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Abstract: In the optimal control problem of nonlinear dynamical system, the 
Hamiltonian formulation is useful and powerful to solve an optimal control force. 
However, the resulting Euler-Lagrange equations are not easy to solve, when the 
performance index is complicated, because one may encounter a two-point boundary 
value problem of nonlinear differential algebraic equations. To be a numerical method, it 
is hard to exactly preserve all the specified conditions, which might deteriorate the 
accuracy of numerical solution. With this in mind, we develop a novel algorithm to find 
the solution of the optimal control problem of nonlinear Duffing oscillator, which can 
exactly satisfy all the required conditions for the minimality of the performance index. A 
new idea of shape functions method (SFM) is introduced, from which we can transform 
the optimal control problems to the initial value problems for the new variables, whose 
initial values are given arbitrarily, and meanwhile the terminal values are determined 
iteratively. Numerical examples confirm the high-performance of the iterative algorithms 
based on the SFM, which are convergence fast, and also provide very accurate solutions. 
The new algorithm is robust, even large noise is imposed on the input data. 

Keywords: Nonlinear Duffing oscillator, optimal control problem, Hamiltonian 
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1 Introduction 
The aim of the paper is to provide a highly efficient method for solving the optimal 
control force u in the nonlinear Duffing oscillator: 
𝑥̈𝑥(𝑡𝑡) + 𝛾𝛾𝑥̇𝑥(𝑡𝑡) + 𝛼𝛼𝛼𝛼(𝑡𝑡) + 𝛽𝛽𝑥𝑥3(𝑡𝑡) = 𝑢𝑢(𝑡𝑡),             (1) 
which is often appeared in the literature [Cveticanin (2013)], with widespread applications in 
science and engineering, from a nonlinear spring-mass system in mechanics to fault signal 
detection [Hu and Wen (2003)], and structures design [Suhardjo, Spencer and Sain (1992)]. 
The control of a Duffing oscillator has a seminal significance to the control problems of 
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nonlinear dynamic responses of aerospace structures, such as beams, plates, and shells. 
In the optimal control problem, one desires to control the response of a nonlinear 
structure remained within a specified safety limit, and thus one may encounter the 
problem that the external forces are not yet known, but service for a specific purpose of 
controlling the nonlinear structure to a desired state. The control forces are designed 
intentionally, such that a specified cost functional which weights the cost of control vs. 
the allowed response is minimized. The control of nonlinear aerospace structural systems 
has gained much attention in the past several decades, and different controllers were 
proposed for the applications to different areas [Suhardjo, Spencer and Sain (1992); 
Agrawal, Yang and Wu (1998)]. Van Dooren et al. [Van Dooren and Vlassenbroeck 
(1982); El-Gindy, El-Hawary, Salim et al. (1995); El-Kady and Elbarbary (2002)] have 
introduced the Chebyshev series expansion method to solve the controlled problem of 
Duffing oscillator. Razzaghi et al. [Razzaghi and Elnagar (1994)] have applied a 
pseudospectral method to solve this problem, Garg et al. [Garg, Patterson, Hager et al. 
(2010)] have provided a unified pseudospectral method to solve the optimal control 
problems, and Lakestani et al. [Lakestani, Razzaghi and Dehghan (2006)] have applied a 
semi-orthogonal spline wavelets to solve this problem. Previously, Rad et al. [Rad, 
Kazem and Parand (2012)] used the radial basis functions method to solve the optimal 
control problem of Duffing oscillator, and Elgohary et al. [Elgohary, Dong, Junkins et al. 
(2014)] applied a simple collocation method together with the radial basis functions 
method to solve the optimal control problem of Duffing oscillator with a simple 
performance index. 
Liu [Liu (2012)] has applied the Lie-group adaptive method to solve the optimal control 
problem of nonlinear Duffing oscillator, while Liu [Liu (2014)] applied the Lie-group 
differential algebraic equation method to find a sliding control strategy for nonlinear 
system. Continuing this line, Tsai et al. [Tsai and Lee (2018)] proposed a Lie-group 
approach of the optimal control problem of nonlinear Duffing oscillator. In the paper we 
will solve the optimal control problem of Duffing oscillators under a complicated 
performance index without needing of the solution of nonlinear algebraic equations, of 
which the key point is that we can transform the optimal control problem into an initial 
value problem. When the initial values for the new variables are given freely, the terminal 
values require to be determined iteratively. 
We arrange the paper as follows. The Hamiltonian formulation of the optimal control 
problem of nonlinear dynamical system and the Euler-Lagrange equations are introduced 
in Section 2. In Section 3, we introduce two types of shape functions for automatically 
satisfying the prescribed boundary conditions. In Section 4, the iterative algorithms 
based-on the shape functions method (SFM) are developed, considering different terminal 
conditions of state and co-state variables. Some examples are given in Section 5 to assess 
the performance of the SFM. Finally, the conclusions are drawn in Section 6. 

2 A Hamiltonian formulation 
For the nonlinear dynamical system depicted by a set of ordinary differential equations 
(ODEs), and subjected to external control force u: 
𝐱̇𝐱 = f(𝐱𝐱, 𝑡𝑡;𝐮𝐮), 𝐱𝐱(𝑡𝑡0) = 𝐱𝐱0,             (2) 
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where 𝐱𝐱0 are prescribed initial values, we usually select an optimal control force u(t) by 
satisfying the following minimization of a specified performance index J: 

min �J = 𝑔𝑔�𝐱𝐱�𝑡𝑡𝑓𝑓�, 𝑡𝑡𝑓𝑓� + ∫ 𝐿𝐿(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

� ,             (3) 

where 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑓𝑓]  is a time interval we interest, and 𝐿𝐿(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡), 𝑡𝑡)  is the Lagrange 
function. 
Let H be the Hamiltonian: 
𝐻𝐻 = 𝐿𝐿(𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡), 𝑡𝑡) + 𝛌𝛌Τ𝐟𝐟,             (4) 
from which the augmented performance index is given by 

min �J = 𝑔𝑔�𝐱𝐱�𝑡𝑡𝑓𝑓�, 𝑡𝑡𝑓𝑓� + ∫ (𝐻𝐻 − 𝛌𝛌Τ𝐱̇𝐱)𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
𝑡𝑡0

�.             (5) 

The variation of the above performance index expressed in terms of the variations of x,  𝛌𝛌 
and u is 

𝛿𝛿J = (𝑔𝑔𝐱𝐱 − 𝛌𝛌)Τ𝛿𝛿𝐱𝐱�𝑡𝑡𝑓𝑓 + 𝛌𝛌Τ𝛿𝛿𝐱𝐱�𝑡𝑡0 + ∫ ��𝐻𝐻𝐱𝐱 + 𝛌̇𝛌�
Τ𝛿𝛿𝐱𝐱 + (𝐻𝐻𝛌𝛌 − 𝐱̇𝐱)Τ𝛿𝛿𝛌𝛌 + 𝐻𝐻𝐮𝐮Τ𝛿𝛿𝐮𝐮�𝑑𝑑𝑑𝑑

𝑡𝑡𝑓𝑓
𝑡𝑡0

,      (6) 

where the subscript denotes the partial differential. Thus, the minimization of Eq. (5) 
leads to a triple of the Euler-Lagrange equations: 

𝐱̇𝐱 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝛌𝛌

,             (7) 

𝛌̇𝛌 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝐱𝐱

,             (8) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝐮𝐮

= 0.             (9) 

Depending on what are prescribed for the states of 𝐱𝐱(𝑡𝑡0) and 𝐱𝐱�𝑡𝑡𝑓𝑓�, some complementary 
boundary conditions for 𝛌𝛌 at 𝑡𝑡0 and 𝑡𝑡𝑓𝑓 can be obtained from the vanishing of  

(𝑔𝑔𝐱𝐱 − 𝛌𝛌)Τ𝛿𝛿𝐱𝐱�𝑡𝑡𝑓𝑓 + 𝛌𝛌Τ𝛿𝛿𝐱𝐱�𝑡𝑡0 in Eq. (6). 

For most cases, Eq. (9) renders an explicit form of u in terms of state and co-state variables, 
which is thus being inserted into Eqs. (7) and (8) to obtain a set of two-point boundary 
value problems. In general, Eqs. (7)-(9) constitute a two-point boundary value problem of 
nonlinear differential algebraic equations (DAEs), which is difficult to be solved. 

3 A shape function approach 
Let us consider the Duffing equation with a control force in the following Hamiltonian: 

𝐻𝐻 = 𝑢𝑢2

2
+ 𝜆𝜆1𝑥𝑥2 + 𝜆𝜆2(𝑢𝑢 − 𝛾𝛾𝑥𝑥2 − 𝛼𝛼𝑥𝑥1 − 𝛽𝛽𝑥𝑥13),           (10) 

where 𝑥𝑥1 ≔ 𝑥𝑥 and 𝑥𝑥2 ≔ 𝑥̇𝑥, and 𝜆𝜆1 and 𝜆𝜆2  are two Lagrange multipliers. Then, we can 
derive the following Euler-Lagrange equations: 
𝑥̇𝑥1 = 𝑥𝑥2, 
𝑥̇𝑥2 = −𝛾𝛾𝑥𝑥2 − 𝛼𝛼𝑥𝑥1 − 𝛽𝛽𝑥𝑥13 − 𝜆𝜆2, 
𝜆̇𝜆1 = (𝛼𝛼 + 3𝛽𝛽𝑥𝑥12)𝜆𝜆2, 
𝜆̇𝜆2 = −𝜆𝜆1,           (11) 
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𝑢𝑢 = −𝜆𝜆2.           (12) 
Depending on the form of J, there are different terminal conditions of 𝑥𝑥1, 𝑥𝑥2, 𝜆𝜆1, and 𝜆𝜆2. 
It is utmost important to exactly satisfy the terminal conditions, in order that the value of 
J obtained is really the minimal one. 
In order to demonstrate the shape function method, we first confine ourselves to a specific 
example with 

 J = 1
2
𝑥𝑥2(𝑡𝑡𝑓𝑓) + 1

2
𝑥̇𝑥2(𝑡𝑡𝑓𝑓) + 1

2 ∫ 𝑢𝑢2(𝑡𝑡)𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑.           (13) 

From Eqs. (6) and (13) we have 𝐱𝐱𝑓𝑓 = 𝛌𝛌𝑓𝑓 where 𝐱𝐱𝑓𝑓 = 𝐱𝐱(𝑡𝑡𝑓𝑓) and 𝛌𝛌𝑓𝑓 = 𝛌𝛌(𝑡𝑡𝑓𝑓), which leads to 

𝜆𝜆1�𝑡𝑡𝑓𝑓� = 𝑥𝑥1
𝑓𝑓 ≔ 𝑎𝑎,  𝜆𝜆2�𝑡𝑡𝑓𝑓� = 𝑥𝑥2

𝑓𝑓 ≔ 𝑏𝑏.           (14) 

Both 𝑥𝑥1
𝑓𝑓 = 𝑥𝑥�𝑡𝑡𝑓𝑓� and 𝑥𝑥2

𝑓𝑓 = 𝑥̇𝑥�𝑡𝑡𝑓𝑓� are unknown constants, which are denoted by a and b. 
Because the initial values of 𝜆𝜆1 and 𝜆𝜆2 are unknown, we cannot directly integrate Eq. 
(11), which must satisfy the following constraints: 
𝜆𝜆1�𝑡𝑡𝑓𝑓� = 𝑎𝑎,  𝜆𝜆2�𝑡𝑡𝑓𝑓� = 𝑏𝑏.           (15) 
To guarantee the numerical solutions of 𝜆𝜆1  and 𝜆𝜆2  can exactly satisfy Eq. (15), we 
introduce 

𝑠𝑠1(𝑡𝑡) = 𝑠𝑠10 + (1−𝑠𝑠10)(𝑡𝑡−𝑡𝑡0)
𝑡𝑡𝑓𝑓−𝑡𝑡0

,  𝑠𝑠1(𝑡𝑡0) = 𝑠𝑠10, 𝑠𝑠1�𝑡𝑡𝑓𝑓� = 1,          (16) 

𝑠𝑠2(𝑡𝑡) = 𝑠𝑠20 + (1−𝑠𝑠20)(𝑡𝑡−𝑡𝑡0)
𝑡𝑡𝑓𝑓−𝑡𝑡0

,  𝑠𝑠2(𝑡𝑡0) = 𝑠𝑠20, 𝑠𝑠2�𝑡𝑡𝑓𝑓� = 1,          (17) 

where 𝑠𝑠10  and 𝑠𝑠20  are constant parameters. The usefulness of 𝑠𝑠10  and 𝑠𝑠20  will be 
explained below. 
Theorem 1: For any functions Λ1(𝑡𝑡),Λ2(𝑡𝑡) ∈ C [𝑡𝑡0, 𝑡𝑡𝑓𝑓], 𝜆𝜆1(𝑡𝑡) and 𝜆𝜆2(𝑡𝑡) given by 
𝜆𝜆1(𝑡𝑡) = Λ1(𝑡𝑡) + 𝑠𝑠1(𝑡𝑡)�𝑎𝑎 − Λ1�𝑡𝑡𝑓𝑓��,             (18) 

𝜆𝜆2(𝑡𝑡) = Λ2(𝑡𝑡) + 𝑠𝑠2(𝑡𝑡)�𝑏𝑏 − Λ2�𝑡𝑡𝑓𝑓��,             (19) 
satisfy 
𝜆𝜆1�𝑡𝑡𝑓𝑓� = 𝑎𝑎,  𝜆𝜆2�𝑡𝑡𝑓𝑓� = 𝑏𝑏.           (20) 
Proof: Inserting 𝑡𝑡 = 𝑡𝑡𝑓𝑓 into Eq. (18) leads to 

𝜆𝜆1�𝑡𝑡𝑓𝑓� = Λ1�𝑡𝑡𝑓𝑓�+ 𝑠𝑠1�𝑡𝑡𝑓𝑓��𝑎𝑎 − Λ1�𝑡𝑡𝑓𝑓��, 
which using Eq. (16) becomes 
𝜆𝜆1�𝑡𝑡𝑓𝑓� = Λ1�𝑡𝑡𝑓𝑓�+ 𝑠𝑠1�𝑡𝑡𝑓𝑓��𝑎𝑎 − Λ1�𝑡𝑡𝑓𝑓�� = Λ1�𝑡𝑡𝑓𝑓� + 𝑎𝑎 − Λ1�𝑡𝑡𝑓𝑓� = 𝑎𝑎. 
Thus, we proved the first one in Eq. (20). Similarly, inserting 𝑡𝑡 = 𝑡𝑡𝑓𝑓 into Eq. (19) leads to 
𝜆𝜆2�𝑡𝑡𝑓𝑓� = Λ2�𝑡𝑡𝑓𝑓� + 𝑠𝑠2�𝑡𝑡𝑓𝑓��𝑏𝑏 − Λ2�𝑡𝑡𝑓𝑓��, 
which using Eq. (17) becomes 
𝜆𝜆2�𝑡𝑡𝑓𝑓� = Λ2�𝑡𝑡𝑓𝑓� + 𝑠𝑠2�𝑡𝑡𝑓𝑓��𝑏𝑏 − Λ2�𝑡𝑡𝑓𝑓�� = Λ2�𝑡𝑡𝑓𝑓� + 𝑏𝑏 − Λ2�𝑡𝑡𝑓𝑓� = 𝑏𝑏. 
Thus, we proved the second one in Eq. (20).  
Sometimes we may consider the optimal orbit control problem, which would bring the 
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initial point �𝑥𝑥(𝑡𝑡0), 𝑥̇𝑥(𝑡𝑡0)� = (𝐴𝐴0,𝐵𝐵0) to a desired point �𝑥𝑥�𝑡𝑡𝑓𝑓�, 𝑥̇𝑥�𝑡𝑡𝑓𝑓�� = (𝐶𝐶0,𝐷𝐷0) in the 
phase space by using the optimal control force, such that we face the over-specified 
conditions of 𝑥𝑥(𝑡𝑡): 
𝑥𝑥(𝑡𝑡0) = 𝐴𝐴0,  𝑥̇𝑥(𝑡𝑡0) = 𝐵𝐵0, 𝑥𝑥�𝑡𝑡𝑓𝑓� = 𝐶𝐶0, 𝑥̇𝑥�𝑡𝑡𝑓𝑓� = 𝐷𝐷0.           (21) 
In order to guarantee that the numerical solution of x can exactly satisfy Eq. (21), the four 
shape functions 𝑓𝑓𝑘𝑘(𝑡𝑡),  𝑘𝑘 = 1, … ,4 have to satisfy 
𝑓𝑓1(𝑡𝑡0) = 1,  𝑓𝑓1̇(𝑡𝑡0) = 0,𝑓𝑓1�𝑡𝑡𝑓𝑓� = 0,  𝑓𝑓1̇�𝑡𝑡𝑓𝑓� = 0,           (22) 

𝑓𝑓2(𝑡𝑡0) = 0,  𝑓𝑓2̇(𝑡𝑡0) = 1,𝑓𝑓2�𝑡𝑡𝑓𝑓� = 0,  𝑓𝑓2̇�𝑡𝑡𝑓𝑓� = 0,           (23) 

𝑓𝑓3(𝑡𝑡0) = 0,  𝑓𝑓3̇(𝑡𝑡0) = 0,𝑓𝑓3�𝑡𝑡𝑓𝑓� = 1,  𝑓𝑓3̇�𝑡𝑡𝑓𝑓� = 0,           (24) 

𝑓𝑓4(𝑡𝑡0) = 0,  𝑓𝑓4̇(𝑡𝑡0) = 0,𝑓𝑓4�𝑡𝑡𝑓𝑓� = 0,  𝑓𝑓4̇�𝑡𝑡𝑓𝑓� = 1.           (25) 
Through some operations we can derive 

𝑓𝑓1(𝑡𝑡) = 1 − 3 � 𝑡𝑡−𝑡𝑡0
𝑡𝑡𝑓𝑓−𝑡𝑡0

�
2

+ 2 � 𝑡𝑡−𝑡𝑡0
𝑡𝑡𝑓𝑓−𝑡𝑡0

�
3
,           (26) 

𝑓𝑓2(𝑡𝑡) = �𝑡𝑡𝑓𝑓 − 𝑡𝑡0� �
𝑡𝑡−𝑡𝑡0
𝑡𝑡𝑓𝑓−𝑡𝑡0

− 2 � 𝑡𝑡−𝑡𝑡0
𝑡𝑡𝑓𝑓−𝑡𝑡0

�
2

+ � 𝑡𝑡−𝑡𝑡0
𝑡𝑡𝑓𝑓−𝑡𝑡0

�
3
�,           (27) 

𝑓𝑓3(𝑡𝑡) = 3 � 𝑡𝑡−𝑡𝑡0
𝑡𝑡𝑓𝑓−𝑡𝑡0

�
2
− 2 � 𝑡𝑡−𝑡𝑡0

𝑡𝑡𝑓𝑓−𝑡𝑡0
�
3
,           (28) 

𝑓𝑓4(𝑡𝑡) = �𝑡𝑡𝑓𝑓 − 𝑡𝑡0� ��
𝑡𝑡−𝑡𝑡0
𝑡𝑡𝑓𝑓−𝑡𝑡0

�
3
− � 𝑡𝑡−𝑡𝑡0

𝑡𝑡𝑓𝑓−𝑡𝑡0
�
2
�.           (29) 

Theorem 2: For any function 𝑦𝑦(𝑡𝑡) ∈ 𝐶𝐶1 [𝑡𝑡0, 𝑡𝑡𝑓𝑓], 𝑥𝑥(𝑡𝑡) given by 
𝑥𝑥(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) + 𝑓𝑓1(𝑡𝑡)[𝐴𝐴0 − 𝑦𝑦(𝑡𝑡0)] + 𝑓𝑓2(𝑡𝑡)[𝐵𝐵0 − 𝑦̇𝑦(𝑡𝑡0)] + 𝑓𝑓3(𝑡𝑡)�𝐶𝐶0 − 𝑦𝑦�𝑡𝑡𝑓𝑓�� + 𝑓𝑓4(𝑡𝑡)�𝐷𝐷0 − 𝑦̇𝑦�𝑡𝑡𝑓𝑓��, 

                    (30) 

satisfies all the conditions in Eq. (21). 
Proof: Inserting 𝑡𝑡 = 𝑡𝑡0 into Eq. (30) leads to 
𝑥𝑥(𝑡𝑡0) = 𝑦𝑦(𝑡𝑡0) + 𝑓𝑓1(𝑡𝑡0)[𝐴𝐴0 − 𝑦𝑦(𝑡𝑡0)] + 𝑓𝑓2(𝑡𝑡0)[𝐵𝐵0 − 𝑦̇𝑦(𝑡𝑡0)] + 𝑓𝑓3(𝑡𝑡0)�𝐶𝐶0 − 𝑦𝑦�𝑡𝑡𝑓𝑓�� + 𝑓𝑓4(𝑡𝑡0)�𝐷𝐷0 − 𝑦̇𝑦�𝑡𝑡𝑓𝑓��, 

which using the first ones in Eqs. (22)-(25) becomes 
𝑥𝑥(𝑡𝑡0) = 𝑦𝑦(𝑡𝑡0) + 𝐴𝐴0 − 𝑦𝑦(𝑡𝑡0) = 𝐴𝐴0.           
Thus, we proved the first one in Eq. (21). 
Taking the time derivative of Eq. (30) and inserting 𝑡𝑡 = 𝑡𝑡0 leads to 
𝑥̇𝑥(𝑡𝑡0) = 𝑦̇𝑦(𝑡𝑡0) + 𝑓𝑓1̇(𝑡𝑡0)[𝐴𝐴0 − 𝑦𝑦(𝑡𝑡0)] + 𝑓𝑓2̇(𝑡𝑡0)[𝐵𝐵0 − 𝑦̇𝑦(𝑡𝑡0)] + 𝑓𝑓3̇(𝑡𝑡0)�𝐶𝐶0 − 𝑦𝑦�𝑡𝑡𝑓𝑓�� + 𝑓𝑓4̇(𝑡𝑡0)�𝐷𝐷0 − 𝑦̇𝑦�𝑡𝑡𝑓𝑓��, 

which using the second ones in Eqs. (22)-(25) becomes 
𝑥̇𝑥(𝑡𝑡0) = 𝑦̇𝑦(𝑡𝑡0) + 𝐵𝐵0 − 𝑦̇𝑦(𝑡𝑡0) = 𝐵𝐵0. 
Thus, we proved the second one in Eq. (21). The proofs of the third and fourth conditions 
in Eq. (21) can be done similarly, and we omit them. □ 
In terms of the new variable 𝑦𝑦(𝑡𝑡), we can recast the Duffing equation to 
𝑦̈𝑦 + 𝛾𝛾𝑦̇𝑦 + 𝛼𝛼𝛼𝛼 + 𝛽𝛽(𝑦𝑦 − 𝐺𝐺)3 = 𝑢𝑢 + 𝐺̈𝐺 + 𝛾𝛾𝐺̇𝐺 + 𝛼𝛼𝛼𝛼,           (31) 
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where 
𝐺𝐺(𝑡𝑡) = 𝑓𝑓1(𝑡𝑡)[𝑦𝑦(𝑡𝑡0)−𝐴𝐴0] + 𝑓𝑓2(𝑡𝑡)[𝑦̇𝑦(𝑡𝑡0) − 𝐵𝐵0] + 𝑓𝑓3(𝑡𝑡)�𝑦𝑦�𝑡𝑡𝑓𝑓� − 𝐶𝐶0� + 𝑓𝑓4(𝑡𝑡)�𝑦̇𝑦�𝑡𝑡𝑓𝑓� − 𝐷𝐷0�.       (32) 
Solving Eq. (31) and inserting 𝑦𝑦(𝑡𝑡) into Eq. (30), we can guarantee that 𝑥𝑥(𝑡𝑡) exactly 
satisfies all the conditions in Eq. (21). 

4 Iterative algorithms based on the SFM 
Theorem 1 is crucial that the new shape function method guarantees that the terminal 
conditions of 𝜆𝜆1  and 𝜆𝜆2  can be exactly satisfied by Eqs. (18) and (19). Based on the 
concept of shape functions we can develop an iterative algorithm, namely the shape 
functions method (SFM), to solve Eqs. (11) and (14). For this purpose we can consider 
the variables transformations from [𝜆𝜆1,𝜆𝜆2] to [Λ1,Λ2]: 
𝜆𝜆1(𝑡𝑡) = Λ1(𝑡𝑡) − 𝐺𝐺1(𝑡𝑡), 𝜆𝜆2(𝑡𝑡) = Λ2(𝑡𝑡) − 𝐺𝐺2(𝑡𝑡),           (33) 
where 
𝐺𝐺1(𝑡𝑡) ≔ s1(𝑡𝑡)�Λ1�𝑡𝑡𝑓𝑓� − 𝑎𝑎�,           (34) 
𝐺𝐺2(𝑡𝑡) ≔ s2(𝑡𝑡)�Λ2�𝑡𝑡𝑓𝑓� − 𝑏𝑏�.           (35) 
In terms of Λ1(𝑡𝑡) and Λ2(𝑡𝑡) and from Eq. (11), we have a new system of ODEs: 
𝑥̇𝑥1 = 𝑥𝑥2, 
𝑥̇𝑥2 = −𝛾𝛾𝑥𝑥2 − 𝛼𝛼𝑥𝑥1 − 𝛽𝛽𝑥𝑥13 − Λ2 + 𝐺𝐺2, 
Λ̇1 = 𝐺̇𝐺1 + (𝛼𝛼 + 3𝛽𝛽𝑥𝑥12)(Λ2 − 𝐺𝐺2), 
Λ̇2 = 𝐺̇𝐺2 − Λ1 + 𝐺𝐺1,           (36) 
which can be deemed as an initial value problem (IVP), whose initial values are given by 
𝑥𝑥1(𝑡𝑡0) = 𝐴𝐴0, 𝑥𝑥2(𝑡𝑡0) = 𝐵𝐵0, and Λ1(𝑡𝑡0) and Λ2(𝑡𝑡0) can be given arbitrarily, say Λ1(𝑡𝑡0) = 
Λ2(𝑡𝑡0) = 0. 
Unfortunately, Λ1�𝑡𝑡𝑓𝑓� denoted by c and Λ2�𝑡𝑡𝑓𝑓� denoted by d in the functions 𝐺𝐺1(𝑡𝑡) and 
𝐺𝐺2(𝑡𝑡) are unknown constants. At the same time, 𝑎𝑎 = 𝑥𝑥1�𝑡𝑡𝑓𝑓� and 𝑏𝑏 = 𝑥𝑥2�𝑡𝑡𝑓𝑓�  are also 
unknown constants. If a, b, c and d are available, we can apply the fourth-order Runge-
Kutta method (RK4) to integrate the above ODEs and then 𝜆𝜆1(𝑡𝑡) ,𝜆𝜆2(𝑡𝑡)  and 𝑢𝑢(𝑡𝑡) =
−𝜆𝜆2(𝑡𝑡) can be obtained from Eq. (33), of which all the specified conditions are satisfied 
exactly. Specially we can obtain the initial values of the co-state variables as follows: 
𝜆𝜆1(𝑡𝑡0) = Λ1(𝑡𝑡0) − 𝐺𝐺1(𝑡𝑡0) = 𝑠𝑠10�𝑥𝑥1�𝑡𝑡𝑓𝑓� − Λ1�𝑡𝑡𝑓𝑓��,           (37) 
𝜆𝜆2(𝑡𝑡0) = Λ2(𝑡𝑡0) − 𝐺𝐺2(𝑡𝑡0) = 𝑠𝑠20�𝑥𝑥2�𝑡𝑡𝑓𝑓� − Λ2�𝑡𝑡𝑓𝑓��,           (38) 
if we set Λ1(𝑡𝑡0) = Λ2(𝑡𝑡0) = 0. Here we can observe that the usefulness of 𝑠𝑠10 and 𝑠𝑠20. 
In general, 𝜆𝜆1(𝑡𝑡0) ≠ 0 and 𝜆𝜆2(𝑡𝑡0) ≠ 0. Therefore, if we give suitable values of 𝑠𝑠10 ≠ 0 
and 𝑠𝑠20 ≠ 0, which can generate the correct values of 𝜆𝜆1(𝑡𝑡0) ≠ 0 and 𝜆𝜆2(𝑡𝑡0) ≠ 0, by 
using the convergent values of 𝑥𝑥1�𝑡𝑡𝑓𝑓�, 𝑥𝑥2�𝑡𝑡𝑓𝑓�, Λ1�𝑡𝑡𝑓𝑓� and Λ2�𝑡𝑡𝑓𝑓�. 
The iterative algorithm SFM for solving the optimal control problem is summarized as 
follows. 
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(i) Give 𝑥𝑥1(𝑡𝑡0), 𝑥𝑥2(𝑡𝑡0), Λ1(𝑡𝑡0) = 0, Λ2(𝑡𝑡0) = 0, an initial guess of 𝑎𝑎0, 𝑏𝑏0, 𝑐𝑐0 and 𝑑𝑑0 and 
the convergence criterion 𝜖𝜖, and then compute Δ𝑡𝑡 = �𝑡𝑡𝑓𝑓 − 𝑡𝑡0�/𝑁𝑁 with N given. 
(ii) For 𝑘𝑘 = 0, 1, 2, …, we repeat the following iterations: 
Applying the RK4 to integrate the following ODEs with N steps to 𝑡𝑡 = 𝑡𝑡𝑓𝑓: 
𝑥̇𝑥1 = 𝑥𝑥2, 
𝑥̇𝑥2 = −𝛾𝛾𝑥𝑥2 − 𝛼𝛼𝑥𝑥1 − 𝛽𝛽𝑥𝑥13 − Λ2 + 𝑠𝑠2(𝑑𝑑𝑘𝑘 − 𝑏𝑏𝑘𝑘), 
Λ̇1 = 𝑠̇𝑠1(𝑐𝑐𝑘𝑘 − 𝑎𝑎𝑘𝑘) + (𝛼𝛼 + 3𝛽𝛽𝑥𝑥12)�Λ2 − 𝑠𝑠2(𝑑𝑑𝑘𝑘 − 𝑏𝑏𝑘𝑘)�, 
Λ̇2 = 𝑠̇𝑠2(𝑑𝑑𝑘𝑘 − 𝑏𝑏𝑘𝑘)− Λ1 + 𝑠𝑠1(𝑐𝑐𝑘𝑘 − 𝑎𝑎𝑘𝑘). 
Take 
𝑎𝑎𝑘𝑘+1 = 𝑥𝑥1�𝑡𝑡𝑓𝑓�,𝑏𝑏𝑘𝑘+1 = 𝑥𝑥2�𝑡𝑡𝑓𝑓�, 𝑐𝑐𝑘𝑘+1 = Λ1�𝑡𝑡𝑓𝑓�,𝑑𝑑𝑘𝑘+1 = Λ2�𝑡𝑡𝑓𝑓�, 
and if 𝑎𝑎𝑘𝑘+1, 𝑏𝑏𝑘𝑘+1, 𝑐𝑐𝑘𝑘+1 and 𝑑𝑑𝑘𝑘+1 converge according to a given stopping criterion: 

𝑟𝑟𝑘𝑘 ≔ �(𝑎𝑎𝑘𝑘+1 − 𝑎𝑎𝑘𝑘)2 + (𝑏𝑏𝑘𝑘+1 − 𝑏𝑏𝑘𝑘)2 + (𝑐𝑐𝑘𝑘+1 − 𝑐𝑐𝑘𝑘)2 + (𝑑𝑑𝑘𝑘+1 − 𝑑𝑑𝑘𝑘)2 < 𝜖𝜖, 
then stop; otherwise, go to step (ii). 
According to Theorem 2, the second iterative algorithm SFM for solving the optimal 
orbit control problem is summarized as follows. 
(i) Give 𝑦𝑦1(𝑡𝑡0) = 0 , 𝑦𝑦2(𝑡𝑡0) = 0 , 𝜆𝜆1(𝑡𝑡0) , 𝜆𝜆2(𝑡𝑡0) , an initial guess of 𝑎𝑎0 , 𝑏𝑏0 , and the 
convergence criterion 𝜖𝜖, and then compute Δ𝑡𝑡 = �𝑡𝑡𝑓𝑓 − 𝑡𝑡0�/𝑁𝑁 with N given. 
(ii) For 𝑘𝑘 = 0, 1, 2, …, we repeat the following iterations: 
Applying the RK4 to integrate the following ODEs with N steps to 𝑡𝑡 = 𝑡𝑡𝑓𝑓: 
𝑦̇𝑦1 = 𝑦𝑦2, 
𝑦̇𝑦2 = −𝛾𝛾𝑦𝑦2 − 𝛼𝛼𝑦𝑦1 − 𝛽𝛽(𝑦𝑦1 − 𝐺𝐺)3 − λ2 + 𝐺̈𝐺 + 𝛾𝛾𝐺̇𝐺 + 𝛼𝛼𝛼𝛼, 
𝜆̇𝜆1 = [𝛼𝛼 + 3𝛽𝛽(𝑦𝑦1 − 𝐺𝐺)2]λ2, 
λ̇2 = −λ1, 
where G was given by Eq. (32). Taking 
𝑎𝑎𝑘𝑘+1 = 𝑦𝑦1�𝑡𝑡𝑓𝑓�, 𝑏𝑏𝑘𝑘+1 = 𝑦𝑦2�𝑡𝑡𝑓𝑓�, 
if 𝑎𝑎𝑘𝑘+1 and 𝑏𝑏𝑘𝑘+1 converge according to a given stopping criterion: 

𝑟𝑟𝑘𝑘 ≔ �(𝑎𝑎𝑘𝑘+1 − 𝑎𝑎𝑘𝑘)2 + (𝑏𝑏𝑘𝑘+1 − 𝑏𝑏𝑘𝑘)2 < 𝜖𝜖, 
then stop; otherwise, go to step (ii). 
When 𝑦𝑦1 and 𝑦𝑦2 are available, we can solve 𝑥𝑥1 and 𝑥𝑥2 by 
𝑥𝑥1(𝑡𝑡) = 𝑦𝑦1(𝑡𝑡) + 𝑓𝑓1(𝑡𝑡)[𝐴𝐴0 − 𝑦𝑦1(𝑡𝑡0)] + 𝑓𝑓2(𝑡𝑡)[𝐵𝐵0 − 𝑦𝑦2(𝑡𝑡0)] + 𝑓𝑓3(𝑡𝑡)�𝐶𝐶0 − 𝑦𝑦1�𝑡𝑡𝑓𝑓�� + 𝑓𝑓4(𝑡𝑡)�𝐷𝐷0 − 𝑦𝑦2�𝑡𝑡𝑓𝑓��,  
𝑥𝑥2(𝑡𝑡) = 𝑦𝑦2(𝑡𝑡) + 𝑓𝑓1̇(𝑡𝑡)[𝐴𝐴0 − 𝑦𝑦1(𝑡𝑡0)] + 𝑓𝑓2̇(𝑡𝑡)[𝐵𝐵0 − 𝑦𝑦2(𝑡𝑡0)] + 𝑓𝑓3̇(𝑡𝑡)�𝐶𝐶0 − 𝑦𝑦1�𝑡𝑡𝑓𝑓�� + 𝑓𝑓4̇(𝑡𝑡)�𝐷𝐷0 − 𝑦𝑦2�𝑡𝑡𝑓𝑓��, 
where 𝑦𝑦1�𝑡𝑡𝑓𝑓� and 𝑦𝑦2�𝑡𝑡𝑓𝑓� are the convergent values of the sequence (𝑎𝑎𝑘𝑘 ,𝑏𝑏𝑘𝑘),𝑘𝑘 = 1,2, …, 
and meanwhile 𝑦𝑦1(𝑡𝑡0) and 𝑦𝑦2(𝑡𝑡0)  are the given arbitrary initial values, say 𝑦𝑦1(𝑡𝑡0) =
𝑦𝑦2(𝑡𝑡0) = 0. 

 



 
 
 
40                                                                                              CMES, vol.122, no.1, pp.33-48, 2020 

5 Numerical examples 
5.1 Example 1 
First, we consider the following performance index for an undamped Duffing oscillator: 

 J = 1
2
𝑥𝑥2�𝑡𝑡𝑓𝑓� + 1

2
𝑥̇𝑥2�𝑡𝑡𝑓𝑓�+ 1

2 ∫ 𝑢𝑢2(𝑡𝑡)𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑,           (39) 

where we fix 𝑡𝑡0 = 0, 𝑡𝑡𝑓𝑓 = 2, 𝑥𝑥(𝑡𝑡0) = 𝐴𝐴0 = 0.5 and 𝑥̇𝑥(𝑡𝑡0) = 𝐵𝐵0 = 0.5. 
Under the following parameters 𝛾𝛾 = 0, 𝛼𝛼 = 1, and 𝛽𝛽 = 0.9, we apply the SFM with 𝑠𝑠10 =
−1 , 𝑠𝑠20 = −0.2 , 𝑁𝑁 = 200 , 𝑎𝑎0 = 𝑏𝑏0 = 𝑐𝑐0 = 𝑑𝑑0 = 0 , to solve this problem, which is 
convergent with 24 iterations under the convergence criterion 𝜖𝜖 = 10−10  as shown in 
Fig. 1(a), and the responses of 𝑥𝑥1, 𝑥𝑥2 and the control force 𝑢𝑢 = −𝜆𝜆2 are plotted in Fig. 1(b). 
The computed results by Eqs. (37)-(39) are 𝜆𝜆1(𝑡𝑡0)=0.27213155, 𝜆𝜆2(𝑡𝑡0)=0.28945859, and 
J=0.14780793. The results computed from the Lie-group (LG) approach [Tsai and Lee 
(2018)] were also plotted in Fig. 1(b) for the purpose of comparison, and they are close 
besides u. The results obtained by the LG are 𝜆𝜆1(𝑡𝑡0)=0.293177, 𝜆𝜆2(𝑡𝑡0)=0.343054, and 
J=0.15044, which is not better than the new result J=0.14780793. According to the 
minimality of J, smaller one is better. 
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Figure 1: For the optimal control of an undamped Duffing oscillator in example 1, (a) 
convergence rate, and (b) comparing the solutions obtained by the present SFM and the 
Lie-group (LG) method 
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In order to investigate the robustness of the new algorithm SFM, we insert the following 
noisy data:  
𝐴̂𝐴0 = 𝐴𝐴0 + 𝑠𝑠𝑠𝑠(𝑖𝑖),𝐵𝐵�0 = 𝐵𝐵0 + 𝑠𝑠𝑠𝑠(𝑖𝑖)  
as the inputs in the iteration process, where s is the level of noise and R(i) are random 
numbers in [-1,1]. Under a large noise s=0.1, and keeping other parameters unchanged, 
we find that the SFM does not converge within 500 iterations. However, the following 
results 𝜆𝜆1(𝑡𝑡0) =0.26862563, 𝜆𝜆2(𝑡𝑡0) =0.28515652 and J=0.15349061 are still close to 
𝜆𝜆1(𝑡𝑡0)=0.27213155, 𝜆𝜆2(𝑡𝑡0)=0.28945859 and J=0.14780793 without considering noise. It 
confirms that the new algorithm SFM is stable and robust against large noise. 

5.2 Example 2 
Then, we solve the optimal control problem of a damped Duffing oscillator under a more 
complicated performance index: 

 J = 1
2 ∫ [𝑥𝑥2(𝑡𝑡) + 𝑥̇𝑥2(𝑡𝑡) + 𝑢𝑢2(𝑡𝑡)]𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑,            (40) 

which is subjected to the initial conditions with 𝑥𝑥(𝑡𝑡0) = 𝐴𝐴0 = 0.5, 𝑥̇𝑥(𝑡𝑡0) = 𝐵𝐵0 = −0.5 
and the end values 𝑥𝑥�𝑡𝑡𝑓𝑓� and 𝑥̇𝑥�𝑡𝑡𝑓𝑓� are free. 
In the Hamiltonian formulation, we can derive the following Euler-Lagrange equations: 
𝑥̇𝑥1 = 𝑥𝑥2,𝑥𝑥1(𝑡𝑡0) = 𝐴𝐴0, 
𝑥̇𝑥2 = 𝑢𝑢 − 𝛾𝛾𝑥𝑥2 − (𝛼𝛼 + 𝛽𝛽𝑥𝑥12)𝑥𝑥1,𝑥𝑥2(𝑡𝑡0) = 𝐵𝐵0, 
λ̇1 = (𝛼𝛼 + 3𝛽𝛽𝑥𝑥12)𝜆𝜆2 − 𝑥𝑥1,𝜆𝜆1�𝑡𝑡𝑓𝑓� = 0, 

λ̇2 = 𝛾𝛾𝜆𝜆2 − 𝑥𝑥2 − 𝜆𝜆1,𝜆𝜆2�𝑡𝑡𝑓𝑓� = 0,           (41) 
where 𝑢𝑢 = −𝜆𝜆2. 
This problem is simple with a=0 and b=0, due to 𝜆𝜆1�𝑡𝑡𝑓𝑓� = 0 and 𝜆𝜆2�𝑡𝑡𝑓𝑓� = 0. Under the 
following parameters 𝛾𝛾=0.02, 𝛼𝛼=1, 𝛽𝛽=0.15, 𝑡𝑡0=0 and 𝑡𝑡𝑓𝑓=2, we apply the SFM with 𝑠𝑠10 =
−1, 𝑠𝑠10 = −0.2, N = 200, 𝑐𝑐0 = 𝑑𝑑0 = 0, to solve this problem, which is convergent with 
49 iterations as shown in Fig. 2(a), and the responses of 𝑥𝑥1, 𝑥𝑥2 and the control force 𝑢𝑢 =
−𝜆𝜆2  are plotted in Fig. 2(b). The computed results by Eqs. (37), (38) and (40) are 
𝜆𝜆1(𝑡𝑡0)=0.69182762, 𝜆𝜆2(𝑡𝑡0)=-0.423268357, and J=0.27674272. The results computed 
from the Lie-group approach [Tsai and Lee (2018)] were also plotted in Fig. 2(b), where 
𝜆𝜆1(𝑡𝑡0)=0.605366, 𝜆𝜆2(𝑡𝑡0)=-0.4952084, and J=0.28393986. The differences of u and 𝑥𝑥2 
are apparent, and the new value J=0.27674272 is better than J=0.28393986. 

5.3 Example 3 
In this example we solve an optimal control problem of the undamped Duffing oscillator 
[Van Dooren and Vlassenbroeck (1982); El-Gindy, El-Hawary, Salim et al. (1995); El-
Kady and Elbarbary (2002); Lakestani, Razzaghi and Dehghan (2006); Liu (2012)], 
where the optimal control problem for Eq. (11) is under the following performance index 
and boundary conditions: 

 J = 1
2 ∫ 𝑢𝑢2(𝑡𝑡)𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑,   
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𝑥𝑥(𝑡𝑡0) = 𝐴𝐴0 = 0.5, 𝑥̇𝑥(𝑡𝑡0) = 𝐵𝐵0 = −0.5, 𝑥𝑥�𝑡𝑡𝑓𝑓� = 𝐶𝐶0 = 0, 𝑥̇𝑥�𝑡𝑡𝑓𝑓� = 𝐷𝐷0 = 0.       (42) 
We employ the second SFM algorithm based-on the result in Theorem 2 to solve this 
optimal orbit control problem, under the following parameters 𝛾𝛾=0, 𝛼𝛼=1, 𝛽𝛽=0.15, 𝑡𝑡0= -2, 
𝑡𝑡𝑓𝑓 =0, 𝜆𝜆1(𝑡𝑡0) =0.271 and 𝜆𝜆2(𝑡𝑡0) =-0.4858, and with N=200, 𝑎𝑎0 = 𝑏𝑏0 = 0 , which is 
convergent with one iteration under the convergence criterion 𝜖𝜖 = 10−2. The responses of 
𝑥𝑥1, 𝑥𝑥2 and the control force 𝑢𝑢 = −𝜆𝜆2 are plotted in Fig. 3. The results computed from the 
Lie-group approach [Tsai and Lee (2018)] were also plotted in Fig. 3, and they are almost 
coincident. The new value J=0.1858681 is slightly better than J=0.1858713 obtained by the 
Lie-group approach [Tsai and Lee (2018)]. We note that the new value of J is slightly 
smaller than 0.1874, which was obtained by other methods [Van Dooren and Vlassenbroeck 
(1982); Razzaghi and Elnagar (1994); Lakestani, Razzaghi and Dehghan (2006)]. Note that 
the present method can achieve a better control strategy than other methods. 
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Figure 2: For the optimal control of a damped Duffing oscillator in example 2, (a) 
convergence rate, and (b) comparing the solutions obtained by the present SFM and the 
Lie-group (LG) method 
 



 
 
 
Solving the Optimal Control Problems of Nonlinear Duffing                                                          43 

-2.0 -1.6 -1.2 -0.8 -0.4 0.0

Time

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

R
es

po
ns

es
u of LG
x1 of LG

x2 of LG

x1 of SFM

x2 of SFM

u of SFM

 
Figure 3: For the optimal control of the orbit of an undamped Duffing oscillator in example 
3, comparing the solutions obtained by the present SFM and the Lie-group (LG) method 

5.4 Example 4 
We consider the following performance index for the undamped Duffing oscillator 
[Elgohary, Dong, Junkins et al. (2014)]: 

 J = 1
2
�𝐱𝐱�𝑡𝑡𝑓𝑓� − 𝐪𝐪�2 + 1

2 ∫ 𝑢𝑢2(𝑡𝑡)𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑,            (43) 

where q is the desired final state at a specified final time. Here we fix 𝑡𝑡0=0, 𝑡𝑡𝑓𝑓=2, 
𝑥𝑥(𝑡𝑡0) = 𝑥̇𝑥(𝑡𝑡0) = 0.1 and 𝑞𝑞1 = 𝑞𝑞2 = 1. 
From Eqs. (6) and (43) we have 𝛌𝛌𝑓𝑓 = 𝐱𝐱𝑓𝑓 − 𝐪𝐪, which yields 

𝜆𝜆1�𝑡𝑡𝑓𝑓� = 𝑥𝑥1
𝑓𝑓−𝑞𝑞1 = 𝑎𝑎−𝑞𝑞1,𝜆𝜆2�𝑡𝑡𝑓𝑓� = 𝑥𝑥2

𝑓𝑓−𝑞𝑞2 = 𝑏𝑏−𝑞𝑞2.          (44) 
Under the following parameters 𝛾𝛾=0, 𝛼𝛼=1, 𝛽𝛽=0.9, 𝑡𝑡0=0 and 𝑡𝑡𝑓𝑓=2, we apply the SFM with 
𝑠𝑠10 =-1, 𝑠𝑠20 =-0.2, N=200, 𝑎𝑎0 = 𝑏𝑏0 = 𝑐𝑐0 = 𝑑𝑑0 = 0 , to solve this problem, which is 
convergent with 62 iterations as shown in Fig. 4(a), and the responses of 𝑥𝑥1, 𝑥𝑥2 and the 
control force 𝑢𝑢 = −𝜆𝜆2 are plotted in Fig. 4(b). The computed results by Eqs. (37), (38) 
and (43) are 𝜆𝜆1(𝑡𝑡0) =0.703491, 𝜆𝜆2(𝑡𝑡0) =0.085527, and J=0.49385273. The results 
computed from the Lie-group approach [Tsai and Lee (2018)] were also plotted in Fig. 
4(b) for the purpose of comparison, and in addition to 𝑥𝑥1, they are not close. However, 
the results obtained by the LG are 𝜆𝜆1(𝑡𝑡0)=0.762934, 𝜆𝜆2(𝑡𝑡0)=0.085703, and J=0.5191889, 
which is not better than the new result J=0.49385273. 
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Figure 4: For the optimal control of undamped Duffing oscillator in example 4, (a) 
convergence rate, and (b) comparing the solutions obtained by the present SFM and the 
Lie-group (LG) method 

5.5 Example 5 
Finally, we consider an optimal control problem of a damped Duffing oscillator under a 
complicated performance index: 

 J = 1
2 ∫ �𝑥𝑥2(𝑡𝑡) + 𝑥̇𝑥2(𝑡𝑡) + exp�𝑢𝑢2(𝑡𝑡)��𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑,           (45) 

which is subjected to the initial conditions 𝑥𝑥(𝑡𝑡0) = 𝐴𝐴0 = 0.5, 𝑥̇𝑥(𝑡𝑡0) = 𝐵𝐵0 = −0.5 and 
the end values 𝑥𝑥�𝑡𝑡𝑓𝑓� and 𝑥̇𝑥�𝑡𝑡𝑓𝑓� are free. 
We can derive 
𝑥̇𝑥1 = 𝑥𝑥2,𝑥𝑥1(𝑡𝑡0) = 𝐴𝐴0, 
𝑥̇𝑥2 = 𝑢𝑢 − 𝛾𝛾𝑥𝑥2 − (𝛼𝛼 + 𝛽𝛽𝑥𝑥12)𝑥𝑥1,𝑥𝑥2(𝑡𝑡0) = 𝐵𝐵0, 
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λ̇1 = (𝛼𝛼 + 3𝛽𝛽𝑥𝑥12)𝜆𝜆2 − 𝑥𝑥1,𝜆𝜆1�𝑡𝑡𝑓𝑓� = 0, 

λ̇2 = 𝛾𝛾𝜆𝜆2 − 𝑥𝑥2 − 𝜆𝜆1,𝜆𝜆2�𝑡𝑡𝑓𝑓� = 0,           (46) 
where u is solved from 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑢𝑢 exp(𝑢𝑢2) + 𝜆𝜆2 = 0.           (47) 

It is difficult to express u as a function of 𝜆𝜆2. However, by using Eq. (47), we can obtain 
another ODEs system: 
𝑥̇𝑥1 = 𝑥𝑥2,𝑥𝑥1(𝑡𝑡0) = 𝐴𝐴0, 
𝑥̇𝑥2 = 𝑢𝑢 − 𝛾𝛾𝑥𝑥2 − (𝛼𝛼 + 𝛽𝛽𝑥𝑥12)𝑥𝑥1,𝑥𝑥2(𝑡𝑡0) = 𝐵𝐵0, 
λ̇1 = −(𝛼𝛼 + 3𝛽𝛽𝑥𝑥12)𝑢𝑢 exp(𝑢𝑢2) − 𝑥𝑥1,𝜆𝜆1�𝑡𝑡𝑓𝑓� = 0, 

𝑢̇𝑢 = 1
exp(𝑢𝑢2)+2𝑢𝑢2exp(𝑢𝑢2)

[𝛾𝛾𝛾𝛾 exp(𝑢𝑢2) + 𝑥𝑥2 + 𝜆𝜆1],𝑢𝑢�𝑡𝑡𝑓𝑓� = 0.         (48) 

Instead of 𝜆𝜆2, we directly solve u by integrating the above ODEs. 
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Figure 5: For the optimal control of a damped Duffing oscillator with a complicated 
performance index in example 5, (a) convergence rate, and (b) comparing the solutions 
obtained by the present SFM and the Lie-group (LG) method 
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Under the following parameters 𝛾𝛾=0.02, 𝛼𝛼=1, 𝛽𝛽=0.15, 𝑡𝑡0=0 and 𝑡𝑡𝑓𝑓=2, we apply the SFM 
with 𝑠𝑠10=-1, 𝑠𝑠20=-0.2, N=200, 𝑐𝑐0 = 𝑑𝑑0 = 0, to solve this problem, which is convergent 
with 130 iterations as shown in Fig. 5(a), and the responses of 𝑥𝑥1, 𝑥𝑥2 and the control 
force u are plotted in Fig. 5(b). The computed results are 𝜆𝜆1(𝑡𝑡0)=0.7044912, 𝜆𝜆2(𝑡𝑡0)=-
0.4586696, and J=1.282944. The results computed from the Lie-group approach [Tsai 
and Lee (2018)] were also plotted in Fig. 5(b) for the purpose of comparison, and they are 
different in u and 𝑥𝑥2 , but close in 𝑥𝑥1 . The results computed by the LG are 
𝜆𝜆1(𝑡𝑡0)=0.610798, 𝜆𝜆2(𝑡𝑡0)=-0.506856, and J=1.29008. The new J=1.282944 is better. 
When 𝛾𝛾=0 we can obtain J=1.28782, which is better than J=1.466 obtained by Liu [Liu 
(2012)], and J=1.29299 obtained by Tsai et al. [Tsai and Lee (2018)]. 
Under a large noise s=0.1, and keeping other parameters unchanged, although we find 
that the SFM does not converge within 500 iterations, the following results 
𝜆𝜆1(𝑡𝑡0)=0.66021372, 𝜆𝜆2(𝑡𝑡0)=-0.4997156 and J=1.288407 are close to 𝜆𝜆1(𝑡𝑡0)=0.7044912, 
𝜆𝜆2(𝑡𝑡0)=-0.4586696 and J=1.282944 without considering noise. In Fig. 6, we compare the 
computed results of u, 𝑥𝑥1 and 𝑥𝑥2 by using the SFM with and without considering noise; 
even under a large noise s=0.1, they are close. They confirm again that the new algorithm 
SFM is stable and robust against large noise. 
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Figure 6: For example 5, comparing the solutions obtained by the SFM with and without 
considering noise 

6 Conclusions 
For the optimally controlled problems of nonlinear Duffing oscillators to find the optimal 
control forces with different performance indexes, we have transformed the Euler-
Lagrange equations into a two-point boundary value problem equipped with constraints. 
The paper is witnessed to derive the shape functions to exactly satisfy the given boundary 
conditions. The major contribution is the introduction of a new concept of shape 
functions method and then derive the new initial value problems for the new variables, 
which automatically and exactly satisfy all the specified boundary conditions. The initial 
values of the new variables can be given arbitrarily, for example the zero values, while 
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the terminal values are determined iteratively. The present method can handle the 
minimization problem with a complicated performance index, where the control force can 
be solved very fast with high accuracy. Numerical examples demonstrated that the new 
method can obtain a smaller value of the performance index than other methods, 
including the Lie-group method and the Lie-group adaptive method. 
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