

Computer Modeling in Engineering & Sciences CMES, vol.122, no.1, pp.5-31, 2020

CMES doi: 10.32604/cmes.2020.08104 www.techscience.com/journal/CMES

Parallelized Implementation of the Finite Particle Method for
Explicit Dynamics in GPU

Jingzhe Tang1, Yanfeng Zheng1, Chao Yang1, Wei Wang1 and Yaozhi Luo1, *

Abstract: As a novel kind of particle method for explicit dynamics, the finite particle
method (FPM) does not require the formation or solution of global matrices, and the
evaluations of the element equivalent forces and particle displacements are decoupled in
nature, thus making this method suitable for parallelization. The FPM also requires an
acceleration strategy to overcome the heavy computational burden of its explicit
framework for time-dependent dynamic analysis. To this end, a GPU-accelerated parallel
strategy for the FPM is proposed in this paper. By taking advantage of the independence
of each step of the FPM workflow, a generic parallelized computational framework for
multiple types of analysis is established. Using the Compute Unified Device Architecture
(CUDA), the GPU implementations of the main tasks of the FPM, such as evaluating and
assembling the element equivalent forces and solving the kinematic equations for particles,
are elaborated through careful thread management and memory optimization. Performance
tests show that speedup ratios of 8, 25 and 48 are achieved for beams, hexahedral solids
and triangular shells, respectively. For examples consisting of explicit dynamic analyses
of shells and solids, comparisons with Abaqus using 1 to 8 CPU cores validate the accuracy
of the results and demonstrate a maximum speed improvement of a factor of 11.2.

Keywords: Finite particle method, GPU, parallel computing, explicit dynamics.

1 Introduction
The finite element method (FEM), which is derived from variational principles and
continuum mechanics, has been widely applied in the analysis of an extensive range of
engineering problems over the past few decades and is also the theoretical foundation for
most commercial software for numerical simulations. The numerical integration of the
element stiffness matrices, the formation of the global matrices and the solution of the
equilibrium equations in the form of a linear system are the main tasks of the FEM; among
these tasks, the solution step often dominates the performance of the FEM pipeline. As the
numbers of elements and degrees of freedom (DOFs) increase, the global matrices rapidly
grow in size, causing the complexity of the linear system and the required computation
time to increase exponentially, especially for large-scale dynamic simulations.
To resolve the problem of long computation time in FEM analyses, the advantages of
parallel computing have commonly been exploited on central processing units (CPUs)

1 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China.
* Corresponding Author: Yaozhi Luo. Email: luoyz@zju.edu.cn.
Received: 28 July 2019; Accepted: 06 December 2019.

6 CMES, vol.122, no.1, pp.5-31, 2020

using the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) standards.
In recent years, the use of graphics processing units (GPUs) in the field of high-performance
computing has also been shown to be effective in terms of computation time and has rapidly
gained in popularity [Hwu (2011)]. Considerable research on CPU- and GPU-based parallel
strategies and implementations for the FEM has been carried out over the past few decades,
and the main course of development of related studies has been reviewed in Georgescu et al.
[Georgescu, Chow and Okuda (2013)]. To summarize, there are two main approaches. The
first consists of various techniques of accelerating the mathematical procedures for solving
linear algebra systems, which are often encountered in the FEM. Various parallelization
strategies for direct solvers, such as the Cholesky factorization and lower-upper (LU)
decomposition, and for iterative solvers using the conjugate gradient method have been
proposed and implemented over the years; the performances of such parallelized solvers are
compared in Cheik Ahamed et al. [Cheik Ahamed and Magoulès (2017); Pikle, Sathe and
Vyavhare (2018); Rao and Kamra (2018)]. Instead of being restricted to the FEM, most of
these techniques can be generically applied to other linear systems; in fact, there are already
numerous corresponding parallel computing packages and toolkits available from several
large software companies, which have been successfully integrated into many industrialized
software packages, as listed in NVIDIA et al. [NVIDIA (2017); The Khronos Group (2013)].
The other approach consists of methods that are more specialized for the FEM theory itself,
such as the domain decomposition method (DDM) and the element-by-element (EBE)
method. In the DDM, the most commonly used method in parallelized FEM systems, the
overall structural model is decomposed into submodels, and the calculations for each
submodel are each individually performed by a different processing core; in this way, the
whole model can be concurrently processed and then reassembled based on intersecting
regions, as explained in Papadrakakis et al. [Papadrakakis, Stavroulakis and Karatarakis
(2011)]. In the EBE method, on the other hand, the vector product of the global stiffness
matrix is transformed into vector products of a set of element stiffness matrices, making the
steps of formation and solution obsolete. Usually combined with the DDM, the EBE method
has been successfully implemented in distributed multiprocessing systems; examples can be
found in Bova et al. [Bova and Carey (2000); Gullerud and Dodds Jr (2001)]. Generally, the
main focus of these methods for the parallelization of the FEM is to decompose or decouple
the linear equations, and the applications of these methods all demonstrate effective
improvements in speed for large-scale FEM analysis. However, equilibrium equations in the
strongly coupled form still constrain further improvements in performance.
The finite particle method (FPM) is a novel numerical method for engineering-oriented
applications involving complex structural behaviors. A recent review of the FPM,
including its background and fundamentals, can be found in Luo et al. [Luo, Zheng, Yang
et al. (2014)]. While the traditional FEM is derived from continuum mechanics, the FPM
is derived from vector mechanics, as first proposed by Shih et al. [Shih, Wang and Ting
(2004); Ting, Shih and Wang (2004a, 2004b)]. In this method, the subject of analysis is no
longer viewed as a continuum. Instead, in the FPM, a physical body is modeled as a finite
number of particles in space and a finite number of path units in time, as depicted in Fig.
1. Within each period of a given time increment, the motions of the particles are controlled
by Newton’s second law. The kinematic state of equilibrium is forced on each particle
individually instead of the whole system, so that no global matrices need to be constructed

Parallelized Implementation of the Finite Particle Method 7

or solved. The FPM can be characterized as a particle method since the particles carry
structural variables such as mass, density, velocity, strain and stress. However, the particles
in the FPM do not have physical volumes; instead, they are connected by elements. It can
be said that the FPM shares the simplicity of describing topology in terms of elements with
the FEM while possessing the advantage of already decoupled equations by virtue of its
nature as a particle method. In recent years, the FPM has been applied to various types of
complex structural behaviors with promising results. Related work in this field can be
found in relation to mechanism analysis [Yu and Luo (2009a, 2009b)], contact and collision
[Yu and Luo (2013)], shape analysis for tensile structures [Yang, Shen and Luo (2014)],
and progressive collapse simulations [Yu, Paulino and Luo (2010); Yu and Zhu (2016)].
Similar to the FPM, the vector-form intrinsic finite element (VFIFE) method has also been
developed by other scholars; this method is also based on vector mechanics and has been
applied in the contexts of bridges and railways [Duan, Wang, Wang et al. (2018); Duan,
Wang and Yau (2019)], smart structures [Xu, Li, Jiang et al. (2015)], mechanical joints
[Yang, Cheng and Zhang (2016)] and marine risers [Li, Guo and Guo (2018)].

Figure 1: Discrete model of the FPM

Given the partial differential form of Newton’s second law, the kinematic equations for
particles in the FPM are solved using the explicit central difference time integration
algorithm, which is conditionally stable. To ensure a converged result in the FPM, the time
increment must be maintained at a relatively small value; thus, more iterations are needed
for a fixed amount of physical time. The FPM is in urgent need of an acceleration strategy
to overcome the heavy computational burden of its explicit framework caused by this time
step limitation. Moreover, unlike in the FEM procedure, no additional steps of assembling
and decoupling global matrices are required; therefore, the overall complexity of the FPM
continues to increase linearly as the model scale grows. As a result, the evaluations of the
element equivalent forces are self-reliant between elements, and the kinematic equations
can be solved individually for each particle. This feature allows the FPM to be strongly
accelerated by means of parallel computing techniques, which is an advantage that many
particle-based numerical methods share.

8 CMES, vol.122, no.1, pp.5-31, 2020

Generally, an ideal parallel implementation should allow independent procedures to be
processed concurrently. In this case, parallel implementations of the FPM should be able
to treat individual particles or elements simultaneously. Considering the general scale of
the discrete particle model of the FPM, GPUs are much more suitable for the job than CPUs:
a GPU can contain more than a thousand processing cores, while a common CPU provides
only up to 24 cores. Various efforts related to GPU-accelerated implementations of other
particle-based methods, such as the discrete element method (DEM) [Qi, Li, Jiang et al.
(2015)] and smoothed particle hydrodynamics (SPH) [Xia and Liang (2016)], have been
reported in recent years. In terms of computational efficiency, the performance of these
GPU-accelerated implementations is substantially improved relative to their CPU
counterparts. Inspired by these precedents for similar applications, in this study, a parallel
strategy for the FPM has been implemented on a GPU architecture.
In the field of GPU-accelerated computing, the development of specialized programming
models is essential to allow researchers and developers to gain access to the computing
power of GPUs. In 2006, NVIDIA, one of the main producers of graphics cards, launched
a development environment called Compute Unified Device Architecture (CUDA), which
is available only through NVIDIA’s hardware. Later, in 2008, Apple and Khronos provided
a free and open language called the Open Computing Language (OpenCL), which is
intended for use on all compatible graphics cards on the market [The Khronos Group
(2013)]. These two general-purpose programming languages, each with its own merits and
disadvantages, have made GPUs increasingly valid computing resources in engineering
simulations. The greatest downside of CUDA is that a CUDA-based application can run
only on NVIDIA GPUs, while OpenCL is available on graphics cards from other
manufacturers, such as AMD and Intel. However, the market for graphics cards aimed at
scientific computing is dominated by NVIDIA. Meanwhile, as a proprietary language,
CUDA also provides higher-level application programming interfaces (APIs), better
profiling tools and a richer programming ecosystem compared to OpenCL [Cook (2013)].
Therefore, CUDA has been chosen for the GPU-based acceleration of the FPM in this work.
In this paper, a GPU-accelerated parallel strategy for the FPM is proposed and
implemented as the basis of an FPM platform. First, based on the fundamentals of the FPM
theory, a generic parallelized computational framework for multiple types of FPM analysis
is established by taking advantage of the independence of each step of the FPM workflow.
Then, with the help of the CUDA programming model, GPU implementations of the main
tasks of the FPM, such as evaluating and assembling the element equivalent forces and
solving the kinematic equations for particles, are elaborated from the perspectives of thread
management and memory optimization. Performance tests on the speedup ratios for various
types of FPM elements are reported to illustrate the improvements in performance achieved
with GPU parallelization. In the end, for examples consisting of explicit analyses of shells
and solids, comparisons with the CPU-accelerated Abaqus are presented to validate the
accuracy and efficiency of the proposed platform.
This paper is structured as follows. In Section 2, the fundamentals of the FPM are briefly
introduced, and a generic parallelized computational framework for the FPM is proposed.
The details of the developed FPM platform are given in Section 3, and the GPU
implementations of the main tasks of the FPM are also described. Performance tests for

Parallelized Implementation of the Finite Particle Method 9

various types of FPM elements are reported in Section 4, and the numerical results for
triangular shells and hexahedral solids are compared with the results from Abaqus for
validation of the proposed platform in terms of accuracy and efficiency. Finally, in Section
5, conclusions are drawn, and possible future improvements are discussed.

2 Fundamentals of the parallelized FPM
Referring to a mechanical model in applied physics, the FPM holds that every discrete
particle is constantly in a state of kinematic equilibrium and that each particle’s motion is
governed by Newton’s second law in vector form. Therefore, for an arbitrary particle α,
its translational and rotational displacements follow Eqs. (1) and (2):

𝑚𝑚𝛼𝛼�̈�𝒅𝛼𝛼 = 𝑭𝑭𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑭𝑭𝛼𝛼𝑖𝑖𝑖𝑖𝑒𝑒 = 𝑭𝑭𝛼𝛼 (1)

𝑰𝑰𝛼𝛼�̈�𝜽𝛼𝛼 = 𝑴𝑴𝛼𝛼
𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑴𝑴𝛼𝛼

𝑖𝑖𝑖𝑖𝑒𝑒 = 𝑴𝑴𝛼𝛼 (2)

where 𝑚𝑚𝛼𝛼 and 𝑰𝑰𝛼𝛼 are the mass and mass inertia matrix, respectively, of particle α; �̈�𝒅𝛼𝛼
and �̈�𝜽𝛼𝛼 denote its acceleration vectors for translation and rotation, respectively; 𝑭𝑭𝛼𝛼, the
composite force vector for particle α , consists of external loads 𝑭𝑭𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 and internal
equivalent forces 𝑭𝑭𝛼𝛼𝑖𝑖𝑖𝑖𝑒𝑒 , which must be accumulated from every element connected to
particle α; and the same applies to 𝑴𝑴𝛼𝛼 , 𝑴𝑴𝛼𝛼

𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑴𝑴𝛼𝛼
𝑖𝑖𝑖𝑖𝑒𝑒 but for the moments of the

forces. It can be seen that the kinematic equilibrium equation for each particle, and even
for each DOF, is independent.
It is essential to treat Eqs. (1) and (2) numerically due to their partial differential form.
Various implicit and explicit time integration schemes can be adopted. Here, the standard
explicit central difference time integration algorithm is applied to the FPM. Considering
the mass damping effect, given a particle’s displacements at time 𝑡𝑡 and 𝑡𝑡 − Δ𝑡𝑡 , its
displacement at time 𝑡𝑡 + Δ𝑡𝑡 can be explicitly obtained in an iterative manner:

𝒅𝒅𝛼𝛼𝑒𝑒+Δ𝑒𝑒 = 𝑐𝑐1Δ𝑡𝑡2𝑚𝑚𝛼𝛼
−1 𝑭𝑭𝛼𝛼𝑒𝑒 + 2𝑐𝑐1 𝒅𝒅𝛼𝛼𝑒𝑒 − 𝑐𝑐2 𝒅𝒅𝛼𝛼𝑒𝑒−Δ𝑒𝑒 (3)

𝜽𝜽𝛼𝛼𝑒𝑒+Δ𝑒𝑒 = 𝑐𝑐1Δ𝑡𝑡2𝑰𝑰𝛼𝛼−1 𝑴𝑴𝛼𝛼
𝑒𝑒 + 2𝑐𝑐1 𝜽𝜽𝛼𝛼𝑒𝑒 − 𝑐𝑐2 𝜽𝜽𝛼𝛼𝑒𝑒−Δ𝑒𝑒 (4)

where Δ𝑡𝑡 is the time increment for each path unit, 𝑐𝑐1 = (1 + 𝜉𝜉Δ𝑡𝑡/2)−1, 𝑐𝑐2 = 𝑐𝑐1(1 −
𝜉𝜉Δ𝑡𝑡/2), and 𝜉𝜉 is the coefficient for the mass damping effect.
As with many other explicit time integration schemes, the central difference algorithm
applied here is numerically stable only conditionally. According to the Courant-Friedrichs-
Lewy (CFL) stability condition, the time increment must be maintained below a critical
value to keep the algorithm from diverging. The critical time increment ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 depends
on the overall element size and the material properties; for a given dynamic structural
system, it can be determined through Eq. (5):

∆𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒

{𝐿𝐿𝑒𝑒 𝑐𝑐𝑒𝑒⁄ } (5)

where 𝐿𝐿𝑒𝑒 is the characteristic length of each element and 𝑐𝑐𝑒𝑒 is the corresponding
effective dilatational wave speed of the material. 𝑐𝑐𝑒𝑒 is a function of the material properties,
while the calculations for 𝐿𝐿𝑒𝑒 vary depending on the element geometry; the corresponding

10 CMES, vol.122, no.1, pp.5-31, 2020

formulations are addressed in Hallquist [Hallquist (2006)]. A time increment smaller than
this critical value ensures that an acoustic sound wave has sufficient time to pass through
the element between two adjacent particles in the FPM discrete model. The overall critical
time increment ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 is, of course, the minimum value among all elements.
Generally, the iterative process for updating the translational displacement of a particle in
the FPM follows the four steps listed below, and the process for rotational displacement is
quite similar. The subscripts 𝛼𝛼 and 𝑒𝑒 in the following equations represent an arbitrary
particle and an arbitrary element, respectively.

Figure 2: Illustration of the fictitious reverse motion technique

Step I: Preparation
The initial displacement 𝒅𝒅𝛼𝛼0 is set, and the displacement for the next step is then
calculated from the initial external loads 𝑭𝑭𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒0 to initiate the iterative process.

Step II: Element updating
Based on the particle displacement at time 𝑡𝑡, the element equivalent internal forces 𝑭𝑭𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒
can be calculated. This is the most complicated and time-consuming process in the FPM,
but the calculations are self-reliant between each element. This process can be divided into
five substeps.

Step II.a: Pure deformation evaluation
By means of the fictitious reverse motion technique from vector-form mechanics, the effect
of rigid-body motion is eliminated from the overall displacement, yielding the pure
deformation of the element particles as follows:

∆𝜼𝜼𝑒𝑒 = ∆𝒅𝒅𝑒𝑒 − ∆𝜼𝜼𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖 − ∆𝜼𝜼𝑐𝑐𝑟𝑟𝑒𝑒 (6)

where ∆𝒅𝒅𝑒𝑒 is the incremental displacement of the particles within the element and
∆𝜼𝜼𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖 and ∆𝜼𝜼𝑐𝑐𝑟𝑟𝑒𝑒 denote the incremental displacements caused by translational and
rotational rigid-body motions, respectively.
The determination of the rigid-body translations and rotations can differ greatly for different
element types and geometries. The process of obtaining the rigid-body motions for a

Parallelized Implementation of the Finite Particle Method 11

triangular element is illustrated in Fig. 2. Detailed formulations can be found in Wu [Wu
(2013); Yu, Paulino and Luo (2010); Zhang, Yang and Luo (2017)] for beams, triangular
shells and tetrahedral solids. A set of deformation coordinates is then introduced specifically
to remove the modes related to the rigid-body motion and to reduce the total number of
independent variables to the correct number. After simple coordinate manipulations, ∆𝜼𝜼�𝑒𝑒 ,
the pure deformation in the deformation coordinate system (DCS), is obtained.

Step II.b: Strain evaluation
Shape functions in the same form as those developed in the FEM are introduced to describe
the strain distributions within each FPM element. ∆𝜺𝜺�𝑒𝑒 , the strain increment at each
integration point in the DCS, is evaluated as

∆𝜺𝜺�𝑒𝑒 = 𝑩𝑩� ∆𝜼𝜼�𝑒𝑒 (7)

where 𝑩𝑩� denotes the matrix of the strain-displacement relations in the DCS.

Step II.c: Stress evaluation
The stress increment at each element integration point in the DCS can be evaluated as

∆𝝈𝝈�𝑒𝑒 = 𝑫𝑫� ∆𝜺𝜺�𝑒𝑒 (∆𝝈𝝈�𝑒𝑒 = 𝑫𝑫�𝑝𝑝 ∆𝜺𝜺�𝑒𝑒) (8)

where 𝑫𝑫� and 𝑫𝑫�𝑝𝑝 represent the elastic and elastoplastic constitutive matrices,
respectively, in the DCS. For plastic materials, the radial return-mapping algorithm [Simo
and Hughes (1998)] is adopted to determine the actual form of 𝑫𝑫�𝑝𝑝. Iterations on plastic
state variables within the path unit are usually required.

Step II.d: Calculation of the element equivalent forces
Based on the principle of virtual work, one can calculate the element equivalent forces 𝒇𝒇�𝑒𝑒𝑒𝑒
in the DCS as follows:

𝒇𝒇�𝑒𝑒𝑒𝑒 = ∫ 𝑩𝑩�𝑇𝑇(𝝈𝝈� + ∆𝝈𝝈�𝑒𝑒)𝑒𝑒−𝛥𝛥𝑒𝑒
𝑉𝑉 𝑑𝑑𝑑𝑑 (9)

Subsequently, these forces need to be transformed back into the global coordinate system
to obtain 𝑭𝑭𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 .

Step II.e: Assembling composite forces for the particles
For an arbitrary particle 𝛼𝛼 at time 𝑡𝑡, the external loads (𝑭𝑭𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) and the equivalent internal
forces of the connected elements need to be accumulated to determine the final composite
force 𝑭𝑭𝛼𝛼𝑒𝑒 . This calculation is described as follows:

𝑭𝑭𝛼𝛼𝑒𝑒 = 𝑭𝑭𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − ∑ 𝑭𝑭𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖=1 (10)

where 𝑭𝑭𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 denotes the equivalent force of the i-th element connected to 𝛼𝛼 and 𝑚𝑚 is
the total number of elements connected to 𝛼𝛼.

12 CMES, vol.122, no.1, pp.5-31, 2020

Step III: Solving the kinematic equations for the particles
From Eq. (3), the particle displacement for the next step can be evaluated. The iterative
process is terminated if the predefined end of the considered time period has been reached
or if the conditions for termination are met; otherwise, the process returns to step II for the
next iteration.
The iterative process of the FPM as described above has a wide range of versatility. First,
the kinematic equilibrium equations applied for the particles suggest that by nature, the
FPM takes a dynamic approach to structural analysis. Static problems can be simply
considered as special cases in which the external loads are time independent and fictitious
damping effects are set only to accelerate the process of achieving the final equilibrium
state. Furthermore, the only difference between elastic and elastoplastic analysis lies in
whether plastic constitutive theory is used when determining the stress state. Finally, the
introduction of the fictitious reverse motion and path units ensures more accurate
calculation of the element equivalent forces when strong nonlinearities are involved. After
minor adjustments, all of these different types of analysis can be performed in a single
generic computational framework for the FPM.
In addition, the iterative process of the FPM is largely decoupled within each path unit. For
example, the kinematic equations can be processed individually for each particle and even
each DOF, and the element-updating process (Steps II.a-II.d) is self-reliant between
elements and even between integration points. These features facilitate the parallelization
of the FPM, as no extra work is needed for decoupling.
The proposed generic parallelized computational framework for the FPM is depicted in Fig.
3, which presents a descriptive summarization of the steps introduced above. The parallel
implementations of each step of computation are the main focus of this paper and will be
comprehensively discussed in Section 3.

3 GPU parallelization of the FPM
Based on the fundamentals of the FPM theory and the generic parallelized computational
framework proposed in the previous section, a GPU-accelerated parallelized solver system
for the FPM has been implemented as the numerical analysis module for the universal
computational FPM platform developed in our previous work. As explained in the
introduction, CUDA, a proprietary GPU-oriented programming language supported by
NVIDIA, was chosen for this work. The GPU implementations developed in CUDA C for
the proposed FPM solver system are discussed in this section

3.1 Parallelized solver system for the FPM
A typical GPU contains a certain number of streaming multiprocessors (SMs), and a single
SM consists of multiple streaming processors (SPs). The smallest units of parallel
executions in a GPU device are called threads. In groups of 32 (called warps), threads are
scheduled into thread blocks, which form the overall thread grid for each parallel execution.
In a manner that is transparent to the user in terms of hardware, a multithreaded program

Parallelized Implementation of the Finite Particle Method 13

is partitioned into blocks in each SM, and these blocks are executed independently of each
other. Each thread can use the registers provided in each SM with the largest bandwidth
and has its own private local memory; in addition, each block has a shared memory that is
visible to all threads in the block. All threads have access to the same global memory.

Figure 3: Generic parallelized computational framework for the FPM

14 CMES, vol.122, no.1, pp.5-31, 2020

Figure 4: Generic GPU implantation of CUDA

A generic GPU implantation with CUDA is shown in Fig. 4. For a more detailed
introduction to the CUDA programming model, the reader is referred to NVIDIA [NVIDIA
(2019)]. For a multithreaded C++ program, CUDA threads are executed on a physically
separate device that operates as a coprocessor to the host running the program. The host
and the device maintain their own separate memory spaces. The host code, executed on
one or more CPUs, manages the allocation and deallocation of device memory as well as
the data transfer between the host and device memory. The device code mainly consists of
a set of device functions, called kernels, that run in CUDA threads. The host controls when
and how the device kernels are executed.
To deeply integrate the CUDA programming model, a more sophisticated parallelized
computational framework has been developed for the proposed FPM platform, whose
architecture is illustrated in Fig. 5. This platform is fully equipped with a preprocessing
module for 3D modeling and a postprocessing module for result display; however, the
GPU-accelerated solver system is the main focus of this paper.

Parallelized Implementation of the Finite Particle Method 15

Figure 5: Architecture of the proposed FPM platform

Three types of FPM solvers have been developed: element solvers for different element
types, a constraint solver, and a particle solver. When analysis begins, all model-related
data are transferred to these FPM solvers for preparation and initiation, and the buffers for
calculations are allocated in the host memory and transferred to the device memory. Two
kinds of buffers are allocated. The first are the arrays for particle-related variables, such as
the initial positions, displacements, and composite forces. Accessible by all solvers, these
arrays form the main data stream that is iteratively processed throughout the whole
computational process. In addition, each solver manages its own private buffers. For
example, the arrays for temporary variables that are generated during the element-updating
process for a specific type of FPM element are accessible only by the corresponding
element solver.
As noted in Section 2, each analysis process in the FPM consists of an iterative loop of
updating the main data stream of particle variables. The actual form of the iterative loop
varies for different types of FPM analyses, such as static and dynamic analyses, but they
share the same general structure (Fig. 4). For a specific analysis, a queue of iterative loops
for different types of analysis can be scheduled and executed in order, and the main data
stream of particle variables is constantly being updated or exported in this queue, as
illustrated in Fig. 5.
Within each time step of an iterative loop, Steps II-III in Section 2 are executed in one or
several CUDA kernels managed by corresponding solvers. As two of the most crucial steps,
the element-updating process is carried out in the various element solvers, and the
kinematic equations for the particles are solved in the particle solver. The GPU
implementations of these two types of solvers are elaborated in Section 3.2.

16 CMES, vol.122, no.1, pp.5-31, 2020

3.2 GPU implementations of the FPM solvers
Conveniently, most of the computational tasks of the FPM are already decoupled to varying
degrees, and the formulations for each task are rather straightforward. Following Steps II-
III in Section 2, each task is implemented in several CUDA kernels. For concise description,
the kernels for each task will be referred to as a single generic kernel. With this descriptive
convention, for the GPU implementations of the FPM solvers, only two problems must be
addressed:

 Execution configuration: How to launch kernels with the desirable number of blocks
and threads.
 Memory management: How to manage memory storage to achieve the ideal
throughput.

In the CUDA programming model, the host controls when and how the device kernels are
executed by specifying the number of blocks and the number of threads per block. The
execution configuration syntax for a given kernel is
𝑆𝑆𝑆𝑆𝑚𝑚𝑒𝑒𝑆𝑆𝑒𝑒𝑆𝑆𝑚𝑚𝑒𝑒𝑆𝑆<<<𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏 ,𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏>>>(𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝𝑚𝑚𝑒𝑒𝑡𝑡𝑒𝑒𝑆𝑆𝑝𝑝…)
where 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏 and 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏 denote the number of blocks and the number of threads per block,
respectively. When a kernel call is made with a specific execution configuration pair of
𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏 and 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏, a grid of thread blocks is automatically generated in the device. With a
total of 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏 × 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏 threads, the same kernel is executed in each thread independently.
It is apparent that a larger number of threads per block will result in a larger number of
threads in total. However, each SM contains only a limited number of registers. If a block
contains more threads or if more registers per thread are used in the kernel, then fewer
blocks can be processed synchronously in a single SM since more registers are needed in
each block. Therefore, all of the above factors must be considered when determining 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏
to reach a satisfactory degree of concurrency. Based on numerous performance tests for
most of the kernels implemented in this work, it has been found that 128-256 threads per
block results in the best efficiency. Thus, for convenience, 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏 is set to a constant value
of 128 for all kernels.
The total number of threads, denoted by 𝑁𝑁𝑒𝑒ℎ𝑐𝑐𝑒𝑒𝑐𝑐𝑟𝑟, can be easily determined for each kernel.
As noted in Section 2, each step of the iterative process of the FPM pipeline possesses its
own specific type of independence, based on which the total number of threads assigned to
the corresponding kernel can be determined. The types of independence for each step are
listed below:

 Pure deformation evaluation: independence between elements.
 Strain and stress evaluations: independence between integration points.
 Calculation of the element equivalent internal forces: independence between
elements.
 Solving the kinematic equations for the particles: independence between particles.

Parallelized Implementation of the Finite Particle Method 17

As a result, the numbers of particles, elements and integration points are used as 𝑁𝑁𝑒𝑒ℎ𝑐𝑐𝑒𝑒𝑐𝑐𝑟𝑟
for the different kernels to reflect their particular types of independence. Then, for a given
constant value of 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏, the number of blocks 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏 can be evaluated:

𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏 = �𝑁𝑁𝑒𝑒ℎ𝑐𝑐𝑒𝑒𝑐𝑐𝑟𝑟 + 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏 − 1� 𝑁𝑁𝑒𝑒𝑝𝑝𝑏𝑏� (11)

Fig. 6 shows the execution configurations for the element-updating process (steps II in
Section 2), for which five kernels are implemented. For the kernels
𝐶𝐶𝑝𝑝𝑆𝑆𝑐𝑐𝐶𝐶𝐶𝐶𝑆𝑆𝑒𝑒𝐶𝐶𝑒𝑒𝐶𝐶𝑆𝑆𝑆𝑆𝑚𝑚𝑝𝑝𝑡𝑡𝑚𝑚𝑆𝑆𝑚𝑚 and 𝐶𝐶𝑝𝑝𝑆𝑆𝑐𝑐𝐶𝐶𝑆𝑆𝑒𝑒𝑚𝑚𝐶𝐶𝑆𝑆𝑆𝑆𝑐𝑐𝑒𝑒 , each thread is responsible for all
calculations for a single element, and 𝑁𝑁𝑒𝑒ℎ𝑐𝑐𝑒𝑒𝑐𝑐𝑟𝑟 in Eq. (11) is set equal to the total number
of elements to obtain 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏_𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒, the corresponding number of blocks. For the kernels
𝐶𝐶𝑝𝑝𝑆𝑆𝑐𝑐𝑆𝑆𝑡𝑡𝑆𝑆𝑝𝑝𝑚𝑚𝑚𝑚𝐶𝐶𝑒𝑒𝑆𝑆𝑡𝑡𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑆𝑆𝑐𝑐𝑆𝑆𝑡𝑡𝑆𝑆𝑒𝑒𝑝𝑝𝑝𝑝𝐶𝐶𝑒𝑒𝑆𝑆𝑡𝑡𝑝𝑝 , each thread performs all calculations for a
single integration point. The corresponding number of blocks, or 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏_𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑝𝑝𝑟𝑟𝑖𝑖𝑖𝑖𝑒𝑒, is the
product of 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏_𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒 and the number of integration points used for the corresponding
element type. The kernel for assembling element equivalent forces is slightly different and
will be explained later.

Figure 6: Parallel execution configurations for the element-updating process

Once the kernels have been executed with the appropriate configurations, each thread can
determine its own global index (denoted by 𝑚𝑚𝑑𝑑𝑖𝑖) among all scheduled threads in the kernel
code as follows:

𝑚𝑚𝑑𝑑𝑖𝑖 = 𝑏𝑏𝑆𝑆𝑆𝑆𝑐𝑐𝑏𝑏𝐶𝐶𝑚𝑚𝑚𝑚 × 𝑏𝑏𝑆𝑆𝑆𝑆𝑐𝑐𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖 + 𝑡𝑡ℎ𝑆𝑆𝑒𝑒𝑝𝑝𝑑𝑑𝑏𝑏𝑑𝑑𝑖𝑖 (12)

where 𝑡𝑡ℎ𝑆𝑆𝑒𝑒𝑝𝑝𝑑𝑑𝑏𝑏𝑑𝑑𝑖𝑖 is the local thread index in the current block, 𝑏𝑏𝑆𝑆𝑆𝑆𝑐𝑐𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖 is the block
index, and 𝑏𝑏𝑆𝑆𝑆𝑆𝑐𝑐𝑏𝑏𝐶𝐶𝑚𝑚𝑚𝑚 is the block size, which is equal to 𝑁𝑁𝑒𝑒𝑟𝑟𝑝𝑝. These values can all be
acquired via CUDA APIs in the device code. For instance, if a kernel with a number of
blocks equal to 𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑐𝑐𝑏𝑏_𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒 , such as 𝐶𝐶𝑝𝑝𝑆𝑆𝑐𝑐𝐶𝐶𝐶𝐶𝑆𝑆𝑒𝑒𝐶𝐶𝑒𝑒𝐶𝐶𝑆𝑆𝑆𝑆𝑚𝑚𝑝𝑝𝑡𝑡𝑚𝑚𝑆𝑆𝑚𝑚(), is executed, each
thread corresponds to one element, and the value of 𝑚𝑚𝑑𝑑𝑖𝑖 in the kernel is equal to the index
of the element processed by that thread. Similarly, for a kernel such as 𝐶𝐶𝑝𝑝𝑆𝑆𝑐𝑐𝑆𝑆𝑡𝑡𝑆𝑆𝑒𝑒𝑝𝑝𝑝𝑝𝐶𝐶𝑒𝑒𝑆𝑆𝑡𝑡𝑝𝑝,
𝑚𝑚𝑑𝑑𝑖𝑖 is the global index of the corresponding integration point.

18 CMES, vol.122, no.1, pp.5-31, 2020

The global thread index 𝑚𝑚𝑑𝑑𝑖𝑖 is mainly used within the kernel to access the corresponding
values from the global or private calculation-related buffers in the device’s global memory.
Because it has the largest storage capacity, the global device memory is used for most
buffers storing the historical variables of particles and elements. However, the cost of each
individual memory access is relatively high. The optimal throughput can be achieved if the
memory access patterns are suitable for coalescence. In simple terms, when adjacent
threads access successive memory addresses in the global memory, each warp coalesces
all memory accesses within that warp into a single access. To achieve such coalescence of
memory accesses, an adaptation of the structure-of-arrays (SoA) storage pattern suggested
by Cook [Cook (2013)] is applied to all calculation-related data buffers in the global
memory to achieve the optimal throughput. The kernels need only to read/write the
corresponding historical values from the buffers using idx as the array index and implement
the formulations given in Section 2.
The step of assembling element equivalent forces onto particles is the only step in the FPM
where the formulations are not self-reliant by the standard of particles or elements.
Adjacent elements must share particles, so each particle is required to gather internal forces
from all the connected elements. There are two possible solutions toward implementing
this step in a multithreaded way. The first is to let each thread accumulate a single element’s
own internal forces onto the corresponding particles, and the kernel is launched by the total
number of elements concurrently. Inevitably, there must be a point where different threads
(i.e., different elements) are writing at the same memory address (i.e., composite forces of
the shared particle), which means that this approach is not thread-safe. Atomic operations
can be used in device code to ensure safe access patterns at the cost of performance since
they force concurrent write actions at the same address to be serialized. Hardware support
are also required in this case.
Another approach is considered in this work. Each thread is responsible for gathering the
forces for a single particle from all the neighboring elements. According to Eq. (10), the
step of assembling element equivalent forces follows the steps below:

(i) Connectivity arrays are generated as private buffers in the global memory during the
preparation stage. As shown in Fig. 7, these arrays mainly store (a) the number of
connected elements for each particle, (b) the global indexes of all connected elements
for each particle, and (c) the corresponding local index of the particle inside the
connected element for each particle-element connection pair.

(ii) The kernel 𝐴𝐴𝑝𝑝𝑝𝑝𝑒𝑒𝑚𝑚𝐶𝐶𝑆𝑆𝑒𝑒𝑚𝑚𝐶𝐶𝑆𝑆𝑆𝑆𝑐𝑐𝑒𝑒 is concurrently executed for the total number of
particles; thus, the thread index 𝑚𝑚𝑑𝑑𝑖𝑖 represents the corresponding particle. The index
𝑚𝑚𝑑𝑑𝑖𝑖 is used as a position index to retrieve the number of connected elements (𝑒𝑒𝐶𝐶𝑆𝑆𝐶𝐶𝑚𝑚𝑡𝑡)
to initialize the loop over all connected elements.

(iii) Within the loop for each connected element, first, the element’s global index (𝑒𝑒𝑏𝑏𝑑𝑑)
and the local index (𝑒𝑒𝐶𝐶𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝑏𝑏𝑑𝑑) of particle 𝑚𝑚𝑑𝑑𝑖𝑖 in element 𝑒𝑒𝑏𝑏𝑑𝑑 are retrieved.
Then, the correct element internal force is acquired using 𝑒𝑒𝑏𝑏𝑑𝑑 and 𝑒𝑒𝐶𝐶𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝑏𝑏𝑑𝑑.
Finally, this internal force is incorporated into the composite force for 𝑚𝑚𝑑𝑑𝑖𝑖.

Parallelized Implementation of the Finite Particle Method 19

Figure 7: Data structures and memory allocations for assembling element equivalent forces

Algorithm 1: Assembling the element internal forces thread-safely

calculate the thread index 𝑚𝑚𝑑𝑑𝑖𝑖 via Eq. (12)
read the composite force for particle 𝑚𝑚𝑑𝑑𝑖𝑖 as 𝑝𝑝𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝐶𝐶
read 𝑒𝑒𝐶𝐶𝑆𝑆𝐶𝐶𝑚𝑚𝑡𝑡 from the connectivity arrays
for 𝑚𝑚 = 0 to 𝑒𝑒𝐶𝐶𝑆𝑆𝐶𝐶𝑚𝑚𝑡𝑡

read the element index as eId using (𝑚𝑚, 𝑚𝑚𝑑𝑑𝑖𝑖)
read the local particle index as 𝑒𝑒𝐶𝐶𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝑏𝑏𝑑𝑑 using (𝑚𝑚, 𝑚𝑚𝑑𝑑𝑖𝑖)
read the element force as 𝑒𝑒𝑏𝑏𝑚𝑚𝑡𝑡𝑒𝑒𝑆𝑆𝑚𝑚𝑝𝑝𝑆𝑆𝐶𝐶 using (𝑒𝑒𝑏𝑏𝑑𝑑, 𝑒𝑒𝐶𝐶𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝑏𝑏𝑑𝑑)
add 𝑒𝑒𝑏𝑏𝑚𝑚𝑡𝑡𝑒𝑒𝑆𝑆𝑚𝑚𝑝𝑝𝑆𝑆𝐶𝐶 to 𝑝𝑝𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝐶𝐶

write 𝑝𝑝𝑝𝑝𝑆𝑆𝑡𝑡𝑚𝑚𝑐𝑐𝑆𝑆𝑒𝑒𝐶𝐶 back to the array of composite forces

20 CMES, vol.122, no.1, pp.5-31, 2020

 Figure 8: Schematic diagram of the GPU implementations of the FPM tasks

This approach for assembling element internal forces is described in the form of
pseudocode in Algorithm 1. Since all variables of connectivity are stored separated for each
particle, this is a thread-safe approach that remains effective regardless of the element type.
For different element geometries, only the sizes of the connectivity arrays vary; the kernel
code requires no further modification. However, this approach does consume additional
memory space in the device for the connectivity arrays. In addition, since the number of
connected elements is different for each particle based on the topology of the model,
threads in the same warp might follow different execution paths, resulting in a certain loss
of performance.
The final step of the FPM in each path unit is to solve the kinematic equations for the
particles. The corresponding kernel is concurrently executed for the total number of
particles, and each thread is responsible for the calculations for a single particle’s
movement, in accordance with Eqs. (3) and (4).
A schematic diagram of the GPU implementations of the main tasks of the FPM is
presented in Fig. 8. The parallelization of the other tasks, such as evaluating and assembling
the constraint forces, which is the purpose of the constraint solver, is achieved via a similar
approach and will not be discussed in detail in this paper.

Parallelized Implementation of the Finite Particle Method 21

4 Numerical examples and efficiency tests
4.1 Speedup ratio tests
In the field of parallel computing, the speedup ratio is commonly used as an indicator of the
efficiency of parallel implementation for a given algorithm. This parameter is defined as

𝑆𝑆 = 𝑇𝑇𝑠𝑠/𝑇𝑇𝑝𝑝 (13)

where 𝑆𝑆 denotes the speedup ratio, 𝑇𝑇s is the time cost of the serialized version of the
algorithm of interest, and 𝑇𝑇𝑝𝑝 is the time cost of the same algorithm after parallelization.
Based on the techniques introduced in the previous section, three types of GPU-accelerated
element solvers are implemented in the proposed FPM platform: a 2-particle Euler-
Bernoulli (EB) beam solver, a 3-particle 20-integration-point triangular shell solver, and
an 8-particle hexahedral solid solver. To test the efficiency of each solver, serialized
counterparts have also been developed. Three sets of numerical models are considered, one
for each type of FPM element, as shown in Fig. 9: (a) a single-layered lattice shell modeled
with beam elements, (b) a thin spherical shell modeled with shell elements, and (c) a solid
cantilever beam modeled with hexahedral solid elements. Under linearly increasing loads,
each of several models with different meshes was analyzed using both the parallelized
solvers and their serialized counterparts to obtain the corresponding elastically deformed
shapes. The serialized solvers were tested on an Intel(R) Core(TM) i7-2600 CPU @3.4
GHz, while the parallelized solvers were tested on an NVIDIA GeForce GTX 760 GPU
with 1152 SPs. For all models, the time costs for 2000 iterations were determined.
Fig. 10 shows the speedup ratios for models with different element types and meshes. For
all element types, the speedup ratio curves show the same pattern. For models with fewer
than 104 elements, the speedup ratio rapidly increases with an increasing number of
elements. Once the number of elements exceeds the threshold at approximately 104, the
speedup ratios for the different element types gradually stabilize at different levels. The
stabilized speedup ratios are 8 for beams, 25 for hexahedral solids, and 48 for triangular
shells. The differences in the stabilized speedup ratios between the different element types
are fairly easy to understand. The serialized versions of the FPM solvers simply evaluate
the formulations (given in Section 2) element by element, particle by particle, or integration
point by integration point, while the parallelized solvers execute these calculations
concurrently. Accordingly, for an element type that contains more integration points per
element or requires more complicated calculations for the element-updating process, a
higher speedup ratio can be achieved.

22 CMES, vol.122, no.1, pp.5-31, 2020

Figure 9: Models for speedup ratio tests: (a)
a lattice shell, (b) a spherical shell and (c) a
cantilever beam

Figure 10: Speedup ratios achieved for
different types of FPM elements

4.2 Performance and efficiency tests
Although the speedup ratio measures the speed improvement of the FPM after
parallelization, the efficiency of the GPU-accelerated FPM still cannot be intuitively
understood. In this section, the proposed FPM platform is compared with the Abaqus
software for code validation and efficiency assessment. While this kind of efficiency
comparison is not always fair and meaningful since equivalence cannot be fully guaranteed,
it is nevertheless useful for estimating the achievable performance relative to a common
and widely known software tool [Bartezzaghi, Cremonesi, Parolini et al. (2015)]. Three
numerical examples are presented to test the performance of the proposed GPU-accelerated
FPM solvers: two for the shell solver and one for the solid solver. Each numerical example
was modeled with different meshes and analyzed using both the FPM platform and Abaqus.
Due to the explicit nature of the FPM, the explicit dynamic solution step in Abaqus was
selected to ensure that the results would be comparable. All controllable configuration
parameters in Abaqus, including the fixed time increment (smaller than the critical time
increment) and duration, the output settings (only nodal displacements were exported 100
times) and the precision setting (double precision), were set to be identical to those of the
FPM platform. The test environment was a Windows PC with an Intel(R) Core(TM) i7-
4790K CPU @4.00 GHz and an NVIDIA GeForce GTX 980 Titan GPU. This model has
3072 SPs and 6 GB of VRAM.

4.2.1 Spherical dome under impact pressure
A spherical dome under impact pressure is a typical benchmark for the nonlinear dynamic
analysis of thin shells. The geometry and material properties of the dome are shown in Fig.
11; in this model, a bilinear isotropic hardening plastic material is considered. The dome
is clamped on the edges, and a uniform pressure of 600 psi is applied to the upper surface
of the dome for 1 ms. A dynamic analysis with a fixed time increment of 10-7 s was
performed for 1 ms of physical time, resulting in 10000 iterations in total. The computation
times of the FPM platform and Abaqus for different meshes are listed in Tab. 1.

Parallelized Implementation of the Finite Particle Method 23

Table 1: Spherical dome: computation times of the FPM platform and Abaqus

Mesh DOFs
Computation time (s) Unified computation time

 (s/104 elements/104 iterations)
FPM Abaqus FPM Abaqus

1 2934 20.1 3.4 216.6 36.6

2 9270 25.1 10.7 84.8 36.1

3 22098 44.0 28.2 61.2 39.3

4 54486 66.8 74.5 37.3 41.6

5 88038 85.9 122 29.9 42.0

Figure 11: Spherical dome: geometry and material properties (left) and deformed contours
for the Mesh 1 model (right)

Figure 12: Spherical dome: history of central
deflection for the Mesh 1 model

Figure 13: Spherical dome: unified
computation times of the FPM platform
and Abaqus for different meshes

Fig. 12 shows the time history of the central deflection results obtained from the FPM
platform. The FPM results show perfect agreement with the Abaqus results and are also
consistent with Argyris et al. [Argyris, Papadrakakis and Mouroutis (2003); Oñate and
Flores (2005)], thus verifying the accuracy of the FPM solver in performing elastoplastic
dynamic analysis for thin shells.

24 CMES, vol.122, no.1, pp.5-31, 2020

The unified computation times of the two platforms are compared in Fig. 13. The unified
computation time is defined as the computation time required for processing 104 elements
over 104 iterations. A smaller value of the unified computation time indicates a higher
speed. As shown in Fig. 13, 50000 DOFs (approximately 104 elements) seems to be the
turning point below which Abaqus offers the higher speed for calculations. As the speed
of Abaqus decreases with an increasing number of DOFs, that of the GPU-accelerated FPM
platform rapidly increases and ultimately exceeds the speed of Abaqus. This threshold is
consistent with the results presented in Section 4.1. Once the scale of the model exceeds
this threshold, the GPU will run at full capacity, allowing the FPM platform to provide a
higher computation speed than Abaqus, as further demonstrated in the following examples.

4.2.2 Pinched cylinder
To test the performance of the FPM solver for more challenging cases, a pinched cylinder
adapted from Bartezzaghi et al. [Bartezzaghi, Cremonesi, Parolini et al. (2015)] was
numerically modeled to test cases with much larger numbers of elements. The cylinder,
with a radius of 1.016 m, a length of 3.048 m and a thickness of 0.03 m, is clamped at one
end and pinched under two opposing forces on the other end. Only the elastic case is
considered in this example of geometric nonlinearity, in which the Young’s modulus is
20.685 MPa and the Poisson coefficient is 0.3. Five models with different meshes (Mesh 1
to Mesh 5) were generated, with numbers of DOFs varying from 30600 to 1080000. A
fixed time increment of 10-5 s was adopted for a physical time of 1 s.
The parallel computing capability of Abaqus was used in this example for comparison. As
explained in Section 2, the FPM is, by nature, an explicit numerical method. Ideally, the
performance of the GPU-accelerated FPM solver should be compared with that of the
GPU-accelerated explicit solver in Abaqus. However, the GPU-based parallel computing
functionality in Abaqus is available only for implicit solution steps; explicit dynamic steps
can be accelerated only with the CPU. The results of two explicit methods will be more
comparable than those of an explicit method and an implicit method since the
computational frameworks and computational costs are vastly different for implicit and
explicit methods. As a result, the comparisons presented here are between the results of the
GPU-accelerated FPM solver and the CPU-accelerated explicit FEM solver in Abaqus, and
the latter can be regarded only as a reference. A similar treatment has previously been
presented in Bartezzaghi et al. [Bartezzaghi, Cremonesi, Parolini et al. (2015)]. In Abaqus,
each model was separately analyzed with 1, 4 and 8 CPU cores. The computation times for
each configuration are listed in Tab. 2.
Fig. 14 shows the deformed shapes of the Mesh 1 model under different forces as obtained
from the FPM platform, and Fig. 15 compares the load-displacement curve with the results
of Bartezzaghi et al. [Bartezzaghi, Cremonesi, Parolini et al. (2015); Ibrahimbegovic,
Brank and Courtois (2001)], with which it shows perfect agreement. The curves of the
unified computation time versus the number of DOFs are presented in Fig. 16. Since the
scale of the models ensured that the GPU would be fully loaded, the FPM solver achieved
a higher speed than Abaqus for all configurations. Compared with the Abaqus results for a
single CPU core, the execution on the FPM platform was approximately 4.8 times faster
on average, and the corresponding factor is approximately 2.6 for the cases with 4 and 8

Parallelized Implementation of the Finite Particle Method 25

CPU cores. It can also be observed that the computation speed of the FPM platform for this
elastic case is approximately 3 times faster than that for the elastoplastic case in Section
4.2.1; this is reasonable since the elastoplastic analysis requires iterations for plastic state
variables within each path unit.

Figure 14: Pinched cylinder: deformed contours for the Mesh 1 model

Figure 15: Pinched cylinder: load-
displacement curve

Figure 16: Pinched cylinder: unified
computation times of the FPM platform
and Abaqus for different meshes

Table 2: Pinched cylinder: computation times of the FPM platform and Abaqus

DOFs
Computation time (s) Unified computation time

(s/104 elements/104 iterations)
FPM
GPU

Abaqus
1 core

Abaqus
4 cores

Abaqus
8 cores

FPM
GPU

Abaqus
1 core

Abaqus
4 cores

Abaqus
8 cores

30600 294.4 564.8 320.7 346.6 29.4 56.5 32.1 34.7
121200 591.2 2236 1222 1284 14.8 55.9 30.5 32.1
271800 1137 5030 2714 2812 12.6 55.8 30.2 31.2
482400 1932 8960 4743 5126 12.1 56.0 29.6 32.0
1080000 4177 20036 10923 10180 11.6 55.6 30.3 28.3

4.2.3 Compressed annulus
A simple annulus was numerically analyzed to test the performance of the solid element
solver in the FPM platform. The annulus, whose geometry and material properties are
shown in Fig. 17, is compressed at two opposing sides by a dynamic pressure that increases
linearly for 0.005 s until it reaches 5.25 MPa and then remains constant. Following the
same procedures described for the previous examples, each meshed annulus model (Mesh
1 to Mesh 4) was processed using the FPM platform and Abaqus. A time increment of

26 CMES, vol.122, no.1, pp.5-31, 2020

2.0×10-6 s was set to capture the dynamic response of the annulus within 0.02 s. The effect
of damping was ignored. The computation times for each mesh are listed in Tab. 3.

Table 3: Compressed annulus: computation times of the FPM platform and Abaqus

DOFs
Computation time (s) Unified computation time

(s/104 elements/104 iterations)
FPM
GPU

Abaqus
1 core

Abaqus
4 cores

Abaqus
8 cores

FPM
GPU

Abaqus
1 core

Abaqus
4 cores

Abaqus
8 cores

8064 56.6 27.1 12.5 26.1 295.0 141.2 65.1 136.7

54912 51.6 226.9 97.8 135.5 33.6 147.7 63.6 88.1

403200 191.9 2002.4 701.4 717.8 15.6 163.0 57.1 58.4

1747584 1296.7 14442.8 5571.2 5749.2 13.2 146.9 56.7 58.5

Fig. 17 shows the deformed shapes of the annulus at different stages of loading for the
Mesh 1 model. The calculated horizontal displacement histories of the center particle in
the compressed area as obtained from the FPM platform and Abaqus are compared in Fig.
18, and the results show perfect agreement.
The computation speeds are compared in Fig. 19. For the Mesh 1 model, the scale of the
model is relatively small, meaning that the number of launched threads is far less than the
full capacity of the hardware. For this reason, the computation time results for Mesh 1 are
not included in this figure. It can be observed that the execution on the FPM platform was
approximately 11.2 times faster than the Abaqus execution with a single core and 4.5 times
faster than the executions for the multithreaded configurations with 4 and 8 cores. These
results prove that the proposed GPU-accelerated parallel strategy for the FPM shows
promising application prospects for large-scale explicit simulations.

Figure 17: Compressed annulus: geometry and material properties (left) and deformed
contours for the Mesh 1 model (right)

To obtain a broad understanding of the time consumption of the GPU-accelerated FPM
solvers, the steps of computation described in Section 3.2 were timed separately for the
pinched cylinder and the compressed annulus. Figs. 20 and 21 show the time consumption
percentages for the element-updating process, for solving the kinematic equations and for
data transfer between the host and device. It can be seen that on average, more than half of
the computation time is consumed during the element-updating process, as expected. In

Parallelized Implementation of the Finite Particle Method 27

fact, the kernels for the element-updating process show severe register spilling. Register
spilling is a common cause of performance degradation in which the available registers are
not sufficient for all local variables in the kernel; thus, some of these variables are stored
in the local memory, which has a much higher latency than the registers. High register
usage can also lower the kernel’s occupancy, which is defined as the ratio of the number
of active warps on an SM to the maximum number of active warps supported by the SM.
Higher occupancy corresponds to higher efficiency in most cases. The ideal number of
registers for each kernel is approximately 48 for the current GPU model and block size.
The actual levels of register usage and occupancy for the main kernels are listed in Tab. 4,
from which we can see that most of the kernels use more than the ideal number of registers.
Thus, substantial optimization is still possible for these kernels. By reusing local variables
or reducing divergence in the warps, the efficiency of the GPU-accelerated FPM solvers
could be further improved in future work.

Table 4: Register usage and occupancy for the main kernels

M task
Triangular shell Hexahedral solid

Occupancy Register usage Occupancy Register usage

Calculate pure deformation 50% 64 37.5% 78

Calculate strain and stress 50% 68 25% 110

Calculate element equivalent forces 31.25% 88 25% 128

Assemble element equivalent forces 25% 112 100% 30

Calculate particle translations 18.75% 152 18.75% 152

Calculate particle rotations 31.25% 88 - -

The computation speed for the hexahedral solid elements is slower than that for the shell
elements in these two examples. As shown in Tab. 4, the kernels for the hexahedral solid
element solver require more registers, which explains the lower efficiency of this solver

Figure 18: Compressed annulus:
horizontal displacement history of the
center particle in the compressed area

Figure 19: Compressed annulus: unified
computation times of the FPM platform
and Abaqus for different meshes

28 CMES, vol.122, no.1, pp.5-31, 2020

compared to that for the shell elements. Elements with more integration points require more
threads to be launched for the strain/stress evaluations, while elements with simpler
geometries require less effort for pure deformation extraction and fewer kernel variables.
Compared to the hexahedral solid element, which has 8 integration points, the FPM shell
element has more integration points (20) but a much simpler geometry (a triangle rather
than a brick); thus, its faster computation speed is reasonable.
The efficiency of data transfer between the host and the device also requires attention. In
fact, there is no concept of file I/O in a GPU; the results in the device memory must be
transferred back to the host to be written into files or databases. This data transfer process
has almost the lowest possible bandwidth, which makes it extremely time consuming. In
the two tests presented above, only the displacements of the particles were exported out of
the GPU memory. As shown in Fig. 20, for the example of the pinched cylinder, the cost
of data transfer is quite low relative to the total time cost. The reason is that the number of
particles is rather small compared to the number of elements; consequently, the exported
data size is insignificant. However, for the example of the annulus, almost 40% of the time
is spent on data transfer, as seen in Fig. 21. Due to the topology, the cost of transferring
particle-related data is no longer insignificant. Furthermore, if the element results were to
be exported, the cost of data transfer would dominate the whole process. This is a common
problem faced by every GPU-accelerated system. The overall efficiency of the FPM
solvers could be further improved if the latency of data transfer could be effectively
reduced. In future research and development, the approach of overlapping the assignments
for calculations and data transfer, as suggested by Cai et al. [Cai, Li and Liu (2018)], will
be considered.

5 Conclusions
This paper has proposed a parallel strategy for explicit dynamic analysis using the FPM.
Using the CUDA programming model, a GPU-accelerated computational platform for the

Figure 20: Pinched cylinder: time
consumption for individual FPM tasks

Figure 21: Compressed annulus:
time consumption for individual
FPM tasks

Parallelized Implementation of the Finite Particle Method 29

FPM has been developed, and its accuracy and efficiency have been validated for several
numerical examples.
Through careful management of thread executions and memory access optimization, GPU
implementations of the main tasks in the FPM pipeline have been developed, as elaborated
in this paper, and GPU solvers for various types of FPM elements have been implemented.
Performance tests show that, after parallelization, speedup ratios of 8, 25 and 48 are
achieved with the proposed FPM platform for elastic beam, hexahedral solid and triangular
shell elements, respectively. In general, a higher speedup ratio can be achieved for more
complex elements with a larger number of integration points.
For examples involving explicit analyses of shells and solids, comparisons with Abaqus
results obtained using 1 to 8 CPU cores validate the accuracy of the proposed platform and
demonstrate speed improvements by factors of 2.6 to 11.2 for the GPU-accelerated FPM
elements. It can be concluded that the proposed GPU-accelerated FPM platform provides
faster performance than the multithreaded CPU architecture in Abaqus for large-scale
explicit dynamic analysis and shows promising application prospects.
This work can serve as a starting point for future improvements and applications of the
FPM. The implemented FPM platform can still be substantially improved to achieve more
satisfactory performance. Optimizations with regard to device code delivery, register usage
and I/O throughput will be needed in the future to achieve further improvement.
Furthermore, additional types of FPM elements can be implemented using the parallel
framework proposed in this paper. The FPM theories of fracture, contact and collision
could also be parallelized in future studies. Simulations for such complex engineering
problems, with high levels of discontinuity and nonlinearity, demand a high standard of
efficiency, for which the GPU-accelerated FPM approach will be advantageous.

Acknowledgment: The authors gratefully acknowledge the financial support provided by
the National Key Research and Development Program of China (Grant No.
2016YFC0800200), the National Natural Science Foundation of China (Grant Nos.
51578494 and 51778568) and the Fundamental Research Funds for the Central Universities
(Grant No. 2019QNA4043).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Argyris, J.; Papadrakakis, M.; Mouroutis, Z. S. (2003): Nonlinear dynamic analysis of
shells with the triangular element TRIC. Computer Methods in Applied Mechanics and
Engineering, vol. 192, no. 26-27, pp. 3005-3038.
Bartezzaghi, A.; Cremonesi, M.; Parolini, N.; Perego, U. (2015): An explicit dynamics GPU
structural solver for thin shell finite elements. Computers & Structures, vol. 154, pp. 29-40.
Bova, S. W.; Carey, G. F. (2000): A distributed memory parallel element-by-element scheme
for semiconductor device simulation. Computer Methods in Applied Mechanics and
Engineering, vol. 181, no. 4, pp. 403-423.

30 CMES, vol.122, no.1, pp.5-31, 2020

Cai, Y.; Li, G.; Liu, W. (2018): Parallelized implementation of an explicit finite element
method in many integrated core (MIC) architecture. Advances in Engineering Software, vol.
116, pp. 50-59.
Cheik Ahamed, A. K.; Magoulès, F. (2017): Conjugate gradient method with graphics
processing unit acceleration: CUDA vs. OpenCL. Advances in Engineering Software, vol. 111,
pp. 32-42.
Cook, S. (2013): CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs.
Elsevier, Morgan Kaufmann, Waltham, MA, USA.
Duan, Y. F.; Wang, S. M.; Wang, R. Z.; Wang, C. Y.; Shih, J. Y. et al. (2018): Vector form
intrinsic finite-element analysis for train and bridge dynamic interaction. Journal of Bridge
Engineering, vol. 23, no. 1, 04017126.
Duan, Y. F.; Wang, S. M.; Yau, J. D. (2019): Vector form intrinsic finite element method for
analysis of train-bridge interaction problems considering the coach-coupler effect.
International Journal of Structural Stability and Dynamics, vol. 19, no. 2, 1950014.
Georgescu, S.; Chow, P.; Okuda, H. (2013): GPU acceleration for FEM-based structural
analysis. Archives of Computational Methods in Engineering, vol. 20, no. 2, pp. 111-121.
Gullerud, A. S.; Dodds Jr, R. H. (2001): MPI-based implementation of a PCG solver using
an EBE architecture and preconditioner for implicit 3-D finite element analysis. Computers and
Structures, vol. 79, no. 5, pp. 553-575.
Hallquist, J. O. (2006): LS-DYNA Theory Manual. Livermore Software Technology Corporation.
Hwu, W. W. (2011): GPU Computing Gems Emerald Edition, Elsevier, Morgan Kaufmann,
Burlington, MA, USA.
Ibrahimbegovic, A.; Brank, B.; Courtois, P. (2001): Stress resultant geometrically exact form
of classical shell model and vector-like parameterization of constrained finite rotations.
International Journal for Numerical Methods in Engineering, vol. 52, no. 11, pp. 1235-1252.
Li, X.; Guo, X.; Guo, H. (2018): Vector form intrinsic finite element method for nonlinear
analysis of three-dimensional marine risers. Ocean Engineering, vol. 161, pp. 257-267.
Luo, Y. Z.; Zheng, Y. F.; Yang, C.; Yu, Y.; Yu, F. et al. (2014): Review of the finite particle method
for complex behaviors of structures. Engineering Mechanics, vol. 31, pp. 1-7, 23.
NVIDIA (2017): CUDA Zone: High Performance Computing.
https://developer.nvidia.com/cuda-zone.
NVIDIA (2019): CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/.
Oñate, E.; Flores, F. G. (2005): Advances in the formulation of the rotation-free basic shell
triangle. Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 21-24, pp.
2406-2443.
Papadrakakis, M.; Stavroulakis, G.; Karatarakis, A. (2011): A new era in scientific
computing: domain decomposition methods in hybrid CPU-GPU architectures. Computer
Methods in Applied Mechanics and Engineering, vol. 200, no. 13-16, pp. 1490-1508.
Pikle, N. K.; Sathe, S. R.; Vyavhare, A. Y. (2018): GPGPU-based parallel computing applied
in the FEM using the conjugate gradient algorithm: a review. Sādhanā, vol. 43, no. 7, pp. 111.
Qi, J.; Li, K. C.; Jiang, H.; Zhou, Q.; Yang, L. (2015): GPU-accelerated DEM
implementation with CUDA. International Journal of Computational Science and Engineering,
vol. 11, no. 3, pp. 330.

Parallelized Implementation of the Finite Particle Method 31

Rao, S. C. S.; Kamra, R. (2018): A hybrid parallel algorithm for large sparse linear systems.
Numerical Linear Algebra with Applications, vol. 25, no. 6, e2210.
Shih, C.; Wang, Y. K.; Ting, E. C. (2004): Fundamentals of a vector form intrinsic finite
element: part III. convected material frame and examples. Journal of Mechanics, vol. 20, no.
2, pp. 133-143.
Simo, J. C.; Hughes, T. J. R. (1998): Computational Inelasticity. Springer, New York, USA.
The Khronos Group (2013): OpenCL-The open standard for parallel programming of
heterogeneous systems. https://www.khronos.org/opencl/.
Ting, E. C.; Shih, C.; Wang, Y. K. (2004a): Fundamentals of a vector form intrinsic finite
element: part I. basic procedure and a plane frame element. Journal of Mechanics, vol. 20, no.
2, pp. 113-122.
Ting, E. C.; Shih, C.; Wang, Y. K. (2004b): Fundamentals of a vector form intrinsic finite
element: part II. plane solid elements. Journal of Mechanics, vol. 20, no. 2, pp. 123-132.
Wu, T. Y. (2013): Dynamic nonlinear analysis of shell structures using a vector form intrinsic
finite element. Engineering Structures, vol. 56, pp. 2028-2040.
Xia, X.; Liang, Q. (2016): A GPU-accelerated smoothed particle hydrodynamics (SPH) model
for the shallow water equations. Environmental Modelling & Software, vol. 75, pp. 28-43.
Xu, R.; Li, D. X.; Jiang, J. P.; Liu, W. (2015): Adaptive fuzzy vibration control of smart
structure with vfife modeling. Journal of Mechanics, vol. 31, no. 6, pp. 671-682.
Yang, Y.; Cheng, J. J. R.; Zhang, T. (2016): Vector form intrinsic finite element method for
planar multibody systems with multiple clearance joints. Nonlinear Dynamics, vol. 86, no. 1,
pp. 421-440.
Yang, C.; Shen, Y.; Luo, Y. (2014): An efficient numerical shape analysis for light weight
membrane structures. Journal of Zhejiang University-SCIENCE A, vol. 15, no. 4, pp. 255-271.
Yu, Y.; Luo, Y. (2009a): Finite particle method for kinematically indeterminate bar assemblies.
Journal of Zhejiang University-SCIENCE A, vol. 10, no. 5, pp. 669-676.
Yu, Y.; Luo, Y. Z. (2009b): Motion analysis of deployable structures based on the rod hinge
element by the finite particle method. Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering, vol. 223, no. 7, pp. 955-964.
Yu, Y.; Luo, Y. Z. (2013): Impact analysis of structures based on finite particle method.
Engineering Mechanics, vol. 30, pp. 66-72, 77.
Yu, Y.; Paulino, G. H.; Luo, Y. (2010): Finite particle method for progressive failure simulation
of truss structures. Journal of Structural Engineering, vol. 137, no. 10, pp. 1168-1181.
Yu, Y.; Zhu, X. (2016): Nonlinear dynamic collapse analysis of semi-rigid steel frames based
on the finite particle method. Engineering Structures, vol. 118, pp. 383-393.
Zhang, P.; Yang, C.; Luo, Y. (2017): Elastic-plastic analysis of 3D solids using the finite
particle method. Engineering Mechanics, vol. 34, no. 4, pp. 5.

	Parallelized Implementation of the Finite Particle Method for Explicit Dynamics in GPU
	1 Introduction
	2 Fundamentals of the parallelized FPM
	3 GPU parallelization of the FPM
	3.1 Parallelized solver system for the FPM
	3.2 GPU implementations of the FPM solvers

	4 Numerical examples and efficiency tests
	4.1 Speedup ratio tests
	4.2 Performance and efficiency tests
	4.2.1 Spherical dome under impact pressure
	4.2.2 Pinched cylinder
	4.2.3 Compressed annulus

	5 Conclusions
	References

