with 
identifying cell populations regardless of any initial assumption, therefore it is assumed 
that in the proposed method, no previous information is available on the distribution 
governing the data as well as the number of data, through which one can select the proper 
correlation coefficient criterion. Thus, in the following, using an efficient method, the 
affinity matrices resulting from the Pearson and Spearman coefficient are fused and further 
used for extracting suitable features. 

3.3 Computing cell-to-cell affinity matrix 
PCA is one of the well-known and practical methods for dimension reduction in a linear 
fashion which tries to represent the covariance structure of a group of variables by a small 
set of variables. Note that this new set is a linear combination of the initial set. PCA is a 
method based on analyzing eigenvector decomposition (EVD), which divides the problem 
into principal components. 
The main disadvantage of the linear conversion methods such as the PCA is that if data 
have a nonlinear and more complex structure, this type of methods cannot be useful. One 
of the solutions for overcoming this problem is applying the kernel function trick. By 
utilizing kernel functions, one can well calculate the principal components in spaces with 
high dimensions, where these feature spaces are associated with the input space through a 
nonlinear mapping. 
In kernel-based cases, indeed a linear transformation is learned in Reproducing Kernel 
Hilbert Space (RKHS) [Mingtao, Zheng and Haixia (2010)]. However, since the kernel 
reproducing space, such as the Gaussian kernel, has nonlinear statistics from the normal 
data space, it yields a nonlinear conversion on the initial feature space. Note that in these 
methods, we do not directly move to kernel reproducing space; rather, we learn 
transformation as follows through a kernel function which can be applied to any data pair 
and implicitly in the kernel space (Eq. (2)). 



 
 
 
384                                                                                          CMES, vol.122, no.1, pp.377-397, 2020 

(2) 𝑋𝑋⏟
𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼 𝐷𝐷𝐷𝐷𝐼𝐼𝐷𝐷 𝑆𝑆𝑆𝑆𝐼𝐼

[  ]𝑛𝑛×𝑝𝑝

       𝜑𝜑         
�⎯⎯⎯⎯⎯� 𝑍𝑍⏟

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑛𝑛𝑖𝑖𝐼𝐼𝐴𝐴 𝑀𝑀𝐷𝐷𝐼𝐼𝑀𝑀𝑖𝑖𝑀𝑀
[  ]𝑛𝑛×𝑛𝑛

       𝑄𝑄         
�⎯⎯⎯⎯⎯�   𝑆𝑆

𝐹𝐹𝑆𝑆𝐷𝐷𝐼𝐼𝐼𝐼𝑀𝑀𝑆𝑆𝐹𝐹(𝑃𝑃𝑃𝑃𝐹𝐹)
(𝑘𝑘)

      𝑘𝑘 ≤ 𝑝𝑝 

where, 𝑝𝑝 represents the number of initial features, 𝑛𝑛 shows the number of samples present 
in the dataset, 𝑘𝑘 denotes the number of final features obtained, and 𝜑𝜑 is the kernel function 
which is defined as Eq. (3). 

(3)  𝑍𝑍𝑖𝑖 = φ(𝑥𝑥𝑖𝑖) = 𝐾𝐾 = [𝐾𝐾𝑖𝑖𝑖𝑖]𝑛𝑛×𝑛𝑛      ∶   𝐾𝐾𝑖𝑖𝑖𝑖 = 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖) 

where, 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖 show a pair of data samples present in the dataset, and 𝐾𝐾 is the kernel 
function of interest. 
The graph-based Gaussian kernel function used here receives the cell-to-cell distance 
matrix and calculates the affinity matrix using the following relation for each data sample 
based on 𝑘𝑘-nearest neighbors (Eq. (4)). 

(4) 𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖� = exp (−
𝑑𝑑2(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖)
𝜇𝜇𝜀𝜀𝑖𝑖,𝑖𝑖

) 

where, 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖) is the distance between two samples calculated based on one of the criteria 
such as the Euclidean, Pearson, Spearman, etc. Further, µ is a parameter which is typically 
adjusted experimentally. Eventually, 𝜀𝜀𝑖𝑖,𝑖𝑖 refers to a term obtained by the Eq. (5) based on 
the locality of the 𝑘𝑘-neighbor of each data sample. 

(5) 𝜀𝜀𝑖𝑖,𝑖𝑖 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑑𝑑(𝑥𝑥𝑖𝑖,𝑘𝑘𝑖𝑖)) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑘𝑘𝑖𝑖)) + 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖)

3
) 

where, 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑑𝑑(𝑥𝑥𝑖𝑖 ,𝑘𝑘𝑖𝑖)) is the mean distance between the sample 𝑥𝑥𝑖𝑖 and its 𝑘𝑘-neighbor, 
𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑑𝑑(𝑥𝑥𝑖𝑖,𝑘𝑘𝑖𝑖)) represents the mean distance between the sample 𝑥𝑥𝑖𝑖 and its 𝑘𝑘-neighbor, 
and 𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖) shows the distance between 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑖𝑖 samples. 
Briefly, the introduced graph-based Gaussian kernel, based on the locality of 𝑘𝑘-neighbor 
of each cell, calculates the affinity matrix from the distance matrix. Through this, the input 
features’ space is transferred to a new space via the nonlinear mapping. Then, using PCA 
in this new space, the eigenvectors and eigenvalues, which are the principal components, 
are extracted. Via this technique, one can overcome the linearity of PCA. 

3.4 Fusion and feature construction  
In the previous stages, two aspects of cell-to-cell similarity were obtained using the Pearson 
and Spearman metrics. In this step, by fusing these criteria, new aspects of this similarity 
will be discovered, which can lead to the extraction of new features, and help us to 
identifying cell populations. 
In this step, the affinity matrices resulting from the Pearson and Spearman coefficients 
is fused by the similarity network fusion (SNF) as presented by Wang et al. [Wang, 
Mezlini, Demir et al. (2014)]. Concerning the SNF presented for integrating different 
types of data on the genome scale, it fuses the affinity networks equivalent to affinity 
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matrices more effectively, such that the resulting network offers a complete view about 
the essential relationships between the samples (cells). The resulting fused affinity matrix, 
which is very significant, is used for different purposes. Here, we used it for extracting 
high-importance features. 
Generally, the SNF involves two main stages: 1) creating an affinity-sample network for 
each type of data, and 2) integrating these networks in the form of a single affinity network 
through a nonlinear and graph-based fusion method. The procedure of SNF involves first 
calculating the sample-to-sample affinity matrix for each dataset based on an affinity 
criterion. This matrix is equivalent to an affinity network whose nodes are samples, while 
the weighted edges represent the extent of similarity of each pair of samples. For the stage 
of combining networks, the SNF uses a nonlinear approach based on the message sending 
theory, which frequently updates every network by receiving information from other 
networks, where each repetition increases the extent of affinity. After several repetitions, 
the SNF converges to an integrated network. The main advantage of this type of integration 
method is that the weak affinities, which are the low-weight edges, disappear, thereby 
supporting noise reduction. On the other hand, the strong affinities or the high-weight edges 
observed in one or several networks are summed up together, strengthening strong 
similarities. Also, the low-weight edges supported by all networks are preserved, given the 
extent of their strong connection to neighbors. Such a nonlinear fusion allows the SNF to 
use it more completely by integrating the shared and complementary information of a local 
network structure. 
In the following, PCA is applied to the affinity matrices, and after achieving the principal 
components (PC), the best components are extracted as a set of features with high importance 
(PCi) using the Elbow method [Thorndike (1953)].This method plots the PCs obtained based 
on the value and in a descending order on the coordinate axes. The point where the break 
occurs in the diagram is called the elbow point. The PCs located before the elbow point are 
kept as the PCs or the best set of features obtained from each stage (Fig. 2). 

 
Figure 2: Use of the Elbow method for selecting more important principal components 

If the Elbow method is not used for choosing more important principal components, we 
should consider the number of components as a predetermined constant number, which 
questions the flexibility of the proposed approach. Nevertheless, usage of the Elbow method 
helps the system to obtain highly important components after the application of PCA given 
the dataset of interest. This makes our proposed approach flexible and data-driven. 
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After extracting the PC1, PC2, and PC3 feature sets, the final feature set is obtained by 
juxtaposing these features and creating the ultimate eigenvector (Eq. (6)). 

(6) 𝑃𝑃𝑃𝑃𝐹𝐹 = 𝑃𝑃𝑃𝑃1 ∪ 𝑃𝑃𝑃𝑃2 ∪ 𝑃𝑃𝑃𝑃3 

PCF contains a set of valuable features which can help us in identifying cell populations. 
Note that this feature set is obtained without any previous knowledge about the distribution 
governing the data and label of samples. Indeed, it is considered a kind of unsupervised 
feature extraction approach, which is far more valuable than supervised algorithms. 
Notably, the set and number of the final features constructed by the FSPAM are different 
from one dataset to another, where it extracts the best collection of markers in line with the 
dataset of interest, making the proposed approach flexible and data-oriented. 

3.5 Clustering 
After the feature extraction, in the next step, the clustering process is performed to identify 
the cell populations in the new space. One of the most popular clustering methods used in 
the clustering of scRNA-seq data is the k-means method. In this paper, due to the simplicity 
and high speed, the k-means clustering method has been used. One of the problems of k-
means, however, is its instability, which happens to the random selection of centroids. To 
overcome this challenge, a method called k-means++ [Arthur and Vassilvitskii (2007)] is 
presented which partly addresses this problem and provides a more stable clustering 
algorithm. In this method, first, during an iterative process, by selecting and testing 
different centroids, the best centroids are identified, after which the standard clustering of 
k-means is performed using these points. Although it is time-consuming to find these 
centroids, as it reduces the convergence time of the standard k-means, it will also 
compensate for that extra time. 

4 Results and discussion 
The proposed method, the FSPAM, has been developed by the R language and the 
experiments were run on an intel Core i7 CPU 2.67 GHz computer with 6 GB RAM. 
In this section, we first discuss the results of the proposed method from various aspects 
such as flexibility, accuracy, quality, and stability, and then compare the final results with 
different and well-known methods in this regard. Before that we briefly review the datasets 
and evaluation parameters used in this experiment. 

4.1 Datasets 
The FSPAM has been implemented on Buettner, Kolod, and Usoskin scRNA-seq datasets, 
and the results were obtained in approximately 10, 90, and 60 seconds, respectively 
[Buettner, Natarajan, Casale et al. (2015); Kolodziejczyk, Kim, Tsang et al. (2015); 
Usoskin, Furlan, Islam et al. (2015)]. The properties of these datasets are provided in Tab. 
1. These datasets were downloaded from https://github.com/BatzoglouLabSU/SIMLR. For 
our analysis, the Usoskin and Kolod datasets were re-downloaded to obtain the normalized 
expression values without batch corrections. For Usoskin, the data were downloaded from 
the ‘External resource’, available at http://linnarssonlab.org/drg/; for Kolod, the data were 
downloaded from https://www.ebi.ac.uk/teichmann-srv/espresso/. 
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Table 1: The properties of scRNA-seq datasets used for evaluating the FSPAM proposed 
method 

Dataset # Cell # Gene # Cluster Ref. 

Buettner 182 9573 3 [Buettner, Natarajan, Casale et al. (2015)] 

Kolod 704 13473 3 [Kolodziejczyk, Kim, Tsang et al. (2015)] 
Usoskin 622 17772 4 [Usoskin, Furlan, Islam et al. (2015)] 

4.2 Evaluation metrics 
To evaluate the quality of the clustering, we used three well-known clustering criteria, i.e., 
ARI, NMI, and Purity. Each of them is explained briefly further. 
Adjusted Rand Index (ARI): assume that we divide 𝑛𝑛 cells by 𝑘𝑘 clusters, where {𝑢𝑢𝑖𝑖}𝑖𝑖=1𝑛𝑛  
represents the final labels produced by the clustering method. Also, assume that {𝑣𝑣𝑖𝑖}𝑖𝑖=1𝑛𝑛  
reflects the real labels of each cell (correct cell type). Based on the two mentioned 
definitions, ARI is calculated according to Eq. (7): 

(7) 𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ �𝑛𝑛𝑙𝑙𝑙𝑙2 � − (∑ �𝑛𝑛𝑙𝑙2 �𝑙𝑙 ∑ �𝑛𝑛𝑙𝑙2 �𝐹𝐹 )/�𝑛𝑛2�𝑙𝑙𝐹𝐹

(∑ �𝑛𝑛𝑙𝑙2 � +𝑙𝑙 ∑ �𝑛𝑛𝑙𝑙2 �𝐹𝐹 )/2− (∑ �𝑛𝑛𝑙𝑙2 �𝑙𝑙 ∑ �𝑛𝑛𝑙𝑙2 �𝐹𝐹 )/�𝑛𝑛2�
 

In this relation, 𝑙𝑙  and 𝑠𝑠  are the indices referring to 𝑘𝑘  clusters. 𝑛𝑛𝑙𝑙 = ∑ 𝐴𝐴(𝑢𝑢𝑖𝑖 = 𝑙𝑙)𝑛𝑛
𝑖𝑖 , 𝑛𝑛𝐹𝐹 =

∑ 𝐴𝐴(𝑣𝑣𝑖𝑖 = 𝑠𝑠)𝑛𝑛
𝑖𝑖 , and 𝑛𝑛𝑙𝑙𝐹𝐹 = ∑ 𝐴𝐴(𝑢𝑢𝑖𝑖 = 𝑙𝑙)𝑖𝑖,𝑖𝑖 𝐴𝐴(𝑣𝑣𝑖𝑖 = 𝑠𝑠) . In these relations, 𝐴𝐴(𝑥𝑥 = 𝑦𝑦)  is the 

indicator function, whose value is 1 when 𝑥𝑥 = 𝑦𝑦,; otherwise, it is zero. Briefly, if the label 
of clusters produced by a clustering algorithm fully corresponds to original labels, then the 
ARI value is 1; otherwise, the ARI value declines in proportion with the inconsistencies 
that exist. 
Normalized mutual index (NMI): assume that 𝑝𝑝𝑙𝑙 = 𝑛𝑛𝑙𝑙

𝑛𝑛
, 𝑞𝑞𝐹𝐹 = 𝑛𝑛𝑙𝑙

𝑛𝑛
, and 𝑧𝑧𝑙𝑙𝐹𝐹 = 𝑛𝑛𝑙𝑙𝑙𝑙

𝑛𝑛
 .Now, the 

entropy related to each clustering solution (related to 𝑣𝑣 and 𝑢𝑢) can be defined as follows: 
ℎ(𝑢𝑢) = −∑ 𝑝𝑝𝑙𝑙 ∗ 𝑙𝑙𝑙𝑙𝑔𝑔𝑝𝑝𝑙𝑙𝑙𝑙  and ℎ(𝑣𝑣) = −∑ 𝑞𝑞𝐹𝐹 ∗ 𝑙𝑙𝑙𝑙𝑔𝑔𝑞𝑞𝐹𝐹𝐹𝐹 . Furthermore, the extent of mutual 
information between these two clustering solutions is defined as 𝑖𝑖(𝑢𝑢, 𝑣𝑣) = ∑ 𝑧𝑧𝑙𝑙𝐹𝐹log (𝑧𝑧𝑙𝑙𝐹𝐹/𝑙𝑙,𝐹𝐹
𝑝𝑝𝑙𝑙/𝑞𝑞𝐹𝐹). Now, based on these relations, the NMI criterion is defined as Eq. (8). 

(8) 𝑁𝑁𝑁𝑁𝐴𝐴 = 𝑖𝑖(𝑢𝑢, 𝑣𝑣)/�ℎ(𝑢𝑢)ℎ(𝑣𝑣) 
As with ARI, if there is 100% correspondence between 𝑢𝑢 and 𝑣𝑣 clustering solutions, the 
NMI value becomes 1. Briefly, the closer the ARI and NMI values related to a clustering 
method applied to a dataset to 1, the higher the quality of the clustering will be. 
Purity: the criterion of purity is measured for clusters with a unit class. For its calculation, 
for every cluster, the number of data points from the typical class is counted in the cluster 
of interest. Then, all clusters are summed up together and divided by the number of data 
points (Eq. (9)). 

(9) 𝑃𝑃𝑢𝑢𝑟𝑟𝑖𝑖𝑃𝑃𝑦𝑦(𝛺𝛺,𝑃𝑃) =
1
𝑁𝑁
�max �𝑤𝑤𝑘𝑘 ∩ 𝑐𝑐𝑖𝑖�
𝑘𝑘,𝑖𝑖

 

where, 𝛺𝛺 = {𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑘𝑘}  and 𝑃𝑃 = �𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑖𝑖�  are the sum of groups (correct 
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clustering solutions). 

4.3 Parameters adjustment 
In the feature extraction step, when we convert the distance matrix to a similarity matrix, 
we use a graph-based Gaussian kernel, which operates according to Eqs. (4) and (5). These 
relations convert all distance values to similarity values based on a k-nearest neighbor and 
a parameter µ. Here, we used an empirical method to obtain the best results for which the 
values were as follows µ = 0.5 and 𝑘𝑘 = 40. The results related to the adjustment of these 
parameters are presented in Fig. 3. 

 
Figure 3: Selecting the value of µ and 𝒌𝒌 parameters experimentally (µ = 𝟎𝟎.𝟓𝟓, 𝒌𝒌 = 𝟒𝟒𝟎𝟎) 

4.4 Results 
A notable point about the FSPAM is that the proposed method produces a variable and 
high-quality set of features and principal components in line with each dataset, which helps 
in more accurate identification of cell populations. This characteristic has been shown in 
Fig. 4, in which PC1, PC2, and PC3 represent the number of features extracted according 
to the Pearson, Spearman, and their fusion affinity matrices respectively. Also, PC_F 
represents the number of final constructed features, which has been extracted as 35, 25, 
and 67 for Kolod, Buettner, and Usoskin datasets respectively. Also, in order to find the 
success of the proposed method for the proper fusion of the Spearman and Pearson 
correlation coefficients, we examine the results of the FSPAM with the results of the 
Spearman and Pearson correlation coefficients separately. The results show that the use of 
these coefficients depends on the datasets and their governing distribution, while the 
FSPAM method obtains the best results, independent of the dominant characteristics of the 
data (Fig. 5). 
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Figure 4: The number of features extracted by the FSPAM 

 
Figure 5: The FSPAM obtains the best results, independent of the dominant characteristics 
of the data: (1) The Pearson correlation coefficient in the Kolod dataset is better than the 
Spearman, (2) the Spearman correlation coefficient in the Buettner and Usoskin datasets 
yields better results relative to the Pearson, (3) the FSPAM method is consistent with the 
proper fusion of these coefficients gets the best results 

In the following, we first obtain the clustering results and identify the cell populations using 
different clustering methods based on the extracted features. Then, we examine the 
clustering quality of the proposed method by visualizing the data, and finally discuss the 
stability and robustness of the proposed method. 
In the performed implementation, after extracting the set of final features, to identify the 
cell populations, we tested different methods of clustering including hierarchical (HR), 
GMM, DBSCAN, and k-means. The obtained results indicated that the k-means clustering 
offers the best results (Tab. 2). Therefore, for the rest of the work and in the other stages 
of testing and evaluating the FSPAM, in the clustering stage, a method developed based on 
k-means called k-means++ has been used. 
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Table 2: The results of implementing the FSPAM using different clustering methods 
(ARI%) 

Data/Method k-means GMM HR DBSCAN 

Kolod 100 100 100 81.4 

Buettner 91.82 66.3 88.2 75.4 

Usoskin 91.39 53.8 66.5 73.2 

In the next step, we show that the set of features obtained from FSPAM enhances the 
quality of clustering cells and can visualize cells with a far better quality by the PCA 
dimension reduction method. For this purpose, we map every dataset twice by the PCA on 
a two-dimensional space to visualize the cellular space. In the first state, the PCA is directly 
applied to the original dataset, and all cells are visualized on the resulting two-dimensional 
space. In this second state, first the FSPAM is applied to the dataset, and then the features 
of interest are extracted. Next, the PCA is applied to visualize data on these extracted 
features, with the results summarized in Fig. 6. In every panel of this figure, every point 
represents a cell, and each color refers to a type of cell. As can be observed, the features 
extracted by the FSPAM differentiate different types of cells with a far higher quality. 
Furthermore, to investigate the stability, we replicated the FSPAM 50 times for each of the 
three mentioned datasets, such that in every replication, 90% of data were chosen randomly. 
The results related to the ARI criterion obtained in these replications have been 
summarized as a box diagram in Fig. 7, in which blue, red, and green boxes represent 
variations of the results in the three datasets of Kolod, Buettner, and Usoskin, respectively. 
As can be observed in this diagram, for the dataset Kolod, FSPAM yields the minimum 
extent of change, where the accuracy of the results fluctuates within the quartile range of 
zero. In this dataset, only two different values of 0.98 and 0.993 were obtained, while the 
other results in the other 48 replications were equal to 1. Furthermore, in the other datasets, 
again favorable results were obtained, such that in Buettner and Usoskin data, the results 
fluctuated within the quartile range of 0.0522 and 0.0097, respectively. These results 
suggest that generally the FSPAM enjoys high robustness and stability, and one can rely 
on the obtained results to a large extent. 
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Figure 6: Visualization of data with and without the FSPAM 

 
Figure 7: Robustness and stability of the FSPAM based on 50 replications on the tested 
datasets  

Finally, for the quantitative assessment related to the clustering quality, we used the kNN 
classification method in the resulting two-dimensional space, whereby the resulting 
classification error (the rate of wrongly classified cells or NNE) has been calculated as the 
overall error of mapping. Since the kNN algorithm is dependent on k parameter, the 
number of nearest neighbors, we computed the resulting two-dimensional mapping error 
per different values of k (3,5,7,9), with the results being summarized in Tabs. 3 and 4. As 
can be observed, the NNE error when using the features extracted by the FSPAM has been 
far lower than the case when the PCA has been directly applied to the scRNA-seq gene 
expression matrix. This suggests the success of the proposed method in constructing the 
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valuable features and reducing the dimensions of the problem. 

Table 3: PCA-(%) NNE error on the original dataset 

Data/Method K=1 K=3 K=5 K=7 K=9 Avg 

Kolod 1.1 1.0 0 0 0 0.4 

Buettner 21.4 13.1 11.5 10.9 10.3 13.44 

Usoskin 30.1 31.2 32.0 28.3 29.7 30.3 

Table 4: PCA-(%) NNE error on the set of features extracted by the FSPAM method 

Data/Method K=1 K=3 K=5 K=7 K=9 Avg 

Kolod 0 0 0 0 0 0 

Buettner 7.1 5.4 5.4 5.4 5.1 5.7 

Usoskin 1.7 1.4 1.6 1.7 1.7 1.6 

4.5 Evaluation of the proposed FSPAM method with other methods 
In this section, we compared the FSPAM with three traditional clustering methods 
including k-means, GMM, and hierarchical clustering method (HCLUST) as well as new 
clustering datasets including the SINCERA [Guo, Wang, Potter et al. (2015)], SNN-Cliq 
[Xu and Su (2015)], and pcaReduce [Žurauskiene and Yau (2015)], which have been 
designed for scRNA-seq data.  
The FSPAM and other six mentioned methods were applied to three datasets of scRNA-
seq in Tab. 1, where for each method, the ARI, NMI, and Purity were calculated separately. 
Fig. 8 summarizes the comparison of the obtained results. Also, its details are provided in 
Tabs. 5, 6, and 7, representing the high accuracy of the proposed FSPAM method.  
As shown in Tab. 5, the ARI parameter value obtained from the proposed FSPAM method, 
as one of the most important clustering parameters, was obtained for the Kolod, Buettner, 
and Usoskin datasets. The values were 100, 91.82, and 91.38, respectively which are  
considerably higher than the values of other methods. The SINCERA is the only method 
to achieve something equal to the FSPAM method for the Kolod dataset, but in other 
datasets, it lags behind the FSPAM method. 
The values obtained from the implementation of the FSPAM method for the NMI 
parameter on the Kolod, Buettner, and Usoskin datasets were 100, 87.93, 87.73, 
respectively. This suggests that the proposed method's accuracy is equal to that of Kolod 
dataset with the SINCERA method, while in other datasets, it has been more accurate than 
in other methods (Tab. 6). 
The results for the purity parameter also showed that the proposed method presented values 
of 100, 97.25 and 95.18. As with all other parameters, they were equal to the Kolod dataset 
values with the SINCERA method, while in other datasets, higher values were obtained 
(Tab. 7). 
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With regard to the results obtained in this section and previous sections, it can be seen how 
the FSPAM method can extract valuable and, of course, proportional features to each 
scRNA-seq dataset, with a high accuracy and quality to identify cell populations. 

 
Figure 8: Summary of the results obtained from different methods and the FSPAM 

Table 5: The results of implementing the FSPAM and comparing it with well-known 
methods (ARI) 
Data/Method k-means GMM HCLUST pcaReduce SNN-Cliq SINCERA FSPAM 
Kolod 77.3 90.6 61.8 87.6 73.5 100 100 
Buettner 53.3 46.3 31.8 44.1 44.8 80.3 91.82 

Usoskin 42.6 55.2 22.3 60.4 72.6 75.6 91.39 

Table 6: The results of implementing the FSPAM and comparing it with well-known 
methods (NMI) 
Data/Method k-means GMM HCLUST pcaReduce SNN-Cliq SINCERA FSPAM 

Kolod 80.11 93.33 57.78 90.23 78.36 100 100 

Buettner 55.45 44.11 38.93 51.63 42.55 83.71 87.93 

Usoskin 50.49 60.23 18.26 61.37 73.55 77.53 87.73 

Table 7: The results of implementing the FSPAM and comparing it with well-known 
methods (purity) 
Data/Method k-means GMM HCLUST pcaReduce SNN-Cliq SINCERA FSPAM 
Kolod 81.23 96.18 63.42 91.51 80.32 100 100 

Buettner 58.14 54.73 45.25 48.93 50.79 85.22 97.25 

Usoskin 50.39 66.08 29.32 66.72 81.38 82.17 95.18 
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5 Conclusion 
In this paper, we dealt with identifying cell populations from scRNA-seq data. The analysis 
of this type of data has some challenges including the existence of noise, dropout events, 
and their high dimensions. Our proposed method, which we called, the fusion of the 
Spearman and Pearson affinity matrices, FSPAM,  was an unsupervised method according 
to the graph-based Gaussian kernel. It extracted a suitable feature set for every scRNA-seq 
dataset without any previous knowledge about the type of cells and through proper fusion 
of the affinity matrices resulting from the Spearman and Pearson correlation criteria. They 
were used as valuable markers in the clustering process to identify cell populations. The 
results on three different datasets indicated that the set of features obtained from the 
FSPAM enhanced the quality of clustering cells and could visualize cells with a far better 
quality by the PCA dimension reduction method. The notable point about the FSPAM was 
the variable set of features extracted from the feature construction step in line with each 
dataset, making the FSPAM a data-driven approach. Also, to investigate the stability, we 
replicated the FSPAM 50 times for each of the three mentioned datasets. The results 
indicated that generally the FSPAM enjoys great robustness and stability, and one can rely 
on the obtained results to a large extent. Finally, for quantitative assessment related to the 
clustering quality, we used the kNN classification method in the resulting two-dimensional 
space. When using the features extracted by the FSPAM, NNE error was far lower than in 
the case when the PCA was directly applied to the scRNA-seq gene expression matrix. 
Also, to evaluate the proposed FSPAM method, we examined it against other well-known 
methods and from different aspects. To do this, we used three methods of classical 
clustering (k-means, HCLUST, and GMM) and three state-of-the-art methods presented to 
identify cell populations in the scRNA-seq data (pcaReduce, SINCERA, and SNN-Cliq). 
The results revealed that through a valuable feature set tailored to any data, the FSPAM 
method can be very accurate in clustering and identifying cell populations. 
In summary, we can say that in this paper a method called FSPAM was presented which 
can be used both for extracting a variable set of valuable features and for identifying 
accurate cell populations. Indeed, the proposed method, which is an accurate, quality, and 
stable approach, can be used as a useful tool for analyzing scRNA-seq data for 
bioinformatics researchers in this area. 
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