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Abstract: A mathematical model is elaborated for a thermoelastic infinite body with a 
spherical cavity. A generalized set of governing equations is formulated in the context of 
three different models of thermoelasticity: the Biot model, also known as “coupled 
thermoelasticity” model; the Lord-Shulman model, also referred to as “generalized 
thermoelasticity with one-relaxation time” approach; and the Green-Lindsay model, also 
called “generalized thermoelasticity with two-relaxation times” approach. The 
Adomian’s decomposition method is used to solve the related mathematical problem. The 
bounding plane of the cavity is subjected to harmonic thermal loading with zero heat flux 
and strain. Numerical results for the temperature, radial stress, strain, and displacement 
are represented graphically. It is shown that the angular thermal load and the relaxation 
times have significant effects on all the studied fields.  
 
Keywords: Adomian’s decomposition method, generalized thermoelasticity, relaxation 
time, iteration method. 
 
Nomenclature 

µλ ,   Lame’s constants 
ρ   Density 

EC   Specific heat at constant strain 

Tα   Coefficient of linear thermal expansion 

γ  = (3λ+2μ) αT 
t   Time 
T   Temperature 

oT   Reference temperature 
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θ  ( )oTT −= ; Temperature increment such that 0/ T 1θ <<  

ijσ   Components of the stress tensor  

ije   Components of strain tensor 

iu   Components of the displacement vector 

iF   Body force vector 

K   Thermal conductivity 

0 ,τ υ   Relaxation times 

 
1 Introduction 
Biot constructed the coupled thermoelasticity model (CTE), in which the heat conduction 
is a parabolic type partial differential equation, which leads to infinite velocity of the 
thermal wave [Biot (1956)]. To fix this paradox, generalized thermoelasticity theory has 
been introduced by Lord and Shulman (L-S) by using the definition of the second sound 
phenomena [Lord and Shulman (1967)]. This definition leads to heat conduction of 
parabolic type partial differential equation, which generates the finite velocity of the 
thermal wave. The Green and Lindsay (G-L) theory suggests two relaxation times, and 
both the energy equation and the equation of motion have been modified [Green and 
Lindsay (1972)]. Many mathematical models of the infinite body with a spherical cavity 
in the context of different types of thermoelasticity models have been solved and 
published [Youssef (2005a, 2006, 2009); Youssef and El-Bary (2014)]. The mixed initial 
boundary value problem for a dipolar body in the context of the thermoelastic theory was 
proposed by Matin et al. [Matin and Öchsner (2017)]. Marin studied the asymptotic of 
total energy for the solutions of the mixed initial boundary value problem within the 
context of the thermoelasticity of dipolar bodies [Marin (1997)]. 
Recently, much attention has been devoted to numerical methods that do not require the 
discretization of time-space variables, and to the linearization of the nonlinear equations 
[Sweilam (2007)].  
The Adomian method is a decomposition method that solves linear and nonlinear partial 
and ordinary differential equations [Admoian, Cherruault and Abbaouui (1996); Adomian 
(1988)]. This method offers computable, accurate, convergent solutions to linear and 
nonlinear partial and ordinary differential equations. The solution can be verified to any 
degree of approximation. Recently, the Adomian decomposition approach has been 
applied to obtain formal solutions for a wide class of partial and ordinary differential 
equations [Ciarlet, Erell and Felix (2016); Duz (2017); El-Sayed and Kaya (2004); 
Górecki and Zaczyk (2016); Kaya and El-Sayed (2003); Kaya and Inan (2005); Kaya and 
Yokus (2005); Lesnic (2002, 2005); Li, Licheng, Rustam et al. (2017); Mustafa (2005); 
Vadasz and Olek (2000)]. The Adomian method has been used to solve different 
mathematical models of the mechanical interaction of the immune system with viruses, 
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antigens, bacteria, or tumor cells, which had been modelled as systems of nonlinear 
partial differential equations by the ADM [Adomian, Cherruault and Abbaoui (1996)]. 
Adomian’s decomposition method (ADM) separates the differential equations into linear 
and nonlinear parts, inverts the highest-order derivative in both sides, and obtains the 
successive terms of the solution using recurrent relation [Lesnic (2005) and Sweilam 
(2007)]. Many modifications have been made to the method to enhance the accuracy or to 
expand the applications of the original method by many authors [Kaya and E Inan (2005), 
Lesnic (2002); Vadasz and Olek (2000)]. Recently, the decomposition method has been 
used in fractional partial differential equations [Gejji and Jafari (2005); Ray and Bera 
(2005); Shawagfeh (2002)]. 
This work introduces, for the first time, the use of an Adomian’s method for solving the 
problem of thermoelasticity in the context of spherical co-ordinates under three different 
models of thermoelasticity. The solution will be based on Adomian’s decomposition 
method. The numerical results will be calculated and represented in figures to stand on 
the influence of the functionally graded parameter on the temperature increment, the 
strain, the stress, and the displacement. 

2 Basic equations  
The unified system of governing equations in the context of CTE, L-S and (G-L) has been 
constructed for a linear and homogeneous isotropic medium without any external heat 
source to be in the following form [Youssef and El-Bary (2014)]: 

( )i , jj j , ji i ,i iu u F 1 T u
t

µ λ µ γ υ ρ
 ∂

+ + + − + = ∂ 
 , (1) 

2 2

,ii E 0 0 0 j , j2 2K T C T T n u
t t t t

ρ τ γ τ
   ∂ ∂ ∂ ∂

= + + +   ∂ ∂ ∂ ∂   
, (2) 

( ) ( )ij i , j j ,i i ,i ij 0 iju u u 1 T T
t

σ µ λ δ γ υ δ
 ∂

= + + − + − ∂ 
.  (3) 

1. Putting 0 0τ υ= =  for coupled thermoelasticity (Biot model).  

2. Putting n 1= , 0υ =  and 0 0τ ≠ , for generalized thermoelasticity with one 
relaxation time (Lord-Shulman, i.e., the L-S model). 

3. Putting 0n = , and 0 0, 0τ υ≠ ≠  for generalized thermoelasticity with two 
relaxation times (Green-Lindsay, i.e., the G-L model). 
i, j 1,2,3=  are the indicators of the coordinates system. 
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3 Formulation of the problem 
Consider a perfectly conducting thermoelastic infinite body with spherical cavity that 
occupies the region R r≤ < ∞ . The spherical system of coordinates ( )r, ,Θ φ  with the z-
axis lying along the axis of the cylinder will be used.  
Due to symmetry, the problem is one-dimensional with all the functions considered 
depending on the radial distance r and the time t. It is assumed that there are no body 
forces and no heat sources in the medium and the surface of the cavity.  
Thus, the governing one-dimensional equations of (1)-(3) in spherical coordinates take 
the following forms [Youssef (2005b, 2010)]: 

( )
2

2

e u2 1 T
r r t t

λ µ γ υ ρ
 ∂ ∂ ∂ ∂

+ − + = ∂ ∂ ∂ ∂ 
, (4) 

0

2 2
2 E

0 02 2

TCT T n e
K t t K t t

γρ τ τ
   ∂ ∂ ∂ ∂

∇ = + + +   ∂ ∂ ∂ ∂   
, (5) 

( )rr 0
u2 e 1 T T
r t

σ µ λ γ υ
 ∂ ∂

= + − + − ∂ ∂ 
, (6) 

( )0
u2 e 1 T T
r tψψσ µ λ γ υ

 ∂
= + − + − ∂ 

, (7) 

( )zz 0e 1 T T
t

σ λ γ υ
 ∂

= − + − ∂ 
, (8) 

z r r z z 0ψσ σ σ= = = , (9) 

( )r u1e
r r
∂
∂

= , (10) 

where
2

2
2

1
r r r

∂ ∂
∂ ∂

∇ = + . 

For convenience, we will use the following non-dimensional [Youssef and El-Bary 
(2014)]: 

( ) ( )or ,u c r,uη′ ′ = , ( ) ( )2
0 0 o 0 0t ,t , , c t ,t ,τ υ η τ υ′ ′ ′ ′ = , 

( )−
= 0

0

T T
T

θ , σσ
µ

′ = , EC
K

ρη = ,

2
o

2c λ µ
ρ
+

= . 

Eqs. (4)-(8) take the forms (the primes are suppressed for simplicity) 
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2
2 2

2

ee 1
t t

α υ θ
 ∂ ∂

∇ − + ∇ = ∂ ∂ 
, (11) 

2 2
2

o 02 2n e
t t t t

θ τ θ ε τ
   ∂ ∂ ∂ ∂

∇ = + + +   ∂ ∂ ∂ ∂   
, (12) 

2 2
rr

ue 2 1
r t

σ β α β υ θ
 ∂

= − − + ∂ 
, (13) 

2 2ue 2 1
r tψψσ β α β υ θ

 ∂ ∂
= − − + ∂ ∂ 

,  (14) 

( )2 2
zz 2 e 1

t
σ β α β υ θ

 ∂
= − − + ∂ 

,  (15) 

where oT
2

γα
λ µ

=
+

, 
EC

γε
ρ

= , 2 2λ µβ
µ
+

= , and ( ) T3 2γ λ µ α= + . 

 
4 Adomian’s Decomposition Method (ADM) 
To apply Adomian’s method, we re-write Eqs. (11) and (12) to be in the forms: 

 
( ) ( ) ( ) ( ) ( )2 2 2

2 2 2

e r ,t e r ,t r ,t r ,t e r ,t1 11 1
r t t r t r r r r

θ θ
α υ α υ

∂ ∂ ∂ ∂ ∂   ∂ ∂
= + + + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

, (16) 

and 

( ) ( ) ( ) ( )2 2 2

0 02 2 2

r ,t r ,t1r,t n e r,t
r t t t t r r

θ θ
τ θ ε τ

∂ ∂   ∂ ∂ ∂ ∂
= + + + −   ∂ ∂ ∂ ∂ ∂ ∂   

. (17) 

The Adomian’s decomposition method usually defines the equation in an operator form by 
considering the highest-ordered derivative in the problem. We define the differential 
operator L in terms of the two derivatives that are contained in the problem [Adomian, 
Cherruault and Abbaoui (1996)]. 
Consider Eqs. (16) and (17) in the operator form as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )rr tt t rr t r r
1 1L e r,t L e r,t 1 L L r,t 1 L L r,t L e r,t
r r

α υ θ α υ θ= + + + + − ,  (18) 

( ) ( ) ( ) ( ) ( ) ( )1rr t 0 tt t 0 tt r
1L r,t   L  + L r,t  +  L  + n L e r,t L r,t
r

θ τ θ τ θε= − , (19) 

where the operators which appeared in the above equations are defined as: 
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2 2

t tt r rr2 2L , L , L , L
t t r r
∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂

. (20) 

Assuming that the inverse of the operator 1
rrL−  exists and is taken as a definite integral with 

respect to r from R to r as following [Adomian, Cherruault and Abbaoui (1996)]: 

( ) ( ) ( ) ( ) ( ) ( ) ( )− −

=

  ∂
= = − + −       ∂   
∫ ∫

2r
1 1

rr 1 1 2 rr rr
R R r R

f r
L f r f d d , L L f r f r f R r R

r

ξ

ξ ξ ξ . (21) 

Thus, applying the inverse operator on both the sides of (18)-(19), we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
−

=

+ + +  ∂  = + − +    ∂ + −    

tt t rr
1

rr
t r rr R

L e r,t 1 L L r,te r ,t
e r ,t e R,t r R L 1 1r 1 L L r,t L e r,t

r r

α υ θ

α υ θ
, (22) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
−

=

  ∂  = + − +    ∂ −    

1t 0 tt t 0 tt
1

rr
rr R

 L  + L r,t  +  L  + n L e r,tr ,t
r ,t R,t r R L 1r L r,t

r

τ θ τεθ
θ θ

θ
 . (23) 

Now, we will decompose the unknown functions ( )r,tθ  and ( )e r,t  by a sum of 
components defined by the following series:  

( ) ( ) ( )k 0 k
k 0 k 1

e r ,t e r ,t e e r,t
∞ ∞

= =

= = +∑ ∑ , (24) 

( ) ( ) ( )k 0 k
k 0 k 1

r ,t r ,t r ,tθ θ θ θ
∞ ∞

= =

= = +∑ ∑ . (25) 

The zero-components are defined by the terms that arise from the boundary conditions on 
the surface of the cavity r R= , which give 

( ) ( ) ( )
=

 ∂
= + −   ∂ 

0
r R

e r ,t
e e R,t r R

r
, (26) 

( ) ( ) ( )
=

 ∂
= + −   ∂ 

0
r R

r ,t
R,t r R

r
θ

θ θ , (27) 

Substituting from Eqs. (24)-(27) in Eqs. (22) and (23), we obtain 



 
 
 
On the Application of the Adomian’s Decomposition Method                                        603 

 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

=

∞ ∞

= =−

∞ ∞

= =

 ∂
= + − +  ∂ 

 + + + 
 
 

+ − 
 

∑ ∑

∑ ∑

r R

tt k t rr k
k 0 k 01

rr

t r k r k
k 0 k 0

e r ,t
e r ,t e R,t r R

r

L e r,t 1 L L r,t
L

1 11 L L r,t L e r,t
r r

α υ θ

α υ θ

, (28) 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

∞

=

∞
−

==
∞

=

 
 
 

 ∂  
= + − +    ∂   

 
− 
 

∑

∑

∑

t 0 tt k
k 0

1
1rr t 0 tt k

k 0r R

r k
k 0

 L  + L r,t  +

r,t
r ,t R,t r R L   L  + n L e r,t

r
1 L r,t
r

τ θ

θ
θ θ τε

θ

. (29) 

We obtain these components by ( )ke r ,t and ( )k r ,tθ , which are the recursive formulas 
[Adomian, Cherruault and Abbaoui (1996)]: 

( )
( ) ( ) ( )

( ) ( ) ( )
−

+

+ + + 
 = ≥ + −  

tt k t rr k
1

k 1 rr
t r k r k

L e r,t 1 L L r,t
e r ,t L , k 01 11 L L r,t L e r,t

r r

α υ θ

α υ θ
, (30) 

( )
( ) ( ) ( ) ( )

( )
−

+

 
 = ≥ −  

1t 0 tt k t 0 tt k
1

k 1 rr
r k

 L  + L r,t  +  L  + n L e r,t
r ,t L , k 01 L r,t

r

τ θ τε
θ

θ
. (31) 

We assume that the surface of the cavity r R=  is thermally loaded by harmonic heat 
with zero strain and heat flux. 
Hence, we have:  

( ) ( ) ( )0

r R

r ,t
0,t sin t , 0

r
θ

θ θ ω
=

∂
= =

∂
 , (32) 

( ) ( )
r R

e r ,t
e 0,t 0, 0

r
=

∂
= =

∂
, (33) 

where 0θ  is constant and ω  is the angular thermal load and assumed to be constant. 
Thus, we have 

( )0
0 0sin t , e 0θ θ ω= = . (34) 
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Substituting from Eq. (36) into Eqs. (30) and (31), we obtain the complete iteration 
formulas. 
The first components of the iteration take the forms: 

( )1e r ,t 0=  , (35) 

( ) ( ) ( )( )( )2
1 0r ,t cos t sin t r R

2
ωθ ω ωτ ω= − − . (36) 

The remaining components of the iteration formulas (30) and (31) have been calculated 
by using MAPLE 17. Moreover, the decomposition series solutions (30) and (31) 
converge very rapidly in physical problems, and this convergence has been investigated 
by Kaya et al. [Kaya and Inan (2005); Kaya and Yokus (2005); Lesnic (2002, 2005)]. In 
an algorithmic form, the ADM can be expressed and implemented in linear generalized 
magneto-thermoelasticity models with the suitable value for the tolerance −= 6Tol 10 and k 
is the iteration index, as follows:  

Algorithm 
1- Compute the initial approximations ( )=0 0,tθ θ and ( )=0e e 0,t . 

2- Use the calculated values of ( )k r ,tθ  and ( )ke r ,t  to compute ( )k 1 r ,tθ + and 

( )k 1e r ,t+  from (30) and (31). 

3- If ( ) ( )k 1 kmax r,t r ,t Tolθ θ+ − < and ( ) ( )k 1 kmax e r,t e r ,t Tol+ − < , stop and set

k 1 m+ = , otherwise continue and go back to Step 2. 

4- Calculating ( ) ( )
m

k
k 0

e r ,t e r ,t
=

=∑ and ( ) ( )
m

k
k 0

r ,t r ,tθ θ
=

=∑ . 

5- Calculating the displacement from Eqs. (10) and (28) as follows: 

( ) ( ) ( )
mr r

kR R
k 0

1 1u r,t e ,t d e ,t d
r r

ξ ξ ξ ξ
=

= = ∑∫ ∫   (37) 

6- Calculating the stress from the Eqs. (13), (28), and (29), as follows: 

( ) ( ) ( )

( )

m mr2
k kR

k 0 k 0

m
2

k
k 0

1r,t e r ,t 2 e ,t d
r r

1 r,t .
t

σ β ξ ξ

αβ υ θ

= =

=

∂  = − − ∂  
∂ + ∂ 

∑ ∑∫

∑
  (38) 

5 Numerical results and discussion 
For the numerical evaluations, the copper material has been chosen and the constants of 
the problem were taken as follows [Youssef (2005); Youssef and El-Bary (2016)]: 



 
 
 
On the Application of the Adomian’s Decomposition Method                                        605 

 
 

( )=K 386 W / mK , − −= × 5 1
T 1.78 10 Kα , ( )=EC 383.1 J / kg K , = 28886.73 s / mη ,

=0T 293 K , = × 10 23.86 10 N / mµ , = × 10 27.76 10 N / mλ , = 38954 kg/mρ , 
14

0 0.35 10τ −= × , 140.33 10υ −= × .  

Thus, the following non-dimensional parameters have been obtained; 

1=1.618ε , = 0.02ν , =0 0.05τ .  

We calculate the numerical solutions when the non-dimensional value of the time is
t 2.0= , the non-dimensional value of the distance is ≤ ≤1.0 R 2.0 , =ω π , and

=0 1.0θ . According to the above algorithm, we stopped the calculation on the 5th 
component ( )5 r ,tθ  and ( )5e r ,t . 

Figs. 1-4 show the temperature increment, the strain, the radial stress, and the 
displacement distribution, respectively, with different values of angular thermal loading 
parameter ( )= , 1.1ω π π under the three models of thermoelasticity; Biot, L-S, and G-L.  

 
Figure 1: The temperature increment distribution with various values of angular thermal  
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Figure 2: The strain distribution with various values of angular thermal load 

 

 
Figure 3: The stress distribution with various values of angular thermal load 
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Figure 4: The displacement distribution with various values of angular thermal load 

The numerical results of the L-S model and G-L model are identical almost particularly, 
the temperature increment distribution and the stress distribution for the different values 
ofω , while the strain and the displacement distributions are not.  
According to the difference between the results of the Biot model and the results of the 
other models, the relaxation times have significant effects on all the studied functions and 
play a vital rule in the propagation of the thermal and mechanical waves through the 
thermoelastic materials.  
Moreover, the angular thermal load parameter has significant impact on the temperature 
increment, strain, radial stress, and displacement distribution and in the propagation of 
the thermal and mechanical waves through the thermoelastic materials. The figures also 
show that, a small change in the value of the angular thermal loading parameter ω  leads 
to significant changing in all the studied functions. When the value of the parameterω
increases, the values of the temperature increment, strain, radial stress, and displacement 
also increase. 
Figs. 5 and 6 show the temperature increment, strain, radial stress, and displacement 
distribution for the L-S model with respect to the time t and the radial distance r when 
ω π= and 2ω π= in 3-D figures, respectively.  
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   (a): Temperature increment 

 
(b): Strain 

 
(c): Stress 

 
 (d): Displacement 

 
Figure 5: The studied functions for the L-S model when ω π=  
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(c): Radial stress 

 
(d): Displacement 

 
Figure 6: The studied functions for the L-S model when 2ω π=  

Again, the angular thermal load parameter has significant effects on all the distributions. 
The number of the peak points of the increment temperature and the strain distribution 
increase when the value of the angular thermal load parameter increases. Finally, the 
temperature increment, strain, radial stress, and displacement have high values in the 
context of the Biot model compared to the L-S and G-L models due to the relaxation times. 

6 Conclusions 
A mathematical model of a thermoelastic infinite body with a spherical cavity has been 
constructed. A unified system of governing equations has been formulated in the context of 
three different models of thermoelasticity: the Biot model, the Lord-Shulman model, and 
the Green-Lindsay model. Adomian’s decomposition method has been used when the 
surface of the cavity is subjected to harmonic thermal loading with zero heat flux and strain.  
The numerical results show that: 
• The relaxation times and the angular thermal load have significant effects on all the 

studied fields. 
• The results from the Lord and Shulman model almost match the results obtained when 

applying the Green and Lindsay model.  
• The temperature increment, strain, radial stress, and the displacement have higher 

values in the context of the Biot model compared to the L-S and G-L models. 
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