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Observability Analysis in Parameters Estimation of an
Uncooperative Space Target

Xianghao Hou1, * and Gang Qiao1

Abstract: To study the parameter estimating effects of a free-floating tumbling space
target, the extended Kalman filter (EKF) scheme is utilized with different high-nonlinear
translational and rotational coupled kinematic & dynamic models on the LIDAR
measurements. Applying the aforementioned models and measurements results in the
situation where one single state can be estimated differently with varying accuracies since
the EKFs based on different models have different observabilities. In the proposed EKFs,
the traditional quaternions based kinematics and dynamics and the dual vector quaternions
(DVQ) based kinematics and dynamics are used for the modeling of the relative motions
between a chaser satellite and an uncooperative target. In the non-contact estimating
scenarios, only highly nonlinear relative attitude and range measurements: the grapple
fixture on the target measured from the chaser satellite via vision-based sensors, can be
used. By evaluating the results of the EKFs, the observability properties of each EKF are
studied analytically and numerically with the the Observability Gramian matrices (OG)
and the standard deviations for every estimated parameters. The analysis of observability
perform intensive studies and reveal the intrinsic factors that affect the accuracy and
stability of the parameters estimation of an uncooperative space target. Finally, the
analytical and numerical results show the optimal composition of the kinematic & dynamic
models and measurements.

Keywords: Parameter estimations, observability analysis, dual quaternions, extended
Kalman filter.

1 Introduction
In recent years, the on-orbit service missions aiming at uncooperative space targets have
attracted a number researchers [Flores-Abad, Ou, Pham et al. (2014); Jankovic, Paul
and Kirchner (2015); Ma, Dai and Yuan (2017); Dai, Jing, Yu et al. (2018)]. Since
the uncooperative space targets are usually malfunctioning and tumbling in space, good
parameter estimations are critical for the future tracking and capturing procedures. To
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achieve reasonable results in parameter estimations of a free-floating tumbling space target,
different kinematic & dynamic models, different types of measurements accompanied by
various kinds of estimating algorithms have been utilized by a number of researchers [Hou,
Ma, Wang et al. (2017); Razgus, Mooij and Choukroun (2017); Aghili (2012); Segal and
Gurfil (2012); Filipe, Kontitsis and Tsiotras (2015)]. Although the research on parameter
estimations of the uncooperative space targets are extensive, the intrinsic factors that affect
the accuracies and stabilities of them are given a lesser attention.

Xing et al. [Xing, Cao, Zhang et al. (2010); Segal and Gurfil (2012)] considered the
relative orbital motions and set up an orbital relative kinematic model under the effects
of the translational and rotational coupled effects to have the relative pose parameters
estimated. Also, Aghili et al. [Aghili (2012); Aghili and Parsa (2009)] showed an approach
by modeling the translational motions and rotational motions separately; however, in case
of the uncooperative space target, the translational and rotational coupled effect must be
considered, since the grapple fixture of the target is usually away from its centre of mass.
Razgus et al. [Razgus, Mooij and Choukroun (2017); Filipe and Tsiotras (2013b,a); Filipe,
Kontitsis and Tsiotras (2015)] utilized dual quaternions based relative kinematic equations
to depict the relative motion between an uncooperative space target and a chaser satellite.
In addition, by applying this model, it can be shown that the relative pose parameters are
well estimated. By using the error quaternions to represent the relative attitude motions,
Hou et al. [Hou, Ma, Wang et al. (2017)] proposed a dual vector quaternions (DVQ) based
method to model the relative kinematics and dynamics of an uncooperative space target.
With this modeling technique, not only the pose parameter but also the inertial parameters
are estimated at the same time. For an uncooperative and tumbling target in space, only the
contactless measurements are available. Under this circumstance, the vision-based sensors
are the most widely used measurement technique. Liu et al. [Liu and Hu (2014)] utilized
a monocular camera to obtain the relative attitude between the chaser satellite and the
uncooperative space target. Dong et al. [Dong and Zhu (2015)] utilized a stereo vision
camera to measure both the relative attitude and range. Nevertheless, the accuracies of the
passive imagers are strongly affected by the space environment [Opromolla, Fasano, Rufino
et al. (2017)] and the active imager-LIDAR system is widely used in the measurements of a
free-floating tumbling space target [Aghili (2012); Aghili and Parsa (2009)]. As proposed
by Kalman [Kalman (1960)], Kalman filter (KF) has become the de facto estimating
technique due to its efficient and reliable estimations. By applying the first order Taylor
series expansion to linearize the nonlinear system equations [Lefferts, Markley and Shuster
(1982)], the extended Kalman filter (EKF) has been successfully used in various parameters
estimating missions. Aghili et al. [Aghili (2012); Aghili and Parsa (2009)] utilized the EKF
to estimate the attitude quaternions and inertial parameters of a free-floating tumbling space
target. Additionally, Hou et al. [Hou, Ma, Wang et al. (2017)] designed a DVQ based EKF
to have the similar parameters estimated. Moreover, Lefferts et al. [Lefferts, Markley and
Shuster (1982)] designed an EKF based estimating algorithm and estimated the parameters
of a cooperative spacecraft. In recent years, new approaches have been proposed: unscented
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Kalman Filters (UKF) [Crassidis and Markley (2003)] and particle filters (PF) [Yang and
Crassidis (2004)] aiming to enhance the estimating ability, both with a set of drawbacks
[Crassidis, Markley and Yang (2007)]. As mentioned by Crassidis et al. [Crassidis,
Markley and Yang (2007)] EKF is still the workhorse of the estimating techniques due
to its robustness and reliable parameters estimating scheme. Furthermore, by calculating
the Jacobian matrix of the system, some intrinsic attributes (i.e., the derivatives of each
parameter with the other state, the relationship between one parameter and the other ones,
etc.) can be revealed.

When working on the effects of the parameters estimating problems, the observability
analysis of the designed estimating algorithm is vital. The observability is a tool showing
whether the parameters of a system can be estimated from the measurements accurately. If a
system is fully observable, all the parameters of it can be determined from the measurements
within finite time. If a system is not fully observable but with high observability, the
parameters of the system will have better estimations or easier to be estimated than the
ones in a system with lower observability. However, the accuracies of the estimations of
parameters in a not fully observable system can not be guaranteed [Ablin (1967); Ham and
Brown (1983); Wilson and Guhe (2005); Krener and Ide (2009)].

As a consequence, the analysis of observability is quite important for one to design
a parameter estimating algorithm. The first goal is to make the selected system and
measurement that consist of one algorithm have full observability. If this goal cannot be
achieved, an algorithm with the combination of system model and measurements of higher
observability should be considered. A higher observability stands for the robustness of the
estimating results to the noise and easier to be determined from the measurements [Yu, Cui
and Zhu (2014); Friedman and Frueh (2018); Zanetti and DSouza (2015)]. By applying
different kinematic and dynamic models on different types of measurements, the final
estimating results will be of a various accuracy. Good observability shows the parameter
estimations have high accuracies and the parameter estimating process is more stable. In
the analysis of the observability of a certain system, the Lie algebra is often utilized [Liu
(2006)].

Huxel [Huxel (2009)] utilized a Lie algebra based method to analyze the observability of
various kinds of space missions. However, the research can only determine whether the
system is observable or not, and hence not the level of observability. Yu et al. [Yu, Cui
and Zhu (2014)] proposed an alternative for calculation of the observability matrix and
provided a level of observability of the system by analyzing the observability matrix. In
addition, Butcher et al. [Butcher, Wang and Lovell (2017)] utilized the Lie algebra based
method along with the analysis of the observability matrix to show the system observability.
However, the observability matrix calculated by Lie algebra needs to compute the high
order Lie derivatives which will cost a lot of computational resources when the states
to be estimated have high dimensions. Also, the observability matrix calculated by Lie
derivatives cannot have the information of the noise of the measurements [Butcher, Wang
and Lovell (2017)].
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However, the covariance of the measurement noise will affect the observability analyzing
results since the noise can make change on the measurements [Friedman and Frueh (2018)].
If a system is observable or has good observability, the changes made by the measurement
will have little affect on the estimating results. On the contrary, if the observability of a
system is low, the small change made by noise will affect the results seriously [Krener and
Ide (2009)]. By calculating the Jacobi matrix and linearizing the nonlinear system, the
Observability Gramian (OG) can be computed. Although the error of the linearization will
exist during this procedure, the effects to the analysis of the observability of the system are
quite limited [Zanetti and DSouza (2015)]. Considering the effects of the measurement
noise, Chaves-Jimenez et al. [Chaves-Jiménez, Guo and Gill (2017)] utilized the OG
method to analyze the observability for a spacecraft in the low earth orbit. By utilizing the
OG method, the observability matrix can be calculated in each time step without computing
the high order Lie derivatives, which is suitable for high dimensional systems.

To the best of the authors’ knowledge, no research on the analysis of the effects of
parameter estimations for a free-floating tumbling space target has been published at the
time of writing. Without deeper research on the subject, the intrinsic factors affecting the
accuracy and stability of the estimating methods cannot be derived. This paper focuses
on two kinds of kinematic & dynamic models as well different LIDAR measurements
(i.e., relative attitude measurements and range measurements): 1) traditional quaternions
based kinematics and dynamics model; 2) DVQ based kinematics and dynamics model
(considering the translational and rotational coupled effects). With these system models,
EKFs with different models are proposed. In addition, the observability matrix is calculated
and analyzed analytically and numerically by its rank and Condition number. Moreover,
by calculating the eigenvalues and eigenvectors of the observability matrix, the level of the
observability of each state is revealed [Ablin (1967); Ham and Brown (1983)]. Furthermore,
the time evolution of the covariance matrix of each system model is calculated to test the
system observability. By utilizing the analysis contained in this paper, the intrinsic factors
that affect the results of the parameter estimations of a free-floating tumbling space target
are revealed. Also, by applying methods described in this paper, the optimal composition
of the kinematic & dynamic models and measurements can be selected to increase the
accuracy and stability of the results. This paper is organized as follows. Section 2 gives
a review of the DVQ based kinematics and dynamics along with the traditional kinematics
and dynamics. Then, the models of LIDAR measurements are described in Section 3.
Also, based on the aforementioned models, different EKF based estimating algorithms are
designed. Section 4 described method for calculation of the observability matrix for each
EKF based estimating algorithm by using the OG method. Also, the rank and condition
number of the observability matrix are calculated. Moreover, the covariance time evolution
analysis are made in Section 4. Followed by the mathematical simulations and relative
discussions in Section 5. Finally, the conclusions are drawn in Section 6.
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Figure 1: Model of the chaser satellite and the uncooperative space target [Hou, Ma, Wang
et al. (2017)]

2 Model kinematics and dynamics

Firstly, the overview of the parameter estimations scenario is shown in Section 2.1. Then
four kinds of model kinematics and dynamics are given in Section 2.2 to Section 2.5,
namely: 1) Model kinematics based on traditional quaternions; 2) Traditional model
kinematics and dynamics; 3) DVQ based model kinematics; 4) DVQ based model
kinematics and dynamics. The definitions and basic calculation lemmas for quaternions
and dual quaternions can be found in literature [Hou, Ma, Wang et al. (2017); Filipe and
Tsiotras (2013a,b); Filipe, Kontitsis and Tsiotras (2015)]. In the end, a brief summary of
the aforementioned models are made and discussed in Section 2.6.

2.1 Model overview

The model of the chaser satellite and the uncooperative target is the same as the one in Hou
et al. [Hou, Ma, Wang et al. (2017)]. As can been seen in Fig. 1, the inertial frame is
represented as {I}, and the center of the Earth is set as the origin of the coordinate. The
target’s body frame is represented as {B} with the origin at the target’s center of mass.
In addition, the capturing fixture of the target sets up the coordinate {B’}, which has the
same orientation as {B}. As a result, the coordinates {B} and {B’} only have translational
distance ρ.

Using the aforementioned model, unit quaternion qB/I is utilized to depict the the rotation
of {B} with respect to {I}. rB/I is defined as the distance between the origin of {B} and
{I}. In addition, rm represents the distance between the origin of {B’} and {I}. For the
motion part, ω represents the angular velocity of the target with respect to {I} along with v
representing the linear velocity of the target with respect to {I}.
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2.2 Model kinematics based on traditional quaternions

As proposed in Aghili [Aghili (2012)], the model kinematics based on traditional
quaternions can be shown as:

q̇B/I =
1

2
Ω(ωBB/I)qB/I (1)

where qB/I = ( qB/I,0 qB/I ), qB/I = ( qB/I,1 qB/I,2 qB/I,3 );

ωBB/I = ( ωBB/I,x ωBB/I,y ωBB/I,z ); Ω(ωBB/I) =

 0 −ωBB/I,z ωBB/I,y
ωBB/I,z 0 −ωBB/I,x
−ωBB/I,y ωBB/I,x 0

.

Since only 3 out of 4 elements of one set of quaternions can also be utilized to represent
the model kinematics, and the singularity problem only happens when the error attitude
becomes to 180 degree. The model kinematics based on traditional error quaternions can
be represented as [Lefferts, Markley and Shuster (1982)]:

dδqB/I

dt
= −1

2
Ω(ωBB/I)δqB/I +

1

2
δωBB/I (2)

where δqB/I = q̂
∗
B/IqB/I , and q̂

∗
B/I is the conjugate of the estimation of qB/I , and δqB/I

is the error quaternions of {B} with respect to {I}.

In Eq. (2), when the error quaternions becomes 180 degrees, the singularity problem occurs.
However, as mentioned in Hou et al. [Hou, Ma, Wang et al. (2017)], when utilizing the error
quaternions to represent the attitude and the estimations are available, the error attitudes are
assumed to be much less than 180 degrees. As a result, by utilizing Eq. (2), the attitude
parameters can be estimated without singularity problems.

2.3 Traditional model kinematics and dynamics

The traditional model dynamics without any disturbance and control torques can be
represented as follows [Aghili (2012)]:

dωBB/I

dt
= J−1(−ωBB/I × (JωBB/I)) (3)

where J =

 Jx 0 0
0 Jy 0
0 0 Jz

 is the matrix of the inertia tensors of the target.

Combining Eqs. (2) and (3), one can obtain the traditional model kinematics and dynamics
equations.
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2.4 DVQ based model kinematics

From the Eqs. (2) and (3), it can be found that the position parameters cannot be shown
in the traditional models. This phenomenon will lead to a lack of parameter estimation of
these position parameters. Also, since the lack of position parameters, the translational and
rotational coupled effects are neglected, which will lead to inaccurate system modeling. As
a consequence, considering the drawbacks of the parameter estimations using traditional
model kinematics and dynamics equations, dual quaternions are utilized in this section to
represent the model kinematics. As proposed in Hou et al. [Hou, Ma, Wang et al. (2017);
Filipe, Kontitsis and Tsiotras (2015)], the dual quaternions based model kinematics can be
represented as follows:

2 ˙̂q = ω̂IB/I q̂B/I = q̂B/I ω̂
B
B/I (4)

where q̂B/I = qB/I + εq
′

B/I = qB/I + ε12qB/Ir
B
B/I = qB/I + ε12r

I
B/IqB/I is the unit dual

quaternions from {I} to {B}.
rZX/Y = ( 0 rZX/Y ) , and rZX/Y = ( rZX/Y,x rZX/Y,y rZX/Y,z ) represents the distance
of {X} with respect to {Y} expressed in {Z} in quaternion format. ω̂BB/I = ωBB/I +

εω′BB/I = ωBB/I +εvBB/I = ω+εv is the motion dual quaternions of {B} with respect to {I}

expressed in {B} frame. ωBB/I = ( 0 ωBB/I ) , and ωBB/I = ( ωBB/I,x ωBB/I,y ωBB/I,z )

is the angular velocity of {B} with respect to {I} expressed in {B}. vBB/I = ( 0 vBB/I ) ,

and vBB/I = ( vBB/I,x vBB/I,y vBB/I,z ) represents the linear velocity of {B} with respect
to {I} expressed in {B}. The dual quaternions calculation lemmas can be found in Hou et
al. [Hou, Ma, Wang et al. (2017); Filipe, Kontitsis and Tsiotras (2015)].

Similar to the error quaternions based traditional kinematics Eq. (2) , error quaternions
of qB/I can also be utilized to decrease the dimensions of the dual quaternions. By using
the error attitude quaternions and the vector parts of the other parameters, the DVQ based
model kinematics can be represented as [Hou, Ma, Wang et al. (2017); Filipe, Kontitsis and
Tsiotras (2015)]:

dδq̂B/I

dt
= −1

2
ˆ̃ω
B

B/Iδq̂B/I +
1

2
δq̂B/I ω̂

B
B/I (5)

where ˆ̃ω
B

B/I represents the estimation of ω̂
B
B/I , δq̂B/I represents the dual error quaternion.

As proposed in Hou et al. [Hou, Ma, Wang et al. (2017)], Eq. (5) only needs to compute 6
dimensions dual vector quaternions instead of the 8 dimensions ones in Filipe et al. [Filipe
and Tsiotras (2013a,b); Filipe, Kontitsis and Tsiotras (2015)]. This advantage leads to a
6 × 6 instead of 8 × 8 covariance matrix calculation in the estimating procedure for each
parameter which can reduce a lot of computational load when there are many parameters to
be estimated.
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2.5 DVQ based model kinematics and dynamics

The dual quaternions based model dynamics without any disturbance and control torques
can be represented as follows [Hou, Ma, Wang et al. (2017); Filipe, Kontitsis and Tsiotras
(2015)]:

d(ω̂BB/I)
s

dt
= A−1 ⊗ (−ω̂BB/I × (A⊗ (ω̂BB/I)

s)) (6)

where A =

[
A11 A12

A21 A22

]
, A11 =

[
0 01×3

03×1 mI3×3

]
, A12 = 04×4 , A21 = 04×4 ,

A22 =

[
0 01×3

03×1 JB

]
m is the mass of the target, and JB =

 JBx 0 0
0 JBy 0
0 0 JBz

.

The define of the calculation “⊗” can be found in Hou et al. [Hou, Ma, Wang et al. (2017)]
and also represented here as:

A⊗ â = (A11a+A12a
′
) + ε(A21a+A22a

′
) (7)

where â = a+ εa′, A =

[
A11 A12

A21 A22

]
, A11,A12,A21,A22∈R4×4 .

By extracting the vector parts of each parameter in Eq. (6) and using the DVQ format to
represent Eq. (6), one can obtain the DVQ based model dynamics equations [Hou, Ma,
Wang et al. (2017)]:

d(ω̂
B
B/I)

s

dt
= A

−1 ⊗ (−ω̂BB/I × (A⊗ (ω̂
B
B/I)

s)) (8)

where A =

[
A11 A12

A21 A22

]
, A11 = mI3×3 , A12 = 03×3 , A21 = 03×3 , A22 = JB .

Combining Eq. (5) and Eq. (8), one can obtain the DVQ based model kinematics and
dynamics equations.

2.6 Summary of the model kinematics and dynamics

There are four kinds of model kinematics and dynamics equations (which can be divided
to two kinds of kinematics and dynamics models) are proposed in this section. Section 2.2
and Section 2.3 give the traditional kinematics and dynamics model which are widely used
in various research. However, since the chaser and target are operating in close range, the
target and the service satellite cannot be regarded as the point of mass. As a result, the
translational and rotational coupled effects should be taken into consideration if one needs
to obtain high precision estimations. Comparing Eqs. (2) and (3), it is obvious that the
traditional model kinematics and dynamics equations contain the attitude parameters and
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the parameters of the inertia tensors. However, it can also be seen that the parameters of the
inertia tensors in Eq. (3) is dependent on the attitude parameters in Eq. (2). This is a strong
drawback of the parameters estimating using traditional model kinematics and dynamics
equations since the parameters of the inertia tensors must be estimated after the attitude
parameters converges. This feature leads to a separated parameters estimating action when
using the traditional model kinematics and dynamics equations, which will consume much
more parameters estimating time [Hou, Ma, Wang et al. (2017); Xing, Cao, Zhang et al.
(2010); Filipe and Tsiotras (2013b)]. Also, from the above Eqs. (2) and (3), no parameters
of the translational parameters are represented. This is another strong drawback of the
parameters estimating using traditional model kinematics and dynamics equations since the
very important translational parameters cannot be estimated [Hou, Ma, Wang et al. (2017);
Filipe and Tsiotras (2013b)].

Section 2.4 and Section 2.5 give the DVQ based model kinematics and dynamics model.
It can be found that Eqs. (5) and (8) contain both of the translational and rotational
parameters. Compared to Eqs. (2) and (3), Eqs. (5) and (8) considered the translational
and rotational coupled effects and made the attitude and position parameters integrated
estimations become possible. In addition, the format of Eqs. (5) and (8) are quite familiar
with the well-known Eqs. (2) and (3), and this is another appealing characteristic [Filipe
and Tsiotras (2013a,b); Filipe, Kontitsis and Tsiotras (2015)].

Also, it is apparent that Eq. (8) contains the parameters of the inertial tensors of the
target. This reveals that the DVQ based model kinematics and dynamics equations can
estimate both the pose parameters and the inertial tensors when compared to the DVQ based
model kinematics equations. As a result, the DVQ based model kinematics and dynamics
equations is the most advanced one among the four kinds of modeling techniques. However,
the computational load of it is also the most burdensome.

3 Parameter estimations based on Extended Kalman Filter

The Extended Kalman Filter (EKF) has proved its worth on a multitude of spacecraft
missions since it has been proposed [Crassidis, Markley and Yang (2007)]. By using the
first order Taylor series expansion method to linearize the state equations, the EKF can be
utilized to the nonlinear systems. Although there will be linearization errors in the EKF, this
estimation method is still the workhorse of all the other nonlinear estimating techniques
[Crassidis, Markley and Yang (2007)]. Also, by calculating and analyzing the Jacobian
matrices of the relative systems, the derivatives of the states of each system can be shown
analytically and the inner factors (i.e., the derivatives of each parameter with the other state,
the relationship between one parameter and the other ones, etc.) that influence the states can
be revealed as well [Chaves-Jiménez, Guo and Gill (2017)]. This section firstly proposed
the observation models of the LIDAR system. Then, two kinds of EKF based parameters
estimating algorithms are designed and each of the two algorithms aims at one kind of the
aforementioned system model. Finally, a brief summary is made.
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3.1 Observation equations

The LIDAR system is the most widely used sensor in the Autonomous Rendezvous and
Docking (AR&D) scenarios for it is robust to the complex lighting environment of the
space and can provide the pose measurements. The relative attitude and distance of the
grapple fixture can be measured as:

Y =

[
qm
rm

]
+ v (9)

where rm represents distance between {B’} and {I}. qm represents the relative attitude
between {B’} and {I}. v is the noise of the measurements with a covariance matrix R =
E[vvT ] .

Define the state vector of the system for the traditional kinematics and dynamics equations
(Section 2.2 and Section 2.3) as:

X1 = [ qB/I ωBB/I p ρ ] (10)

where p =
[
px py pz

]
is the moments of inertia ratios of the target, which is defined

as the same as the one in Aghili [Aghili (2012)]:
p =

[
px =

JBy−JBz
JBx

py = JBz−JBz
JBy

px =
JBx−JBy
JBz

]
, ρ = [ ρx ρy ρz ] depicts the

distance between center of mass and the capturing fixture.

Define the state vector of the system for the DVQ based kinematics and dynamics equations
(Section 2.4 and Section 2.5) as:

X2 = [ q̂B/I ω̂
B
B/I p̂ ρ̂ ] (11)

where q̂B/I is the vector part of q̂B/I , ω̂B/I is the vector part of ω̂B/I , p̂ is the vector part
of p̂ , p̂ = p + ε0 , p =

[
0 px py pz

]
is the moments of inertia ratios of the target,

and defining as the same as the one in Aghili [Aghili (2012)]:
p =

[
px =

JBy−JBz
JBx

py = JBz−JBz
JBy

px =
JBx−JBy
JBz

]
, ρ̂ is the vector part of ρ̂ , ρ̂ =

ρ + ε0 depicts the distance between center of mass and the capturing fixture in quaternion
form.

Using the same linearizing technique in Hou et al. [Hou, Ma, Wang et al. (2017)], the
observation equations can be represented as:

Y1 = y(X1) + v

=

[
q̃B/I +Q(q̃B/I)δqB/I

rIB/I + [A(q̃B/I)(I3×3 + 2[δqB/I×])]ρ

]
+ v

(12)

Y2 = y(X2) + v

=

[
q̃B/I +Q(q̃B/I)δqB/I

Y21 + [A(q̃B/I)(I3×3 + 2[δqB/I×])]ρ

]
+ v

(13)
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where

Y21 = 2(˜̂qB/Iδq̂B/I)′q∗B/Iδq̃B/I (14)

3.2 Extended Kalman filter based on kinematics and dynamics in traditional quaternions
form

In this situation, define the state vector of the system as:

X1 = [ qB/I ωBB/I p ρ ] (15)

Since the unit quaternions have the relationship: q2B/I,0 + q2B/I,1 + q2B/I,2 + q2B/I,3 = 1,
using only three out of four elements of one set of unit quaternions can represent the relative
attitude. Therefore, in the selected states, only the vector part of the full unit quaternions is
chosen.

By the selected state Eq. (15) and using the same linearizing technique in Hou et al. [Hou,
Ma, Wang et al. (2017)], one can linearize observation equation as:

H1(X1) = ∂y(X1)
∂X1

=

[
Q(q̃B/I) 03×3 03×3 03×3

−2A(q̃B/I) [ρ×] 03×3 03×3 H11

]
(16)

where

H11 = A(q̃B/I) + 2A(q̃B/I)(δqB/I×) (17)

Assuming that the proportions of the inertial tensors of the target are constants and the
uncooperative space target is a rigid body, define:

ṗ = [ 0 0 0 ]T (18)

ρ̇ = [ 0 0 0 ]T (19)

Using the same linearizing technique in Hou et al. [Hou, Ma, Wang et al. (2017)], the
linearization form of the state equations can be represented as:

X1,k = Φ1,k/k−1X1,k−1 (20)

where Φ1,k+1/k = eF1,kT .
= I + F1,kT , F1,k =


−(ωBB/I×) 1

2I3×3 03×3 03×3
03×3 A1 B1 03×3
03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3

,

A1 =

 0 pxωz pxωy
pyωz 0 pyωx
pzωy pzωx 0

 , B1 =

 ωyωz 0 0
0 ωxωz 0
0 0 ωxωy

, T is the time interval

between sampling points.
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Furthermore, the covariance of the discrete-time process can be calculated as:

Q1,k = C1,kD
−1
1,k (21)

where
(
C1,k

D1,k

)
= exp

{(
F1,k Q1,c

0 −F T1,k

)
T

}(
0
I

)
,

Q1,c = diag{ 03×3 σ21 03×3 03×3 }, and σ1 is the standard deviation of the
processing noise.

Depending on the aforementioned analysis, the EKF based on traditional quaternions based
kinematics and dynamics model can be represented as:

δX1,k/k−1 = Φ1,k/k−1δX1,k−1/k−1 (22)

X1,k/k−1 = X1,k−1/k−1 + δX1,k/k−1δT (23)

P1,k/k−1 = Φ1,k/k−1P1,k−1/k−1Φ
T
1,k/k−1 +Q1,k (24)

K1,k = P1,k/k−1H
T
1,k(H1,kP1,k/k−1H

T
1,k +Rk)

−1 (25)

δX1,k = K1,k(Y1,k − y1(X1,k/k−1)) (26)

P1,k = [I −K1,kH1,k]P1,k/k−1 (27)

To update the quaternions, the following equation is utilized:

qB/I,k = qB/I,k−1δqB/I,k (28)

where δqB/I,k = (

√
1−

∥∥∥δqB/I,k∥∥∥2 δqB/I,k ).

To update the other states, using the following equation:

X1,k/k = X1,k−1/k−1 + δX1,k (29)

3.3 Extended Kalman filter based on DVQ based kinematics and dynamics model

In this situation, define the state vector of the system as:

X2 = [ q̂B/I ω̂
B
B/I p̂ ρ̂ ] (30)

By the selected state Eq. (30) and using the same technique in Hou et al. [Hou, Ma, Wang
et al. (2017)], the linearization format of y(X2) can be represented as:

H2(X2) = ∂y(X2)
∂X2

=

[
Q(q̃B/I) 04×3 04×6 04×6 04×6

−2A(q̃B/I) [ρ×] Γ(q̃B/I) 03×6 03×9 H22

]
(31)
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where Γ(q̃B/I) = 2(˜̂qB/I)′δq̃B/I q̃∗B/I = 2A(q̃B/I), H22 = A(q̃B/I)+2A(q̃B/I)(δqB/I×).

Since the proportions of the inertial tensors are constants and the uncooperative space target
is a rigid body, it can be discovered that:

˙̂p=0̂ (32)

˙̂ρ=0̂ (33)

Using the same technique in Hou et al. [Hou, Ma, Wang et al. (2017)], the linearization
form of the state equations can be represented as:

X2,k+1 = Φ2,k/k−1X2,k + wk (34)

where Φ2,k/k−1 = eF2,k4T .
= I + F2,k∆T , F2,k =

−(ω̂
B
B/I×) 1

2I6×6 06×6 06×6
06×6 A2 B2 06×6
06×6 06×6 06×6 06×6
06×6 06×6 06×6 06×6

, A2 =

[
A21 A22

(v×) −(ω×)

]
, A21 =

 0 pxωz pxωy
pyωz 0 pyωx
pzωy pzωx 0

, A22 = 03×3,

B2 =

[
B21 03×3
03×3 03×3

]
, B21 =

 ωyωz 0 0
0 ωxωz 0
0 0 ωxωy

,4T is the sampling time.

Furthermore, the covariance of the discrete-time process can be calculated as:

Q2,k = C2,kD
−1
2,k (35)

where
(
C2,k

D2,k

)
= exp

{(
F2,k Q2,c

0 −F T2,k

)
T

}(
0
I

)
, and

Q2,c = diag{ 06×6 σ2ω σ2v 06×6 06×6 }.
Depending on the aforementioned analysis, the EKF based on DVQ can be represented as

δX2,k/k−1 = Φ2,k/k−1δX2,k−1/k−1 (36)

X2,k/k−1 = X2,k−1/k−1 + δX2,k/k−1δT (37)

P2,k/k−1 = Φ2,k/k−1P2,k−1/k−1Φ
T
2,k/k−1 +Q2,k (38)

K2,k = P2,k/k−1H
T
2,k(H2,kP2,k/k−1H

T
2,k +Rk)

−1 (39)

δX2,k = K2,k(Y2,k − y(X2,k/k−1)) (40)
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P2,k = [I −K2,kH2,k]P2,k/k−1 (41)

To update the quaternions, the following equation is utilized:

q̂B/I,k = q̂B/I,k−1δq̂B/I,k (42)

where δq̂B/I,k = δqB/I,k + εδq
′

B/I,k , δqB/I,k = (

√
1−

∥∥∥δqB/I,k∥∥∥2 δqB/I,k ) ,

δq
′

B/I,k = (
−δqB/I,kδq

′ ∗
B/I,k√

1−‖δqB/I,k‖2
δq′B/I,k )

To update the other states, using the following equation:

X2,k/k = X2,k−1/k−1 + δX2,k (43)

3.4 Summary of the EKFs with different models

This section proposes two kinds of EKF based parameters estimation algorithms based
on the aforementioned models along with the observation equations provided by LIDAR
systems. Firstly, the observation equations of the LIDAR systems are given and the
linearization of them are derived. Then, the EKF based on the kinematic and dynamics
model in traditional quaternions form and the DVQ-EKF are proposed. From the two kinds
of EKFs, it can be found that the DVQ-EKF can estimate not only the attitude parameters
and inertial parameters but also the translational parameters as well when compared to
the EKF based on the kinematic and dynamics model in traditional quaternions form.
As a result, by considering the coupling effects between the translation and rotation,
the DVQ-EKF can be considered as the “full parameters” estimation algorithm without
contacting the uncooperative space target [Hou, Ma, Wang et al. (2017)].

4 Observability determination
The OG is computed in this section. By computing the rank of the observability matrix,
whether the EKFs with traditional modeling technique and DVQ modeling technique is
observable is discovered. Then, by setting a threshold and calculating the Condition number
of each of the aforementioned two systems, the degree of observability by which not only
determining whether a system is observable or not but also the degree of observability
of a system is computed. Further more, in order to study the Observability matrix more
comprehensively, the Singular Value Decomposition (SVD) method is utilized to analyze
which combination of the states is the most observable and which one is the least observable
[Chaves-Jiménez, Guo and Gill (2017); Ham and Brown (1983)]. Then, the covariance time
evolution analysis is made to analyze the observability of each of the two aforementioned
systems in the view of estimation covariance. Finally, a brief summary is made.

4.1 Observability matrix

The discrete Observability Gramian (OG) matrix is computed as [Chaves-Jiménez, Guo and
Gill (2017)]:
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OG =

m∑
k=1

Φ(tk, t0)H
T
k R
−1
k HkΦ

T (tk, t0) (44)

where Φ(tk, t0) = Φk/k−1 · · ·Φ2/1Φ1/0, and m is the total simulation steps during the
parameter estimating procedure.

Depending on different aforementioned models, the OG matrices can be represented as:

1. For the case of traditional quaternions based kinematics and dynamics model:

OG1 =

m∑
k=1

Φ1(tk, t0)H
T
1,kR

−1
k H1,kΦ

T
1 (tk, t0) (45)

2. For the case of DVQ based kinematics and dynamics model:

OG2 =
m∑
k=1

Φ2(tk, t0)H
T
2,kR

−1
k H2,kΦ

T
2 (tk, t0) (46)

A system is fully observable means that the states can be recovered from the measurements
no matter what the initial values of them are chosen. On the contrary, if a system is not
fully observable, the states may be affected by the relative initial values or the states cannot
be well estimated. By the OG method, a system is considered fully observable if the rank
of the OG matrix has full rank [Krener and Ide (2009)]. By utilizing the OG matrix, one
can discover whether a system is fully observable or not during the total simulating time.
However, only using the OG matrix cannot show how observable a system is.

Since the observability is analyzed by computer simulations, a tolerance value must be
pre-defined to check the rank of the relative OG matrix to account for the numerical error.
The tolerance value can be set as [Friedman and Frueh (2018)]:

tol = max(λi)×max(size(OGi))× eps (47)

where λi is the singular values of the OG matrix, eps is the machine precision. Since the
singular values must be above some tolerance to account for numerical error, only when the
singular value of the OG matrix is bigger than tol will it be considered as positive value.

4.2 Observability conditions

Since the rank of the OG matrix cannot indicate the degree of the observability of a certain
system, the Condition number of the OG matrix is introduced as a measurement of the
degree of observability. The Condition number of a OG matrix is defined as [Yu, Cui and
Zhu (2014)]:
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cond =
max(λi)

min(λi)
(48)

where λi are the singular values of the OG matrix.

The condition number can reveal the innate characteristics of an OG matrix. If the condition
number is big, it shows that the maximum singular value is much bigger than the minimum
one. This phenomenon indicates that a small disturbance from the noise can have huge
effects on the observability matrix. In this situation, an OG matrix is considered to be
ill-conditioned and will provide a lower degree of observability. However, when the
condition number is small, it shows that the maximum singular value and the minimum
singular value are close. This indicate that the system is well conditioned and has a
relatively better observability. As a result, the larger condition number a system has, the
lower observability it will be [Chaves-Jiménez, Guo and Gill (2017); Wilson and Guhe
(2005); Krener and Ide (2009)].

Also, the inverse of the condition number is selected as a indicator to show the degree of
observability of a system [Yu, Cui and Zhu (2014)]:

ob =
1

cond
(49)

The bigger ob means the better observability of a system.

By the calculated condition number, one can not only find whether a system is observable
or not but also reveal how observable a system is. Nevertheless, the state with the most
influence on the observability is still obscure. In the parameters estimating tasks of an
unknown space target, it is vital important to find out which state is the most observable
and which one is the least. To achieve this goal, the SVD method is utilized. By using the
SVD method to an OG matrix, the OG matrix can be represented as:

OG = USV T (50)

where S contains the singular values of the relative OG matrix, U and V contain the singular
vectors of the OG matrix. Denote ui and vi are the column vector relative to λi.

After normalization of the OG matrix [Chaves-Jiménez, Guo and Gill (2017); Ham and
Brown (1983)], singular values and the relative column vectors can reveal the following
characters. The column vector of the maximum singular value of the OG matrix reveals the
most observable linear combination of the relative states, and the biggest values (absolute
value) in the column vector indicates the most observable states. On the contrary, the
minimum singular values of the OG matrix reveals the least observable linear combination
of the relative states [Ablin (1967); Ham and Brown (1983)].

4.3 Covariance time evolution analysis

The covariance of the states in each aforementioned models contains all the standard
deviations of the parameter estimates. The time evolution analysis of the covariance can
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reveal the estimation error of every parameters varying with time. In addition, by using the
covariance time evolution analysis, one can discover the final error of a certain parameter
and check whether the relative parameter is well estimated. Also, this analysis can be
utilized as a tool to test the observability analyzing results. If a parameter has a good
observability, the standard deviation of it will convergent to zero. On the contrary, the
standard deviation will have error if a parameter is assumed to be with low degree of
observability. In other words, the covariance time evolution analysis has strong relationship
with the observability analysis. The higher observability a parameter has the lower the
covariance error will be and vice versa.

4.4 Summary of the observability determination

This section gives there kinds of approaches to analyze the observabilities of the models
in Section 2.3 and Section 2.5 along with the method to compute the observability matrix.
First of all, the OG method is calculated by Eq. (45). Then, the rank condition analysis
method is introduced to check whether the system is observable or not. Furthermore, by
computing the condition number of each observability matrix, the degree of observability
of a certain system is revealed. In addition, the most to least observability of the linear
combination of the parameters are made by the SVD method. It can be found that the
covariance of the measurement noise will affect the observability analyzing results by Eq.
(45). Although the values of the Rk are positive, they can change the singular values of the
OG matrix that will affect the condition number which in turn affects the observability
analyzing results. If a singular value of the OG matrix is quite close to the threshold
computed by Eq. (47), the measurement noise may affect it and make it below the threshold
which will affect the observability [Chaves-Jiménez, Guo and Gill (2017); Friedman and
Frueh (2018); Bageshwar, Gebre-Egziabher, Garrard et al. (2009)]. Finally, the covariance
time evolution analysis is made to show the standard deviation varying with time of each
parameter to verify the results of the observability analysis.

5 Simulation
The mathematical experiment results are presented in this section. First of all, the
simulation initial conditions are given. Then, the rank of each of the two aforementioned
models varying with time is shown. In addition, the condition number is analyzed.
Furthermore, by utilizing the SVD method, the rank of observability of each parameters
in the relative system is depicted. Finally, the covariance of each algorithm is shown and
the standard deviations of each parameter varying with time is depicted to test whether the
observability analysis are effective.

5.1 Initial conditions

The initial conditions are set as the same as the ones in Hou et al. [Hou, Ma, Wang et al.
(2017)] to analyze the intrinsic factors that affect the two EKFs based on different models.
The initial conditions of the states are set in Tab. 1.
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Table 1: Initial conditions of the states
Variable Initial value
qB/I qB/I(0) = (0.5, 0.5, 0.5, 0.5)T

rIB/I rIB/I(0) = (0, 55, 55, 55)Tm

ωBB/I ωBB/I(0) = (0, 0.5, 0.5, 0.5)T rad/s

vBB/I vBB/I(0) = (0, 0, 0, 0)Tm/s

p p(0) = (0, 1,−1, 0)T

ρ ρ(0) = (0, 0, 0, 0)Tm

Table 2: Real initial values of the states
Variable Initial value
qB/I , real qB/I , real(0) = (1, 0, 0, 0)T

rIB/I , real rIB/I , real(0) = (0, 50, 50, 50)Tm

ωBB/I , real ωBB/I , real(0) = (0, 0.1, 0.1, 0.1)T rad/s

vBB/I , real vBB/I , real(0) = (0, 0.01, 0.01, 0.01)Tm/s

preal preal(0) = (0, 3/7,−3/7, 0)T

ρreal ρreal(0) = (0, 0.5, 0.5, 0.5)Tm

The real initial values of the states are set in Tab. 2.

In addition, the covariances of the processing noise are set as:

σ2ω = 5× 10−4(rad/s)2 (51)

σ2v = 1× 10−3(m/s)2 (52)

The frequency of the LIDAR is 2 Hz, and the initial values of measurements are given as:

qB/I,m(0) = (0.5, 0.5, 0.5, 0.5)T (53)

and

rIB/I,m(0) = (55, 55, 55)Tm (54)

with the covariances of the measurement noise as:

R = diag((0.01)I4×4, (0.1)I4×4) (55)

Furthermore, the initial state covariance matrix can be represented as : P1(0) = I12×12 and
P2(0) = I24×24. The simulation time is set as: T1 = T2 = T = 300s.

5.2 Rank of the OG matrix

In this subsection, the rank of the OG matrix of each of the aforementioned two models
varying with time will be shown. The OG matrix is calculated by Eqs. (45) and (46), and
the threshold is calculated by Eq. (47).
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Figure 2: The rank of the OG1 matrix varying with time
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Figure 3: rank of the OG2 matrix varying with time

It can be seen from Figs. 2 and 3 that the ranks of both of the OG1 and OG2 matrices
are not full rank. These simulation results reveal that the parameters of the uncooperative
space target are not fully observable during the parameters estimating process. In the
OG1 case, the rank converged at 6 soon after the start of the simulation and the rank of
the OG2 becomes 9 instead. Although the rank of the OG1 case is lower than the one
of the OG2 case, it cannot say that the observability of the traditional quaternions based
kinematics and dynamics model is worse than the one of the DVQ based kinematics and
dynamics model. From the the aforementioned Section 3.2, the number of parameters to
be estimated in the case of traditional quaternions based kinematics and dynamics model
is 4 with the dimensions of 12. However, the number of parameters to be estimated in the
case of DVQ based kinematics and dynamics model is 6 with the dimensions of 18. As
a result, from the rank results it can be reveal that both the traditional quaternions based
kinematics and dynamics model and DVQ based kinematics and dynamics model have the
same proportions of the rank of the relative OG matrix (33%). Nevertheless, the DVQ based
kinematics and dynamics model can be utilized to estimate translational parameters where
the traditional quaternions based kinematics and dynamics model fails.

5.3 Observability conditions analysis

From the simulations in Section 5.2, only by utilizing the rank results, the degree of the
observabilities cannot be revealed. Figs. 4 and 5 show the conditional number of the
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Figure 5: The condition number of the OG1 matrix varying with time

OG1 and OG2 matrices varying with time. Form the simulation results, it can be found
that the conditional number of the OG1 is around 6000 however the one of the OG2 is
much larger. From the aforementioned Section 5.3, if a system has a larger condition
number, the degree of observability will be lower. As a result, kinematics and dynamics
in traditional quaternions form can provide a better observability when compared to the
DVQ based kinematics and dynamics model. The main reason of this phenomenon is that
the DVQ based kinematics and dynamics model contains more unobservable parameters
although the proportions of the unobservable parameters are the same as the ones in the
case of traditional quaternions based kinematics and dynamics model. Since there are more
translational parameters to be estimated by the estimating algorithms using DVQ based
kinematics and dynamics model, the degree of observability of OG2 is lower. This can be
regarded as the cost of estimating the translational parameters.

5.4 OG matrices SVD analysis

From the above two kinds of analysis, whether a system is observable and how observable
the system is are discovered. However, which parameter in the relative system is the most
observable one and which one is the least observable are still obscure. As introduced by
Yu et al. [Yu, Cui and Zhu (2014)], the SVD method is utilized to find out the ranks of the
parameters estimated.
Since the OG1 and OG2 are both not with full rank, the ranks of the parameters estimated
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Table 3: Tab. 2. SVD results of the OG1 (EKF based on traditional quaternions based
kinematics and dynamics model)

singular values 1.17× 108 1.16× 108 1.8× 106 6× 103 5.9× 103 v6 = 5.8× 103

Column vector V1 V2 V3 V4 V5 V6
qB/I,1 −0.4162 0.6996 −0.5808 5.3× 10−5 −4.9× 10−5 7× 10−5

qB/I,2 −0.8371 −0.5442 −0.0556 3.36× 10−5 0.0001 −0.0008
qB/I,3 0.3550 −0.4630 −0.8121 −2.24× 10−5 −0.0002 −0.0088
ωB
B/I,x

0 0 0 2.2× 10−5 3.37× 10−5 0

ωB
B/I,y

0 0 0 1.9× 10−5 0 0

ωB
B/I,z

0 0 0 0 0 0

p1 0 0 0 0 0 0
p2 0 0 0 0 0 0
p3 0 0 0 0 0 0
ρx 0.0002 8.84× 10−5 0.0036 0.6467 0.6831 −0.3392
ρy 1.09× 10−5 0.0002 0.0091 0.1142 −0.5264 −0.8425
ρz −0.0102 9.2× 10−5 −0.0045 0.7541 −0.5062 0.4185

are only focus on the singular values that exceed the threshold by Eq. (47).

Tab. 3 reveals the SVD results of the case of using traditional quaternions based kinematics
and dynamics model. It can be found that in Tab. 2, only 6 parameters are observable and
the rank of the observability of the estimated parameters is: qB/I,2 > qB/I,1 > qB/I,3 >

ρz > ρx > ρy . ωBB/I,x, ω
B
B/I,y, ω

B
B/I,z, p, p2, p3 are not observable.

Tab. 4 reveals the SVD results of the case of using the DVQ based kinematics and dynamics
model. It can be found that in Tab. 4, only 9 parameters are observable and the rank of the
observability of the estimated parameters is : rIB/I,z > rIB/I,x > rIB/I,y > qB/I,3 >

qB/I,1 > qB/I,2 > ρz > ρx > ρy . ωBB/I,x, ω
B
B/I,y, ω

B
B/I,z, v

B
B/I,x, v

B
B/I,y, v

B
B/I,z,p1, p2, p3

are not observable.

As the singular values reveal the abilities of enlarging or shrinking a vector by a certain
matrix, the singular values of OG1 and OG2 can reveal which state is the most accurately
estimated one. The biggest value of a state in the column vector of the largest singular
value represent the most observable state, and the singular values of the same state in the
relative column vector of OG1 and OG2 represent which one has the higher estimating
accuracy. As seen in Tabs. 3 and 4, the state qB/I,1, qB/I,2,qB/I,3 have the singular values
of 1.17 × 108, 1.16 × 108, 1.8 × 106 in OG1 and 0.001 × 109, 0.006 × 109, 0.005 × 109

in OG2 respectively. Since the singular values of the same states in OG2 is smaller than
the ones in OG1, the parameters qB/I,1, qB/I,2,qB/I,3 have higher estimating accuracies
when utilizing the traditional quaternions based kinematics and dynamics model. For the
other three common states ρx, ρy, ρz , the relative singular values are almost the same,
which will lead to similar estimating accuracies. This phenomenon shows that kinematics
and dynamics in traditional quaternions form will have higher accuracies when utilized
in estimating the relative attitudes. This is quite understandable since the kinematics and
dynamics in traditional quaternions form has less parameters to estimate (which leads to
lower nonlinearities in estimation) and the traditional quaternions based kinematics and
dynamics model neglect the translational and rotational coupled effects that will make the
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Table 4: SVD results of the OG2 (EKF based onDVQ based kinematics and dynamics
model)

Singular values 1.367× 109 1.041× 109 6× 108 1× 106 6× 106 5× 106 5.99× 103 5.97× 1035.90× 103

Column vector V1 V2 V3 V4 V5 V6 V7 V8 V9

qB/I,1 −0.0157 0.0017 −0.0109 0.0545 −0.8106−0.5826 −0.0003 0.0014 −0.0106

qB/I,2 −0.0007 0.0133 0.0118 −0.2690 0.5499 −0.7905 −0.0003 −0.0057 −0.0024

qB/I,3 −0.0001 −0.0152 −0.0106 −0.9615−0.1996 0.1880 0.0008 0.0009 −0.0049

qd,B/I,1(r
I
B/I,x) 0.0838 −0.9227 −0.3754 0.0127 0.0138 −0.0159−2.6× 10−6 −0.0002 4× 10−5

qd,B/I,2(r
I
B/I,y) −0.4330 0.3058 −0.8478 0.0018 0.0174 0.0044 2.8× 10−5 −0.0001 0.0003

qd,B/I,3(r
I
B/I,z) 0.8974 0.2338 −0.3741 0.0003 −0.0666 −0.0072 1.4× 10−5 2× 10−6 −0.0001

ωB
B/I,x 0 0 0 0 0 0 0 0 0

ωB
B/I,y 0 0 0 0 0 0 0 0 0

ωB
B/I,z 0 0 0 0 0 0 0 0 0

vBB/I,x 0 0 0 0 0 0 0 0 0

vBB/I,y 0 0 0 0 0 0 0 0 0

vBB/I,z 0 0 0 0 0 0 0 0 0

p1 0 0 0 0 0 0 0 0 0

p2 0 0 0 0 0 0 0 0 0

p3 0 0 0 0 0 0 0 0 0

ρx −2.4× 10−5 −1.15× 10−5−3.3× 10−5 0.0025 0.0668 0.0012 0.6457 0.5584 −0.5209

ρy 2.85× 10−5 −8× 10−5 −1.3× 10−6 −0.0028 0.0004 −0.0058 −0.4011 0.8284 0.3909

ρz −3.25× 10−5 3.59× 10−5 −0.0001 0.0031 0.0064 0.0056 −0.6498 0.0435 −0.7588

attitude estimation much easier. The further simulations of the estimating accuracies of
every parameter will be shown in the following subsection Section 5.5.

Furthermore, from the above Tabs. 3 and 4, it can be revealed that the parameters relative
to the measurements are with higher degree of observabilities (q, r and ρ), and the dynamic
parameters (ω and v) and inertial parameters (p) are not observable. In addition, the
parameters estimated by the traditional quaternions based kinematics and dynamics model
are with higher observability than the same ones estimated by DVQ based kinematics and
dynamics model. This phenomenon o shows that the DVQ based kinematics and dynamics
model is sensitive to the initial conditions compared to the traditional quaternions based
kinematics and dynamics model since there are more unobservable parameters to estimate.

5.5 Covariance time evolution analysis

Figs. 6 and 7 show the norm of the covariances of the estimation results using traditional
quaternions based kinematics and dynamics model and the estimation results using DVQ
based kinematics and dynamics model separately. It can be found that the final norm of
the covariance of the DVQ based EKF is higher since the DVQ-EKF has more observable
states. However, the estimation results using traditional quaternions based kinematics and
dynamics model has less initial fluctuations which proved the aforementioned analysis.

Fig. 8 to Fig. 17 show the standard deviations of the parameters estimated using both of the
two models.It can be found in Figs. 8 and 9 that the standard deviations of the qB/I are less
than 0.05, and for the case using traditional quaternions based kinematics and dynamics the
least standard deviation can be converged to less than 0.02. The results verified the analysis
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Figure 6: The norm of the state covariance matrix ‖P1‖ varying with time

T(s)
0 50 100 150 200 250 300

no
rm

P
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
normP

2

Figure 7: The norm of the state covariance matrix ‖P2‖ varying with time

T(s)
0 50 100 150 200 250 300

S
qv

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
S

qv1
S

qv2
S

qv3

Figure 8: Standard deviations of the qB/I by the EKF using traditional quaternions based
kinematics and dynamics

in Section 5.4 that the EKF using traditional quaternions based kinematics and dynamics
model can provide more accurate estimations of qB/I . Nevertheless, even if the qB/I
estimated by the EKF using the DVQ based kinematics and dynamics models has larger
errors than the one using the traditional quaternions based kinematics and dynamics, the
values can be controlled lower than 0.03, which is acceptable in the parameters estimating
missions.

Figs. 10 and 11 illustrate the standard deviations of the ρ by the EKFs using traditional
quaternions based kinematics and dynamics and DVQ based kinematics and dynamics
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Figure 9: Standard deviations of the qB/I by the EKF using DVQ based kinematics and
dynamics
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Figure 10: Standard deviations of the ρ1 by the EKF using traditional quaternions based
kinematics and dynamics

respectively. As can be discovered from the simulation results, the standard deviations of ρ2
are much larger than the ones of ρ1. This phenomenon happens since the ρ2 is coupled with
the unobservable states v in the DVQ based kinematics and dynamics models. In addition,
it can be seen that the time varying tendency of both of ρ1 and ρ2 are similar for the reason
that ρ1 and ρ2 have similar observabilities. However, the accuracies of ρ1 and ρ2 are lower
than the ones of qB/I since the singular values of ρ1 and ρ2 are smaller. The results of ρ1
and ρ2 also follows the analysis made by Section 5.4.

Figs. 12 and 13 show the standard deviations of the ωBB/I by the EKFs using traditional
quaternions based kinematics and dynamics and DVQ based kinematics and dynamics
respectively. It can be discovered that the accuracies of the ωBB/I from both of the two
EKFs are almost the same (lower than 0.05). These results are very good for the estimation
of the ωBB/I since from the analysis in Section 5.4 the ωBB/I is unobservable and can only
be estimated by the EKFs. The estimating results of the ωBB/I prove that the observability
analysis can be utilized as a method to find out which states are observable and have good
accuracies. However, the analysis results cannot be utilized to determine the estimating
result for a certain unobservable state because the initial errors and estimating algorithm
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Figure 11: Standard deviations of the ρ2 by the EKF using DVQ based kinematics and
dynamics
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Figure 12: Standard deviations of the ωBB/I,1 by the EKF using traditional quaternions
based kinematics and dynamics
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Figure 13: Standard deviations of the ωBB/I,2by the EKF using DVQ based kinematics and
dynamics

are also key ingredients of the parameter estimations.

Figs. 14 and 15 show the standard deviations of the p by the EKFs using traditional
quaternions based kinematics and dynamics and DVQ based kinematics and dynamics
respectively. As can be seen from the results, since p1 and p2 are both unobservable and
the initial errors for p are big, the estimating results by the EKFs are not good. the average
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Figure 14: Standard deviations of the p1 by the EKF using traditional quaternions based
kinematics and dynamics
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Figure 15: Standard deviations of the p2 by the EKF using DVQ based kinematics and
dynamics

standard deviation is almost 0.4 for p1 and 0.3 for p2 . The results revealed that the inertial
parameters are sensitive to the initial errors and one must design more robust algorithms to
achieve high accuracy estimations.

Figs. 16 and 17 show the standard deviations of the vBB/I and qq by the EKF using DVQ
based kinematics and dynamics. These two states are about the translational motion which
the EKF using traditional quaternions based kinematics and dynamics cannot estimate.
In addition, the qd is the most observable state and vBB/I is unobservable in the DVQ
situation. As can be seen from the results, both of the estimation errors are quite small. The
results prove that the former analysis of the observable and unobservable states are reliable.
Moreover, the DVQ based kinematics and dynamics model is quite useful in translation
parameter estimations due to the simulation results of vBB/I with large initial errors (0.1
m/s).

5.6 Summary

This section proposes the simulation results of the observability analysis. First of all, the
rank of the two OG matrices are calculated. Although the proportions of the observable



Observability Analysis in Parameters Estimation 201

T(s)
0 50 100 150 200 250 300

v B
/I

B

0

0.2

0.4

0.6

0.8

1

1.2

v
B/I,x
B

v
B/I,y
B

v
B/I,z
B

Figure 16: Standard deviations of the vBB/I by the EKF using DVQ based kinematics and
dynamics
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Figure 17: Standard deviations of the qd by the EKF using DVQ based kinematics and
dynamics

parameters are the same, the DVQ based kinematics and dynamics model still has more
observable parameters estimated in number. Then, the condition number and SVD analysis
are made to reveal the degrees of observabilities of the parameters in both of the two
models to show the degree of observability and rank of observabilities of the estimated
parameters. Finally, the norm of the covariances of the estimation results and the standard
deviations of each of the estimated parameters are given to analyze the observability of
each parameter analytically. From the simulation results, if one needs to increase the
observabilities of the parameters, more measurements relative to them ( i.e., ω, v, p) need
to be considered. However, since the sensors for parameter estimations of an uncooperative
space target cannot provide contacting information, the proportions of the inertia tensors
must be estimated without any relative information. Also, the dynamic parameters (i.e.,
ω and v) cannot be measured directly since there will not be communications from the
uncooperative space target and the dynamic parameters must be calculated from other
indirect measurements. under this circumstance, the unobservable parameters (ω, v and
p) can only be estimated from the parameters estimating algorithm, which becomes
vital important in the parameters estimating missions aiming at the uncooperative space
targets. Furthermore, the observability analysis can only tell which state is observable
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and find out which observable state has the highest estimating accuracy. Nevertheless,
the estimation results of the unobservable states cannot be revealed by the observability
analysis. The estimation results of the unobservable states should be discovered by a
number of simulations with different initial errors since they are unobservable. Since this
paper is focus on the observability analysis of the EKFs using different kinds of kinematic
and dynamic models, only one case of initial errors is given. However, the initial errors
given by this paper are quite large in the AR&D missions. From the simulation results
by Section 5.5, it can be found that EKF using the DVQ based kinematics and dynamics
not only has acceptable estimating precision but also outputs “full parameters” estimating
results without contacting the uncooperative space target.

6 Conclusion

The observabilities of EKFs with different system models are analyzed by this paper. First
of all, the traditional quaternions based kinematics and dynamics model and the DVQ
based kinematics and dynamics model (considering translational and rotational coupled
effects) are reviewed. Then, the EKFs based on the two different kinds of models are
designed. By computing the OG matrices of both of the two models, the observabilities
are analyzed numerically and analytically. From the simulation results, the EKF based on
traditional quaternions based kinematics and dynamics model can have better observability
on the attitude parameters however it cannot estimate the translational parameters in the
same time. The EKF based on DVQ based kinematics and dynamics model has lower
degree of observability, but it is almost the full-parameters estimation algorithm without
contacting the target. Also, the results of covariances varying with time show that the
final errors of both of the two designed EKFs are almost the same within the given initial
errors, and only some fluctuations occurred in the beginning of the DVQ-EKF estimation
procedure. This phenomenon reveals that within the initial errors given by this paper, the
DVQ based kinematics and dynamics model can not only provide more information about
the parameters but also has a similar accuracy. As a result, the composition of DVQ based
kinematics and dynamics model and LIDAR measurements is strongly recommended to be
utilized in the parameter estimations missions aiming at uncooperative space targets.
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