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Abstract: As a novel kind of particle method for explicit dynamics, the finite particle 
method (FPM) does not require the formation or solution of global matrices, and the 
evaluations of the element equivalent forces and particle displacements are decoupled in 
nature, thus making this method suitable for parallelization. The FPM also requires an 
acceleration strategy to overcome the heavy computational burden of its explicit 
framework for time-dependent dynamic analysis. To this end, a GPU-accelerated parallel 
strategy for the FPM is proposed in this paper. By taking advantage of the independence 
of each step of the FPM workflow, a generic parallelized computational framework for 
multiple types of analysis is established. Using the Compute Unified Device Architecture 
(CUDA), the GPU implementations of the main tasks of the FPM, such as evaluating and 
assembling the element equivalent forces and solving the kinematic equations for particles, 
are elaborated through careful thread management and memory optimization. Performance 
tests show that speedup ratios of 8, 25 and 48 are achieved for beams, hexahedral solids 
and triangular shells, respectively. For examples consisting of explicit dynamic analyses 
of shells and solids, comparisons with Abaqus using 1 to 8 CPU cores validate the accuracy 
of the results and demonstrate a maximum speed improvement of a factor of 11.2. 
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1 Introduction 
The finite element method (FEM), which is derived from variational principles and 
continuum mechanics, has been widely applied in the analysis of an extensive range of 
engineering problems over the past few decades and is also the theoretical foundation for 
most commercial software for numerical simulations. The numerical integration of the 
element stiffness matrices, the formation of the global matrices and the solution of the 
equilibrium equations in the form of a linear system are the main tasks of the FEM; among 
these tasks, the solution step often dominates the performance of the FEM pipeline. As the 
numbers of elements and degrees of freedom (DOFs) increase, the global matrices rapidly 
grow in size, causing the complexity of the linear system and the required computation 
time to increase exponentially, especially for large-scale dynamic simulations. 
To resolve the problem of long computation time in FEM analyses, the advantages of 
parallel computing have commonly been exploited on central processing units (CPUs) 
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using the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) standards. 
In recent years, the use of graphics processing units (GPUs) in the field of high-performance 
computing has also been shown to be effective in terms of computation time and has rapidly 
gained in popularity [Hwu (2011)]. Considerable research on CPU- and GPU-based parallel 
strategies and implementations for the FEM has been carried out over the past few decades, 
and the main course of development of related studies has been reviewed in Georgescu et al. 
[Georgescu, Chow and Okuda (2013)]. To summarize, there are two main approaches. The 
first consists of various techniques of accelerating the mathematical procedures for solving 
linear algebra systems, which are often encountered in the FEM. Various parallelization 
strategies for direct solvers, such as the Cholesky factorization and lower-upper (LU) 
decomposition, and for iterative solvers using the conjugate gradient method have been 
proposed and implemented over the years; the performances of such parallelized solvers are 
compared in Cheik Ahamed et al. [Cheik Ahamed and Magoulès (2017); Pikle, Sathe and 
Vyavhare (2018); Rao and Kamra (2018)]. Instead of being restricted to the FEM, most of 
these techniques can be generically applied to other linear systems; in fact, there are already 
numerous corresponding parallel computing packages and toolkits available from several 
large software companies, which have been successfully integrated into many industrialized 
software packages, as listed in NVIDIA et al. [NVIDIA (2017); The Khronos Group (2013)]. 
The other approach consists of methods that are more specialized for the FEM theory itself, 
such as the domain decomposition method (DDM) and the element-by-element (EBE) 
method. In the DDM, the most commonly used method in parallelized FEM systems, the 
overall structural model is decomposed into submodels, and the calculations for each 
submodel are each individually performed by a different processing core; in this way, the 
whole model can be concurrently processed and then reassembled based on intersecting 
regions, as explained in Papadrakakis et al. [Papadrakakis, Stavroulakis and Karatarakis 
(2011)]. In the EBE method, on the other hand, the vector product of the global stiffness 
matrix is transformed into vector products of a set of element stiffness matrices, making the 
steps of formation and solution obsolete. Usually combined with the DDM, the EBE method 
has been successfully implemented in distributed multiprocessing systems; examples can be 
found in Bova et al. [Bova and Carey (2000); Gullerud and Dodds Jr (2001)]. Generally, the 
main focus of these methods for the parallelization of the FEM is to decompose or decouple 
the linear equations, and the applications of these methods all demonstrate effective 
improvements in speed for large-scale FEM analysis. However, equilibrium equations in the 
strongly coupled form still constrain further improvements in performance. 
The finite particle method (FPM) is a novel numerical method for engineering-oriented 
applications involving complex structural behaviors. A recent review of the FPM, 
including its background and fundamentals, can be found in Luo et al. [Luo, Zheng, Yang 
et al. (2014)]. While the traditional FEM is derived from continuum mechanics, the FPM 
is derived from vector mechanics, as first proposed by Shih et al. [Shih, Wang and Ting 
(2004); Ting, Shih and Wang (2004a, 2004b)]. In this method, the subject of analysis is no 
longer viewed as a continuum. Instead, in the FPM, a physical body is modeled as a finite 
number of particles in space and a finite number of path units in time, as depicted in Fig. 
1. Within each period of a given time increment, the motions of the particles are controlled 
by Newton’s second law. The kinematic state of equilibrium is forced on each particle 
individually instead of the whole system, so that no global matrices need to be constructed 
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or solved. The FPM can be characterized as a particle method since the particles carry 
structural variables such as mass, density, velocity, strain and stress. However, the particles 
in the FPM do not have physical volumes; instead, they are connected by elements. It can 
be said that the FPM shares the simplicity of describing topology in terms of elements with 
the FEM while possessing the advantage of already decoupled equations by virtue of its 
nature as a particle method. In recent years, the FPM has been applied to various types of 
complex structural behaviors with promising results. Related work in this field can be 
found in relation to mechanism analysis [Yu and Luo (2009a, 2009b)], contact and collision 
[Yu and Luo (2013)], shape analysis for tensile structures [Yang, Shen and Luo (2014)], 
and progressive collapse simulations [Yu, Paulino and Luo (2010); Yu and Zhu (2016)]. 
Similar to the FPM, the vector-form intrinsic finite element (VFIFE) method has also been 
developed by other scholars; this method is also based on vector mechanics and has been 
applied in the contexts of bridges and railways [Duan, Wang, Wang et al. (2018); Duan, 
Wang and Yau (2019)], smart structures [Xu, Li, Jiang et al. (2015)], mechanical joints 
[Yang, Cheng and Zhang (2016)] and marine risers [Li, Guo and Guo (2018)]. 

 
Figure 1: Discrete model of the FPM 

Given the partial differential form of Newton’s second law, the kinematic equations for 
particles in the FPM are solved using the explicit central difference time integration 
algorithm, which is conditionally stable. To ensure a converged result in the FPM, the time 
increment must be maintained at a relatively small value; thus, more iterations are needed 
for a fixed amount of physical time. The FPM is in urgent need of an acceleration strategy 
to overcome the heavy computational burden of its explicit framework caused by this time 
step limitation. Moreover, unlike in the FEM procedure, no additional steps of assembling 
and decoupling global matrices are required; therefore, the overall complexity of the FPM 
continues to increase linearly as the model scale grows. As a result, the evaluations of the 
element equivalent forces are self-reliant between elements, and the kinematic equations 
can be solved individually for each particle. This feature allows the FPM to be strongly 
accelerated by means of parallel computing techniques, which is an advantage that many 
particle-based numerical methods share. 
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Generally, an ideal parallel implementation should allow independent procedures to be 
processed concurrently. In this case, parallel implementations of the FPM should be able 
to treat individual particles or elements simultaneously. Considering the general scale of 
the discrete particle model of the FPM, GPUs are much more suitable for the job than CPUs: 
a GPU can contain more than a thousand processing cores, while a common CPU provides 
only up to 24 cores. Various efforts related to GPU-accelerated implementations of other 
particle-based methods, such as the discrete element method (DEM) [Qi, Li, Jiang et al. 
(2015)] and smoothed particle hydrodynamics (SPH) [Xia and Liang (2016)], have been 
reported in recent years. In terms of computational efficiency, the performance of these 
GPU-accelerated implementations is substantially improved relative to their CPU 
counterparts. Inspired by these precedents for similar applications, in this study, a parallel 
strategy for the FPM has been implemented on a GPU architecture. 
In the field of GPU-accelerated computing, the development of specialized programming 
models is essential to allow researchers and developers to gain access to the computing 
power of GPUs. In 2006, NVIDIA, one of the main producers of graphics cards, launched 
a development environment called Compute Unified Device Architecture (CUDA), which 
is available only through NVIDIA’s hardware. Later, in 2008, Apple and Khronos provided 
a free and open language called the Open Computing Language (OpenCL), which is 
intended for use on all compatible graphics cards on the market [The Khronos Group 
(2013)]. These two general-purpose programming languages, each with its own merits and 
disadvantages, have made GPUs increasingly valid computing resources in engineering 
simulations. The greatest downside of CUDA is that a CUDA-based application can run 
only on NVIDIA GPUs, while OpenCL is available on graphics cards from other 
manufacturers, such as AMD and Intel. However, the market for graphics cards aimed at 
scientific computing is dominated by NVIDIA. Meanwhile, as a proprietary language, 
CUDA also provides higher-level application programming interfaces (APIs), better 
profiling tools and a richer programming ecosystem compared to OpenCL [Cook (2013)]. 
Therefore, CUDA has been chosen for the GPU-based acceleration of the FPM in this work. 
In this paper, a GPU-accelerated parallel strategy for the FPM is proposed and 
implemented as the basis of an FPM platform. First, based on the fundamentals of the FPM 
theory, a generic parallelized computational framework for multiple types of FPM analysis 
is established by taking advantage of the independence of each step of the FPM workflow. 
Then, with the help of the CUDA programming model, GPU implementations of the main 
tasks of the FPM, such as evaluating and assembling the element equivalent forces and 
solving the kinematic equations for particles, are elaborated from the perspectives of thread 
management and memory optimization. Performance tests on the speedup ratios for various 
types of FPM elements are reported to illustrate the improvements in performance achieved 
with GPU parallelization. In the end, for examples consisting of explicit analyses of shells 
and solids, comparisons with the CPU-accelerated Abaqus are presented to validate the 
accuracy and efficiency of the proposed platform. 
This paper is structured as follows. In Section 2, the fundamentals of the FPM are briefly 
introduced, and a generic parallelized computational framework for the FPM is proposed. 
The details of the developed FPM platform are given in Section 3, and the GPU 
implementations of the main tasks of the FPM are also described. Performance tests for 
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various types of FPM elements are reported in Section 4, and the numerical results for 
triangular shells and hexahedral solids are compared with the results from Abaqus for 
validation of the proposed platform in terms of accuracy and efficiency. Finally, in Section 
5, conclusions are drawn, and possible future improvements are discussed. 

2 Fundamentals of the parallelized FPM 
Referring to a mechanical model in applied physics, the FPM holds that every discrete 
particle is constantly in a state of kinematic equilibrium and that each particle’s motion is 
governed by Newton’s second law in vector form. Therefore, for an arbitrary particle α, 
its translational and rotational displacements follow Eqs. (1) and (2): 

𝑚𝑚𝛼𝛼�̈�𝒅𝛼𝛼 = 𝑭𝑭𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑭𝑭𝛼𝛼𝑖𝑖𝑖𝑖𝑒𝑒 = 𝑭𝑭𝛼𝛼 (1) 

𝑰𝑰𝛼𝛼�̈�𝜽𝛼𝛼 = 𝑴𝑴𝛼𝛼
𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑴𝑴𝛼𝛼

𝑖𝑖𝑖𝑖𝑒𝑒 = 𝑴𝑴𝛼𝛼 (2) 

where 𝑚𝑚𝛼𝛼 and 𝑰𝑰𝛼𝛼 are the mass and mass inertia matrix, respectively, of particle α; �̈�𝒅𝛼𝛼 
and �̈�𝜽𝛼𝛼 denote its acceleration vectors for translation and rotation, respectively; 𝑭𝑭𝛼𝛼, the 
composite force vector for particle α , consists of external loads 𝑭𝑭𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒  and internal 
equivalent forces 𝑭𝑭𝛼𝛼𝑖𝑖𝑖𝑖𝑒𝑒 , which must be accumulated from every element connected to 
particle α; and the same applies to 𝑴𝑴𝛼𝛼 , 𝑴𝑴𝛼𝛼

𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑴𝑴𝛼𝛼
𝑖𝑖𝑖𝑖𝑒𝑒  but for the moments of the 

forces. It can be seen that the kinematic equilibrium equation for each particle, and even 
for each DOF, is independent. 
It is essential to treat Eqs. (1) and (2) numerically due to their partial differential form. 
Various implicit and explicit time integration schemes can be adopted. Here, the standard 
explicit central difference time integration algorithm is applied to the FPM. Considering 
the mass damping effect, given a particle’s displacements at time 𝑡𝑡  and 𝑡𝑡 − Δ𝑡𝑡 , its 
displacement at time 𝑡𝑡 + Δ𝑡𝑡 can be explicitly obtained in an iterative manner: 

𝒅𝒅𝛼𝛼𝑒𝑒+Δ𝑒𝑒 = 𝑐𝑐1Δ𝑡𝑡2𝑚𝑚𝛼𝛼
−1 𝑭𝑭𝛼𝛼𝑒𝑒 + 2𝑐𝑐1 𝒅𝒅𝛼𝛼𝑒𝑒 − 𝑐𝑐2 𝒅𝒅𝛼𝛼𝑒𝑒−Δ𝑒𝑒  (3) 

𝜽𝜽𝛼𝛼𝑒𝑒+Δ𝑒𝑒 = 𝑐𝑐1Δ𝑡𝑡2𝑰𝑰𝛼𝛼−1 𝑴𝑴𝛼𝛼
𝑒𝑒 + 2𝑐𝑐1 𝜽𝜽𝛼𝛼𝑒𝑒 − 𝑐𝑐2 𝜽𝜽𝛼𝛼𝑒𝑒−Δ𝑒𝑒  (4) 

where Δ𝑡𝑡 is the time increment for each path unit, 𝑐𝑐1 = (1 + 𝜉𝜉Δ𝑡𝑡/2)−1, 𝑐𝑐2 = 𝑐𝑐1(1 −
𝜉𝜉Δ𝑡𝑡/2), and 𝜉𝜉 is the coefficient for the mass damping effect. 
As with many other explicit time integration schemes, the central difference algorithm 
applied here is numerically stable only conditionally. According to the Courant-Friedrichs-
Lewy (CFL) stability condition, the time increment must be maintained below a critical 
value to keep the algorithm from diverging. The critical time increment ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 depends 
on the overall element size and the material properties; for a given dynamic structural 
system, it can be determined through Eq. (5): 

∆𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒

{𝐿𝐿𝑒𝑒 𝑐𝑐𝑒𝑒⁄ } (5) 

where 𝐿𝐿𝑒𝑒  is the characteristic length of each element and 𝑐𝑐𝑒𝑒  is the corresponding 
effective dilatational wave speed of the material. 𝑐𝑐𝑒𝑒 is a function of the material properties, 
while the calculations for 𝐿𝐿𝑒𝑒 vary depending on the element geometry; the corresponding 
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formulations are addressed in Hallquist [Hallquist (2006)]. A time increment smaller than 
this critical value ensures that an acoustic sound wave has sufficient time to pass through 
the element between two adjacent particles in the FPM discrete model. The overall critical 
time increment ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 is, of course, the minimum value among all elements. 
Generally, the iterative process for updating the translational displacement of a particle in 
the FPM follows the four steps listed below, and the process for rotational displacement is 
quite similar. The subscripts 𝛼𝛼 and 𝑒𝑒 in the following equations represent an arbitrary 
particle and an arbitrary element, respectively. 

 

Figure 2: Illustration of the fictitious reverse motion technique 

Step I: Preparation 
The initial displacement 𝒅𝒅𝛼𝛼0  is set, and the displacement for the next step is then 
calculated from the initial external loads 𝑭𝑭𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒0  to initiate the iterative process. 

Step II: Element updating 
Based on the particle displacement at time 𝑡𝑡, the element equivalent internal forces 𝑭𝑭𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒  
can be calculated. This is the most complicated and time-consuming process in the FPM, 
but the calculations are self-reliant between each element. This process can be divided into 
five substeps. 

Step II.a: Pure deformation evaluation 
By means of the fictitious reverse motion technique from vector-form mechanics, the effect 
of rigid-body motion is eliminated from the overall displacement, yielding the pure 
deformation of the element particles as follows: 

∆𝜼𝜼𝑒𝑒 = ∆𝒅𝒅𝑒𝑒 − ∆𝜼𝜼𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖 − ∆𝜼𝜼𝑐𝑐𝑟𝑟𝑒𝑒 (6) 

where ∆𝒅𝒅𝑒𝑒  is the incremental displacement of the particles within the element and 
∆𝜼𝜼𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖  and ∆𝜼𝜼𝑐𝑐𝑟𝑟𝑒𝑒  denote the incremental displacements caused by translational and 
rotational rigid-body motions, respectively. 
The determination of the rigid-body translations and rotations can differ greatly for different 
element types and geometries. The process of obtaining the rigid-body motions for a 
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triangular element is illustrated in Fig. 2. Detailed formulations can be found in Wu [Wu 
(2013); Yu, Paulino and Luo (2010); Zhang, Yang and Luo (2017)] for beams, triangular 
shells and tetrahedral solids. A set of deformation coordinates is then introduced specifically 
to remove the modes related to the rigid-body motion and to reduce the total number of 
independent variables to the correct number. After simple coordinate manipulations, ∆𝜼𝜼�𝑒𝑒 , 
the pure deformation in the deformation coordinate system (DCS), is obtained. 

Step II.b: Strain evaluation 
Shape functions in the same form as those developed in the FEM are introduced to describe 
the strain distributions within each FPM element. ∆𝜺𝜺�𝑒𝑒 , the strain increment at each 
integration point in the DCS, is evaluated as 

∆𝜺𝜺�𝑒𝑒 = 𝑩𝑩� ∆𝜼𝜼�𝑒𝑒  (7) 

where 𝑩𝑩� denotes the matrix of the strain-displacement relations in the DCS. 

Step II.c: Stress evaluation 
The stress increment at each element integration point in the DCS can be evaluated as 

∆𝝈𝝈�𝑒𝑒 = 𝑫𝑫� ∆𝜺𝜺�𝑒𝑒  ( ∆𝝈𝝈�𝑒𝑒 = 𝑫𝑫�𝑝𝑝 ∆𝜺𝜺�𝑒𝑒 ) (8) 

where 𝑫𝑫�  and 𝑫𝑫�𝑝𝑝  represent the elastic and elastoplastic constitutive matrices, 
respectively, in the DCS. For plastic materials, the radial return-mapping algorithm [Simo 
and Hughes (1998)] is adopted to determine the actual form of 𝑫𝑫�𝑝𝑝. Iterations on plastic 
state variables within the path unit are usually required. 

Step II.d: Calculation of the element equivalent forces 
Based on the principle of virtual work, one can calculate the element equivalent forces 𝒇𝒇�𝑒𝑒𝑒𝑒  
in the DCS as follows: 

𝒇𝒇�𝑒𝑒𝑒𝑒 = ∫ 𝑩𝑩�𝑇𝑇( 𝝈𝝈� + ∆𝝈𝝈�𝑒𝑒 )𝑒𝑒−𝛥𝛥𝑒𝑒
𝑉𝑉 𝑑𝑑𝑑𝑑 (9) 

Subsequently, these forces need to be transformed back into the global coordinate system 
to obtain 𝑭𝑭𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 . 

Step II.e: Assembling composite forces for the particles 
For an arbitrary particle 𝛼𝛼 at time 𝑡𝑡, the external loads ( 𝑭𝑭𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ) and the equivalent internal 
forces of the connected elements need to be accumulated to determine the final composite 
force 𝑭𝑭𝛼𝛼𝑒𝑒 . This calculation is described as follows: 

𝑭𝑭𝛼𝛼𝑒𝑒 = 𝑭𝑭𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − ∑ 𝑭𝑭𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖=1  (10) 

where 𝑭𝑭𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒  denotes the equivalent force of the i-th element connected to 𝛼𝛼 and 𝑚𝑚 is 
the total number of elements connected to 𝛼𝛼. 
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Step III: Solving the kinematic equations for the particles 
From Eq. (3), the particle displacement for the next step can be evaluated. The iterative 
process is terminated if the predefined end of the considered time period has been reached 
or if the conditions for termination are met; otherwise, the process returns to step II for the 
next iteration. 
The iterative process of the FPM as described above has a wide range of versatility. First, 
the kinematic equilibrium equations applied for the particles suggest that by nature, the 
FPM takes a dynamic approach to structural analysis. Static problems can be simply 
considered as special cases in which the external loads are time independent and fictitious 
damping effects are set only to accelerate the process of achieving the final equilibrium 
state. Furthermore, the only difference between elastic and elastoplastic analysis lies in 
whether plastic constitutive theory is used when determining the stress state. Finally, the 
introduction of the fictitious reverse motion and path units ensures more accurate 
calculation of the element equivalent forces when strong nonlinearities are involved. After 
minor adjustments, all of these different types of analysis can be performed in a single 
generic computational framework for the FPM. 
In addition, the iterative process of the FPM is largely decoupled within each path unit. For 
example, the kinematic equations can be processed individually for each particle and even 
each DOF, and the element-updating process (Steps II.a-II.d) is self-reliant between 
elements and even between integration points. These features facilitate the parallelization 
of the FPM, as no extra work is needed for decoupling. 
The proposed generic parallelized computational framework for the FPM is depicted in Fig. 
3, which presents a descriptive summarization of the steps introduced above. The parallel 
implementations of each step of computation are the main focus of this paper and will be 
comprehensively discussed in Section 3. 

3 GPU parallelization of the FPM 
Based on the fundamentals of the FPM theory and the generic parallelized computational 
framework proposed in the previous section, a GPU-accelerated parallelized solver system 
for the FPM has been implemented as the numerical analysis module for the universal 
computational FPM platform developed in our previous work. As explained in the 
introduction, CUDA, a proprietary GPU-oriented programming language supported by 
NVIDIA, was chosen for this work. The GPU implementations developed in CUDA C for 
the proposed FPM solver system are discussed in this section 

3.1 Parallelized solver system for the FPM 
A typical GPU contains a certain number of streaming multiprocessors (SMs), and a single 
SM consists of multiple streaming processors (SPs). The smallest units of parallel 
executions in a GPU device are called threads. In groups of 32 (called warps), threads are 
scheduled into thread blocks, which form the overall thread grid for each parallel execution. 
In a manner that is transparent to the user in terms of hardware, a multithreaded program 
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is partitioned into blocks in each SM, and these blocks are executed independently of each 
other. Each thread can use the registers provided in each SM with the largest bandwidth 
and has its own private local memory; in addition, each block has a shared memory that is 
visible to all threads in the block. All threads have access to the same global memory. 

 

Figure 3: Generic parallelized computational framework for the FPM 
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Figure 4: Generic GPU implantation of CUDA 

A generic GPU implantation with CUDA is shown in Fig. 4. For a more detailed 
introduction to the CUDA programming model, the reader is referred to NVIDIA [NVIDIA 
(2019)]. For a multithreaded C++ program, CUDA threads are executed on a physically 
separate device that operates as a coprocessor to the host running the program. The host 
and the device maintain their own separate memory spaces. The host code, executed on 
one or more CPUs, manages the allocation and deallocation of device memory as well as 
the data transfer between the host and device memory. The device code mainly consists of 
a set of device functions, called kernels, that run in CUDA threads. The host controls when 
and how the device kernels are executed. 
To deeply integrate the CUDA programming model, a more sophisticated parallelized 
computational framework has been developed for the proposed FPM platform, whose 
architecture is illustrated in Fig. 5. This platform is fully equipped with a preprocessing 
module for 3D modeling and a postprocessing module for result display; however, the 
GPU-accelerated solver system is the main focus of this paper. 
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Figure 5: Architecture of the proposed FPM platform 

Three types of FPM solvers have been developed: element solvers for different element 
types, a constraint solver, and a particle solver. When analysis begins, all model-related 
data are transferred to these FPM solvers for preparation and initiation, and the buffers for 
calculations are allocated in the host memory and transferred to the device memory. Two 
kinds of buffers are allocated. The first are the arrays for particle-related variables, such as 
the initial positions, displacements, and composite forces. Accessible by all solvers, these 
arrays form the main data stream that is iteratively processed throughout the whole 
computational process. In addition, each solver manages its own private buffers. For 
example, the arrays for temporary variables that are generated during the element-updating 
process for a specific type of FPM element are accessible only by the corresponding 
element solver. 
As noted in Section 2, each analysis process in the FPM consists of an iterative loop of 
updating the main data stream of particle variables. The actual form of the iterative loop 
varies for different types of FPM analyses, such as static and dynamic analyses, but they 
share the same general structure (Fig. 4). For a specific analysis, a queue of iterative loops 
for different types of analysis can be scheduled and executed in order, and the main data 
stream of particle variables is constantly being updated or exported in this queue, as 
illustrated in Fig. 5. 
Within each time step of an iterative loop, Steps II-III in Section 2 are executed in one or 
several CUDA kernels managed by corresponding solvers. As two of the most crucial steps, 
the element-updating process is carried out in the various element solvers, and the 
kinematic equations for the particles are solved in the particle solver. The GPU 
implementations of these two types of solvers are elaborated in Section 3.2. 
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3.2 GPU implementations of the FPM solvers 
Conveniently, most of the computational tasks of the FPM are already decoupled to varying 
degrees, and the formulations for each task are rather straightforward. Following Steps II-
III in Section 2, each task is implemented in several CUDA kernels. For concise description, 
the kernels for each task will be referred to as a single generic kernel. With this descriptive 
convention, for the GPU implementations of the FPM solvers, only two problems must be 
addressed: 

 Execution configuration: How to launch kernels with the desirable number of blocks 
and threads. 
 Memory management: How to manage memory storage to achieve the ideal 
throughput. 

In the CUDA programming model, the host controls when and how the device kernels are 
executed by specifying the number of blocks and the number of threads per block. The 
execution configuration syntax for a given kernel is 
𝑆𝑆𝑆𝑆𝑚𝑚𝑒𝑒𝑆𝑆𝑒𝑒𝑆𝑆𝑚𝑚𝑒𝑒𝑆𝑆<<<𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏 ,𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏>>>(𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑚𝑚𝑒𝑒𝑡𝑡𝑒𝑒𝑆𝑆𝑝𝑝… ) 
where 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏 and 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏 denote the number of blocks and the number of threads per block, 
respectively. When a kernel call is made with a specific execution configuration pair of 
𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏 and 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏, a grid of thread blocks is automatically generated in the device. With a 
total of 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏 × 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏 threads, the same kernel is executed in each thread independently. 
It is apparent that a larger number of threads per block will result in a larger number of 
threads in total. However, each SM contains only a limited number of registers. If a block 
contains more threads or if more registers per thread are used in the kernel, then fewer 
blocks can be processed synchronously in a single SM since more registers are needed in 
each block. Therefore, all of the above factors must be considered when determining 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏 
to reach a satisfactory degree of concurrency. Based on numerous performance tests for 
most of the kernels implemented in this work, it has been found that 128-256 threads per 
block results in the best efficiency. Thus, for convenience, 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏 is set to a constant value 
of 128 for all kernels. 
The total number of threads, denoted by 𝑁𝑁𝑒𝑒ℎ𝑐𝑐𝑒𝑒𝑐𝑐𝑟𝑟, can be easily determined for each kernel. 
As noted in Section 2, each step of the iterative process of the FPM pipeline possesses its 
own specific type of independence, based on which the total number of threads assigned to 
the corresponding kernel can be determined. The types of independence for each step are 
listed below: 

 Pure deformation evaluation: independence between elements. 
 Strain and stress evaluations: independence between integration points. 
 Calculation of the element equivalent internal forces: independence between 
elements. 
 Solving the kinematic equations for the particles: independence between particles. 
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As a result, the numbers of particles, elements and integration points are used as 𝑁𝑁𝑒𝑒ℎ𝑐𝑐𝑒𝑒𝑐𝑐𝑟𝑟 
for the different kernels to reflect their particular types of independence. Then, for a given 
constant value of 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏, the number of blocks 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏 can be evaluated: 

𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏 = �𝑁𝑁𝑒𝑒ℎ𝑐𝑐𝑒𝑒𝑐𝑐𝑟𝑟 + 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏 − 1� 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏�  (11) 

Fig. 6 shows the execution configurations for the element-updating process (steps II in 
Section 2), for which five kernels are implemented. For the kernels 
𝐶𝐶𝑝𝑝𝑆𝑆𝑐𝑐𝐶𝐶𝐶𝐶𝑆𝑆𝑒𝑒𝐶𝐶𝑒𝑒𝐶𝐶𝑆𝑆𝑆𝑆𝑚𝑚𝑝𝑝𝑡𝑡𝑚𝑚𝑆𝑆𝑚𝑚  and 𝐶𝐶𝑝𝑝𝑆𝑆𝑐𝑐𝐶𝐶𝑆𝑆𝑒𝑒𝑚𝑚𝐶𝐶𝑆𝑆𝑆𝑆𝑐𝑐𝑒𝑒 , each thread is responsible for all 
calculations for a single element, and 𝑁𝑁𝑒𝑒ℎ𝑐𝑐𝑒𝑒𝑐𝑐𝑟𝑟 in Eq. (11) is set equal to the total number 
of elements to obtain 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏_𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒, the corresponding number of blocks. For the kernels 
𝐶𝐶𝑝𝑝𝑆𝑆𝑐𝑐𝑆𝑆𝑡𝑡𝑆𝑆𝑝𝑝𝑚𝑚𝑚𝑚𝐶𝐶𝑒𝑒𝑆𝑆𝑡𝑡𝑝𝑝  and 𝐶𝐶𝑝𝑝𝑆𝑆𝑐𝑐𝑆𝑆𝑡𝑡𝑆𝑆𝑒𝑒𝑝𝑝𝑝𝑝𝐶𝐶𝑒𝑒𝑆𝑆𝑡𝑡𝑝𝑝 , each thread performs all calculations for a 
single integration point. The corresponding number of blocks, or 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏_𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑝𝑝𝑟𝑟𝑖𝑖𝑖𝑖𝑒𝑒, is the 
product of 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏_𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒 and the number of integration points used for the corresponding 
element type. The kernel for assembling element equivalent forces is slightly different and 
will be explained later. 

 

Figure 6: Parallel execution configurations for the element-updating process 

Once the kernels have been executed with the appropriate configurations, each thread can 
determine its own global index (denoted by 𝑚𝑚𝑑𝑑𝑖𝑖) among all scheduled threads in the kernel 
code as follows: 

𝑚𝑚𝑑𝑑𝑖𝑖 = 𝑏𝑏𝑆𝑆𝑆𝑆𝑐𝑐𝑏𝑏𝐶𝐶𝑚𝑚𝑚𝑚 × 𝑏𝑏𝑆𝑆𝑆𝑆𝑐𝑐𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖 + 𝑡𝑡ℎ𝑆𝑆𝑒𝑒𝑝𝑝𝑑𝑑𝑏𝑏𝑑𝑑𝑖𝑖 (12) 

where 𝑡𝑡ℎ𝑆𝑆𝑒𝑒𝑝𝑝𝑑𝑑𝑏𝑏𝑑𝑑𝑖𝑖 is the local thread index in the current block, 𝑏𝑏𝑆𝑆𝑆𝑆𝑐𝑐𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖 is the block 
index, and 𝑏𝑏𝑆𝑆𝑆𝑆𝑐𝑐𝑏𝑏𝐶𝐶𝑚𝑚𝑚𝑚 is the block size, which is equal to 𝑁𝑁𝑒𝑒𝑟𝑟𝑝𝑝. These values can all be 
acquired via CUDA APIs in the device code. For instance, if a kernel with a number of 
blocks equal to 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏_𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒 , such as 𝐶𝐶𝑝𝑝𝑆𝑆𝑐𝑐𝐶𝐶𝐶𝐶𝑆𝑆𝑒𝑒𝐶𝐶𝑒𝑒𝐶𝐶𝑆𝑆𝑆𝑆𝑚𝑚𝑝𝑝𝑡𝑡𝑚𝑚𝑆𝑆𝑚𝑚(), is executed, each 
thread corresponds to one element, and the value of 𝑚𝑚𝑑𝑑𝑖𝑖 in the kernel is equal to the index 
of the element processed by that thread. Similarly, for a kernel such as 𝐶𝐶𝑝𝑝𝑆𝑆𝑐𝑐𝑆𝑆𝑡𝑡𝑆𝑆𝑒𝑒𝑝𝑝𝑝𝑝𝐶𝐶𝑒𝑒𝑆𝑆𝑡𝑡𝑝𝑝, 
𝑚𝑚𝑑𝑑𝑖𝑖 is the global index of the corresponding integration point. 
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The global thread index 𝑚𝑚𝑑𝑑𝑖𝑖 is mainly used within the kernel to access the corresponding 
values from the global or private calculation-related buffers in the device’s global memory. 
Because it has the largest storage capacity, the global device memory is used for most 
buffers storing the historical variables of particles and elements. However, the cost of each 
individual memory access is relatively high. The optimal throughput can be achieved if the 
memory access patterns are suitable for coalescence. In simple terms, when adjacent 
threads access successive memory addresses in the global memory, each warp coalesces 
all memory accesses within that warp into a single access. To achieve such coalescence of 
memory accesses, an adaptation of the structure-of-arrays (SoA) storage pattern suggested 
by Cook [Cook (2013)] is applied to all calculation-related data buffers in the global 
memory to achieve the optimal throughput. The kernels need only to read/write the 
corresponding historical values from the buffers using idx as the array index and implement 
the formulations given in Section 2. 
The step of assembling element equivalent forces onto particles is the only step in the FPM 
where the formulations are not self-reliant by the standard of particles or elements. 
Adjacent elements must share particles, so each particle is required to gather internal forces 
from all the connected elements. There are two possible solutions toward implementing 
this step in a multithreaded way. The first is to let each thread accumulate a single element’s 
own internal forces onto the corresponding particles, and the kernel is launched by the total 
number of elements concurrently. Inevitably, there must be a point where different threads 
(i.e., different elements) are writing at the same memory address (i.e., composite forces of 
the shared particle), which means that this approach is not thread-safe. Atomic operations 
can be used in device code to ensure safe access patterns at the cost of performance since 
they force concurrent write actions at the same address to be serialized. Hardware support 
are also required in this case. 
Another approach is considered in this work. Each thread is responsible for gathering the 
forces for a single particle from all the neighboring elements. According to Eq. (10), the 
step of assembling element equivalent forces follows the steps below: 

(i) Connectivity arrays are generated as private buffers in the global memory during the 
preparation stage. As shown in Fig. 7, these arrays mainly store (a) the number of 
connected elements for each particle, (b) the global indexes of all connected elements 
for each particle, and (c) the corresponding local index of the particle inside the 
connected element for each particle-element connection pair. 

(ii) The kernel 𝐴𝐴𝑝𝑝𝑝𝑝𝑒𝑒𝑚𝑚𝐶𝐶𝑆𝑆𝑒𝑒𝑚𝑚𝐶𝐶𝑆𝑆𝑆𝑆𝑐𝑐𝑒𝑒  is concurrently executed for the total number of 
particles; thus, the thread index 𝑚𝑚𝑑𝑑𝑖𝑖 represents the corresponding particle. The index 
𝑚𝑚𝑑𝑑𝑖𝑖 is used as a position index to retrieve the number of connected elements (𝑒𝑒𝐶𝐶𝑆𝑆𝐶𝐶𝑚𝑚𝑡𝑡) 
to initialize the loop over all connected elements. 

(iii) Within the loop for each connected element, first, the element’s global index (𝑒𝑒𝑏𝑏𝑑𝑑) 
and the local index (𝑒𝑒𝐶𝐶𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝑏𝑏𝑑𝑑) of particle 𝑚𝑚𝑑𝑑𝑖𝑖  in element 𝑒𝑒𝑏𝑏𝑑𝑑 are retrieved. 
Then, the correct element internal force is acquired using 𝑒𝑒𝑏𝑏𝑑𝑑 and 𝑒𝑒𝐶𝐶𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝑏𝑏𝑑𝑑. 
Finally, this internal force is incorporated into the composite force for 𝑚𝑚𝑑𝑑𝑖𝑖.  
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Figure 7: Data structures and memory allocations for assembling element equivalent forces 

Algorithm 1: Assembling the element internal forces thread-safely 

calculate the thread index 𝑚𝑚𝑑𝑑𝑖𝑖 via Eq. (12) 
read the composite force for particle 𝑚𝑚𝑑𝑑𝑖𝑖 as 𝑝𝑝𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝐶𝐶 
read 𝑒𝑒𝐶𝐶𝑆𝑆𝐶𝐶𝑚𝑚𝑡𝑡 from the connectivity arrays 
for 𝑚𝑚 = 0 to 𝑒𝑒𝐶𝐶𝑆𝑆𝐶𝐶𝑚𝑚𝑡𝑡 

read the element index as eId using (𝑚𝑚, 𝑚𝑚𝑑𝑑𝑖𝑖) 
read the local particle index as 𝑒𝑒𝐶𝐶𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝑏𝑏𝑑𝑑 using (𝑚𝑚, 𝑚𝑚𝑑𝑑𝑖𝑖) 
read the element force as 𝑒𝑒𝑏𝑏𝑚𝑚𝑡𝑡𝑒𝑒𝑆𝑆𝑚𝑚𝑝𝑝𝑆𝑆𝐶𝐶 using (𝑒𝑒𝑏𝑏𝑑𝑑, 𝑒𝑒𝐶𝐶𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝑏𝑏𝑑𝑑) 
add 𝑒𝑒𝑏𝑏𝑚𝑚𝑡𝑡𝑒𝑒𝑆𝑆𝑚𝑚𝑝𝑝𝑆𝑆𝐶𝐶 to 𝑝𝑝𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝐶𝐶 

write 𝑝𝑝𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝐶𝐶 back to the array of composite forces 
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 Figure 8: Schematic diagram of the GPU implementations of the FPM tasks 

This approach for assembling element internal forces is described in the form of 
pseudocode in Algorithm 1. Since all variables of connectivity are stored separated for each 
particle, this is a thread-safe approach that remains effective regardless of the element type. 
For different element geometries, only the sizes of the connectivity arrays vary; the kernel 
code requires no further modification. However, this approach does consume additional 
memory space in the device for the connectivity arrays. In addition, since the number of 
connected elements is different for each particle based on the topology of the model, 
threads in the same warp might follow different execution paths, resulting in a certain loss 
of performance. 
The final step of the FPM in each path unit is to solve the kinematic equations for the 
particles. The corresponding kernel is concurrently executed for the total number of 
particles, and each thread is responsible for the calculations for a single particle’s 
movement, in accordance with Eqs. (3) and (4). 
A schematic diagram of the GPU implementations of the main tasks of the FPM is 
presented in Fig. 8. The parallelization of the other tasks, such as evaluating and assembling 
the constraint forces, which is the purpose of the constraint solver, is achieved via a similar 
approach and will not be discussed in detail in this paper. 
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4 Numerical examples and efficiency tests 
4.1 Speedup ratio tests 
In the field of parallel computing, the speedup ratio is commonly used as an indicator of the 
efficiency of parallel implementation for a given algorithm. This parameter is defined as 

𝑆𝑆 = 𝑇𝑇𝑠𝑠/𝑇𝑇𝑝𝑝 (13) 

where 𝑆𝑆 denotes the speedup ratio, 𝑇𝑇s is the time cost of the serialized version of the 
algorithm of interest, and 𝑇𝑇𝑝𝑝 is the time cost of the same algorithm after parallelization. 
Based on the techniques introduced in the previous section, three types of GPU-accelerated 
element solvers are implemented in the proposed FPM platform: a 2-particle Euler-
Bernoulli (EB) beam solver, a 3-particle 20-integration-point triangular shell solver, and 
an 8-particle hexahedral solid solver. To test the efficiency of each solver, serialized 
counterparts have also been developed. Three sets of numerical models are considered, one 
for each type of FPM element, as shown in Fig. 9: (a) a single-layered lattice shell modeled 
with beam elements, (b) a thin spherical shell modeled with shell elements, and (c) a solid 
cantilever beam modeled with hexahedral solid elements. Under linearly increasing loads, 
each of several models with different meshes was analyzed using both the parallelized 
solvers and their serialized counterparts to obtain the corresponding elastically deformed 
shapes. The serialized solvers were tested on an Intel(R) Core(TM) i7-2600 CPU @3.4 
GHz, while the parallelized solvers were tested on an NVIDIA GeForce GTX 760 GPU 
with 1152 SPs. For all models, the time costs for 2000 iterations were determined. 
Fig. 10 shows the speedup ratios for models with different element types and meshes. For 
all element types, the speedup ratio curves show the same pattern. For models with fewer 
than 104 elements, the speedup ratio rapidly increases with an increasing number of 
elements. Once the number of elements exceeds the threshold at approximately 104, the 
speedup ratios for the different element types gradually stabilize at different levels. The 
stabilized speedup ratios are 8 for beams, 25 for hexahedral solids, and 48 for triangular 
shells. The differences in the stabilized speedup ratios between the different element types 
are fairly easy to understand. The serialized versions of the FPM solvers simply evaluate 
the formulations (given in Section 2) element by element, particle by particle, or integration 
point by integration point, while the parallelized solvers execute these calculations 
concurrently. Accordingly, for an element type that contains more integration points per 
element or requires more complicated calculations for the element-updating process, a 
higher speedup ratio can be achieved. 



 
 
 
22  CMES, vol.122, no.1, pp.5-31, 2020 

 

 

Figure 9: Models for speedup ratio tests: (a) 
a lattice shell, (b) a spherical shell and (c) a 
cantilever beam 

 
Figure 10: Speedup ratios achieved for 
different types of FPM elements 

4.2 Performance and efficiency tests 
Although the speedup ratio measures the speed improvement of the FPM after 
parallelization, the efficiency of the GPU-accelerated FPM still cannot be intuitively 
understood. In this section, the proposed FPM platform is compared with the Abaqus 
software for code validation and efficiency assessment. While this kind of efficiency 
comparison is not always fair and meaningful since equivalence cannot be fully guaranteed, 
it is nevertheless useful for estimating the achievable performance relative to a common 
and widely known software tool [Bartezzaghi, Cremonesi, Parolini et al. (2015)]. Three 
numerical examples are presented to test the performance of the proposed GPU-accelerated 
FPM solvers: two for the shell solver and one for the solid solver. Each numerical example 
was modeled with different meshes and analyzed using both the FPM platform and Abaqus. 
Due to the explicit nature of the FPM, the explicit dynamic solution step in Abaqus was 
selected to ensure that the results would be comparable. All controllable configuration 
parameters in Abaqus, including the fixed time increment (smaller than the critical time 
increment) and duration, the output settings (only nodal displacements were exported 100 
times) and the precision setting (double precision), were set to be identical to those of the 
FPM platform. The test environment was a Windows PC with an Intel(R) Core(TM) i7-
4790K CPU @4.00 GHz and an NVIDIA GeForce GTX 980 Titan GPU. This model has 
3072 SPs and 6 GB of VRAM. 

4.2.1 Spherical dome under impact pressure 
A spherical dome under impact pressure is a typical benchmark for the nonlinear dynamic 
analysis of thin shells. The geometry and material properties of the dome are shown in Fig. 
11; in this model, a bilinear isotropic hardening plastic material is considered. The dome 
is clamped on the edges, and a uniform pressure of 600 psi is applied to the upper surface 
of the dome for 1 ms. A dynamic analysis with a fixed time increment of 10-7 s was 
performed for 1 ms of physical time, resulting in 10000 iterations in total. The computation 
times of the FPM platform and Abaqus for different meshes are listed in Tab. 1. 
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Table 1: Spherical dome: computation times of the FPM platform and Abaqus 

Mesh DOFs 
Computation time (s)     Unified computation time 

     (s/104 elements/104 iterations) 
FPM   Abaqus FPM Abaqus 

1 2934 20.1  3.4  216.6 36.6 

2 9270 25.1   10.7 84.8 36.1 

3  22098 44.0   28.2 61.2 39.3 

4  54486 66.8   74.5 37.3 41.6 

5  88038 85.9   122 29.9 42.0 

 

 

Figure 11: Spherical dome: geometry and material properties (left) and deformed contours 
for the Mesh 1 model (right) 

 
Figure 12: Spherical dome: history of central 
deflection for the Mesh 1 model  

 
Figure 13: Spherical dome: unified 
computation times of the FPM platform 
and Abaqus for different meshes 

Fig. 12 shows the time history of the central deflection results obtained from the FPM 
platform. The FPM results show perfect agreement with the Abaqus results and are also 
consistent with Argyris et al. [Argyris, Papadrakakis and Mouroutis (2003); Oñate and 
Flores (2005)], thus verifying the accuracy of the FPM solver in performing elastoplastic 
dynamic analysis for thin shells. 
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The unified computation times of the two platforms are compared in Fig. 13. The unified 
computation time is defined as the computation time required for processing 104 elements 
over 104 iterations. A smaller value of the unified computation time indicates a higher 
speed. As shown in Fig. 13, 50000 DOFs (approximately 104 elements) seems to be the 
turning point below which Abaqus offers the higher speed for calculations. As the speed 
of Abaqus decreases with an increasing number of DOFs, that of the GPU-accelerated FPM 
platform rapidly increases and ultimately exceeds the speed of Abaqus. This threshold is 
consistent with the results presented in Section 4.1. Once the scale of the model exceeds 
this threshold, the GPU will run at full capacity, allowing the FPM platform to provide a 
higher computation speed than Abaqus, as further demonstrated in the following examples. 

4.2.2 Pinched cylinder 
To test the performance of the FPM solver for more challenging cases, a pinched cylinder 
adapted from Bartezzaghi et al. [Bartezzaghi, Cremonesi, Parolini et al. (2015)] was 
numerically modeled to test cases with much larger numbers of elements. The cylinder, 
with a radius of 1.016 m, a length of 3.048 m and a thickness of 0.03 m, is clamped at one 
end and pinched under two opposing forces on the other end. Only the elastic case is 
considered in this example of geometric nonlinearity, in which the Young’s modulus is 
20.685 MPa and the Poisson coefficient is 0.3. Five models with different meshes (Mesh 1 
to Mesh 5) were generated, with numbers of DOFs varying from 30600 to 1080000. A 
fixed time increment of 10-5 s was adopted for a physical time of 1 s. 
The parallel computing capability of Abaqus was used in this example for comparison. As 
explained in Section 2, the FPM is, by nature, an explicit numerical method. Ideally, the 
performance of the GPU-accelerated FPM solver should be compared with that of the 
GPU-accelerated explicit solver in Abaqus. However, the GPU-based parallel computing 
functionality in Abaqus is available only for implicit solution steps; explicit dynamic steps 
can be accelerated only with the CPU. The results of two explicit methods will be more 
comparable than those of an explicit method and an implicit method since the 
computational frameworks and computational costs are vastly different for implicit and 
explicit methods. As a result, the comparisons presented here are between the results of the 
GPU-accelerated FPM solver and the CPU-accelerated explicit FEM solver in Abaqus, and 
the latter can be regarded only as a reference. A similar treatment has previously been 
presented in Bartezzaghi et al. [Bartezzaghi, Cremonesi, Parolini et al. (2015)]. In Abaqus, 
each model was separately analyzed with 1, 4 and 8 CPU cores. The computation times for 
each configuration are listed in Tab. 2. 
Fig. 14 shows the deformed shapes of the Mesh 1 model under different forces as obtained 
from the FPM platform, and Fig. 15 compares the load-displacement curve with the results 
of Bartezzaghi et al. [Bartezzaghi, Cremonesi, Parolini et al. (2015); Ibrahimbegovic, 
Brank and Courtois (2001)], with which it shows perfect agreement. The curves of the 
unified computation time versus the number of DOFs are presented in Fig. 16. Since the 
scale of the models ensured that the GPU would be fully loaded, the FPM solver achieved 
a higher speed than Abaqus for all configurations. Compared with the Abaqus results for a 
single CPU core, the execution on the FPM platform was approximately 4.8 times faster 
on average, and the corresponding factor is approximately 2.6 for the cases with 4 and 8 
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CPU cores. It can also be observed that the computation speed of the FPM platform for this 
elastic case is approximately 3 times faster than that for the elastoplastic case in Section 
4.2.1; this is reasonable since the elastoplastic analysis requires iterations for plastic state 
variables within each path unit. 

 
Figure 14: Pinched cylinder: deformed contours for the Mesh 1 model 

 
Figure 15: Pinched cylinder: load-
displacement curve 

 
Figure 16: Pinched cylinder: unified 
computation times of the FPM platform 
and Abaqus for different meshes  

Table 2: Pinched cylinder: computation times of the FPM platform and Abaqus 

DOFs 
Computation time (s) Unified computation time 

(s/104 elements/104 iterations) 
FPM 
GPU 

Abaqus 
1 core 

Abaqus 
4 cores 

Abaqus 
8 cores 

FPM 
GPU 

Abaqus 
1 core 

Abaqus 
4 cores 

Abaqus 
8 cores 

30600 294.4 564.8 320.7 346.6 29.4 56.5 32.1 34.7 
121200 591.2 2236 1222 1284 14.8 55.9 30.5 32.1 
271800 1137 5030 2714 2812 12.6 55.8 30.2 31.2 
482400 1932 8960 4743 5126 12.1 56.0 29.6 32.0 
1080000 4177 20036 10923 10180 11.6 55.6 30.3 28.3 

4.2.3 Compressed annulus 
A simple annulus was numerically analyzed to test the performance of the solid element 
solver in the FPM platform. The annulus, whose geometry and material properties are 
shown in Fig. 17, is compressed at two opposing sides by a dynamic pressure that increases 
linearly for 0.005 s until it reaches 5.25 MPa and then remains constant. Following the 
same procedures described for the previous examples, each meshed annulus model (Mesh 
1 to Mesh 4) was processed using the FPM platform and Abaqus. A time increment of 
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2.0×10-6 s was set to capture the dynamic response of the annulus within 0.02 s. The effect 
of damping was ignored. The computation times for each mesh are listed in Tab. 3. 

Table 3: Compressed annulus: computation times of the FPM platform and Abaqus 

DOFs 
Computation time (s) Unified computation time 

(s/104 elements/104 iterations) 
FPM 
GPU 

Abaqus 
1 core 

Abaqus 
4 cores 

Abaqus 
8 cores 

FPM 
GPU 

Abaqus 
1 core 

Abaqus 
4 cores 

Abaqus 
8 cores 

8064 56.6 27.1 12.5 26.1 295.0 141.2 65.1 136.7 

54912 51.6 226.9 97.8 135.5 33.6 147.7 63.6 88.1 

403200 191.9 2002.4 701.4 717.8 15.6 163.0 57.1 58.4 

1747584 1296.7 14442.8 5571.2 5749.2 13.2 146.9 56.7 58.5 

Fig. 17 shows the deformed shapes of the annulus at different stages of loading for the 
Mesh 1 model. The calculated horizontal displacement histories of the center particle in 
the compressed area as obtained from the FPM platform and Abaqus are compared in Fig. 
18, and the results show perfect agreement.  
The computation speeds are compared in Fig. 19. For the Mesh 1 model, the scale of the 
model is relatively small, meaning that the number of launched threads is far less than the 
full capacity of the hardware. For this reason, the computation time results for Mesh 1 are 
not included in this figure. It can be observed that the execution on the FPM platform was 
approximately 11.2 times faster than the Abaqus execution with a single core and 4.5 times 
faster than the executions for the multithreaded configurations with 4 and 8 cores. These 
results prove that the proposed GPU-accelerated parallel strategy for the FPM shows 
promising application prospects for large-scale explicit simulations. 

 
Figure 17: Compressed annulus: geometry and material properties (left) and deformed 
contours for the Mesh 1 model (right) 

To obtain a broad understanding of the time consumption of the GPU-accelerated FPM 
solvers, the steps of computation described in Section 3.2 were timed separately for the 
pinched cylinder and the compressed annulus. Figs. 20 and 21 show the time consumption 
percentages for the element-updating process, for solving the kinematic equations and for 
data transfer between the host and device. It can be seen that on average, more than half of 
the computation time is consumed during the element-updating process, as expected. In 
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fact, the kernels for the element-updating process show severe register spilling. Register 
spilling is a common cause of performance degradation in which the available registers are 
not sufficient for all local variables in the kernel; thus, some of these variables are stored 
in the local memory, which has a much higher latency than the registers. High register 
usage can also lower the kernel’s occupancy, which is defined as the ratio of the number 
of active warps on an SM to the maximum number of active warps supported by the SM. 
Higher occupancy corresponds to higher efficiency in most cases. The ideal number of 
registers for each kernel is approximately 48 for the current GPU model and block size. 
The actual levels of register usage and occupancy for the main kernels are listed in Tab. 4, 
from which we can see that most of the kernels use more than the ideal number of registers. 
Thus, substantial optimization is still possible for these kernels. By reusing local variables 
or reducing divergence in the warps, the efficiency of the GPU-accelerated FPM solvers 
could be further improved in future work. 

Table 4: Register usage and occupancy for the main kernels 

M task 
Triangular shell            Hexahedral solid 

Occupancy Register usage Occupancy Register usage 

Calculate pure deformation 50% 64 37.5% 78 

Calculate strain and stress 50% 68 25% 110 

Calculate element equivalent forces 31.25% 88 25% 128 

Assemble element equivalent forces 25% 112 100% 30 

Calculate particle translations 18.75% 152 18.75% 152 

Calculate particle rotations 31.25% 88 - - 

The computation speed for the hexahedral solid elements is slower than that for the shell 
elements in these two examples. As shown in Tab. 4, the kernels for the hexahedral solid 
element solver require more registers, which explains the lower efficiency of this solver 

 
Figure 18: Compressed annulus: 
horizontal displacement history of the 
center particle in the compressed area 

 
Figure 19: Compressed annulus: unified 
computation times of the FPM platform 
and Abaqus for different meshes 
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compared to that for the shell elements. Elements with more integration points require more 
threads to be launched for the strain/stress evaluations, while elements with simpler 
geometries require less effort for pure deformation extraction and fewer kernel variables. 
Compared to the hexahedral solid element, which has 8 integration points, the FPM shell 
element has more integration points (20) but a much simpler geometry (a triangle rather 
than a brick); thus, its faster computation speed is reasonable. 
The efficiency of data transfer between the host and the device also requires attention. In 
fact, there is no concept of file I/O in a GPU; the results in the device memory must be 
transferred back to the host to be written into files or databases. This data transfer process 
has almost the lowest possible bandwidth, which makes it extremely time consuming. In 
the two tests presented above, only the displacements of the particles were exported out of 
the GPU memory. As shown in Fig. 20, for the example of the pinched cylinder, the cost 
of data transfer is quite low relative to the total time cost. The reason is that the number of 
particles is rather small compared to the number of elements; consequently, the exported 
data size is insignificant. However, for the example of the annulus, almost 40% of the time 
is spent on data transfer, as seen in Fig. 21. Due to the topology, the cost of transferring 
particle-related data is no longer insignificant. Furthermore, if the element results were to 
be exported, the cost of data transfer would dominate the whole process. This is a common 
problem faced by every GPU-accelerated system. The overall efficiency of the FPM 
solvers could be further improved if the latency of data transfer could be effectively 
reduced. In future research and development, the approach of overlapping the assignments 
for calculations and data transfer, as suggested by Cai et al. [Cai, Li and Liu (2018)], will 
be considered. 

5 Conclusions 
This paper has proposed a parallel strategy for explicit dynamic analysis using the FPM. 
Using the CUDA programming model, a GPU-accelerated computational platform for the 

          

Figure 20: Pinched cylinder: time             
consumption for individual FPM tasks 

 

 

Figure 21: Compressed annulus: 
time consumption for individual 
FPM tasks 
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FPM has been developed, and its accuracy and efficiency have been validated for several 
numerical examples. 
Through careful management of thread executions and memory access optimization, GPU 
implementations of the main tasks in the FPM pipeline have been developed, as elaborated 
in this paper, and GPU solvers for various types of FPM elements have been implemented. 
Performance tests show that, after parallelization, speedup ratios of 8, 25 and 48 are 
achieved with the proposed FPM platform for elastic beam, hexahedral solid and triangular 
shell elements, respectively. In general, a higher speedup ratio can be achieved for more 
complex elements with a larger number of integration points. 
For examples involving explicit analyses of shells and solids, comparisons with Abaqus 
results obtained using 1 to 8 CPU cores validate the accuracy of the proposed platform and 
demonstrate speed improvements by factors of 2.6 to 11.2 for the GPU-accelerated FPM 
elements. It can be concluded that the proposed GPU-accelerated FPM platform provides 
faster performance than the multithreaded CPU architecture in Abaqus for large-scale 
explicit dynamic analysis and shows promising application prospects. 
This work can serve as a starting point for future improvements and applications of the 
FPM. The implemented FPM platform can still be substantially improved to achieve more 
satisfactory performance. Optimizations with regard to device code delivery, register usage 
and I/O throughput will be needed in the future to achieve further improvement. 
Furthermore, additional types of FPM elements can be implemented using the parallel 
framework proposed in this paper. The FPM theories of fracture, contact and collision 
could also be parallelized in future studies. Simulations for such complex engineering 
problems, with high levels of discontinuity and nonlinearity, demand a high standard of 
efficiency, for which the GPU-accelerated FPM approach will be advantageous. 
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