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On the Application of the Adomian’s Decomposition Method to a
Generalized Thermoelastic Infinite Medium with a Spherical
Cavity in the Framework Three Different Models

Najat A. Alghamdi' and Hamdy M. Youssef>* "

Abstract: A mathematical model is elaborated for a thermoelastic infinite body with a
spherical cavity. A generalized set of governing equations is formulated in the context of
three different models of thermoelasticity: the Biot model, also known as “coupled
thermoelasticity” model; the Lord-Shulman model, also referred to as “generalized
thermoelasticity with one-relaxation time” approach; and the Green-Lindsay model, also
called “generalized thermoelasticity with two-relaxation times” approach. The
Adomian’s decomposition method is used to solve the related mathematical problem. The
bounding plane of the cavity is subjected to harmonic thermal loading with zero heat flux
and strain. Numerical results for the temperature, radial stress, strain, and displacement
are represented graphically. It is shown that the angular thermal load and the relaxation
times have significant effects on all the studied fields.

Keywords: Adomian’s decomposition method, generalized thermoelasticity, relaxation
time, iteration method.

Nomenclature

A p Lame’s constants

P Density

Ce Specific heat at constant strain

Oy Coefficient of linear thermal expansion
= (32 ar

Y

t Time
T Temperature
TO

Reference temperature
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0 = (T =T, ); Temperature increment such that |¢9| /T, <<1
O..

Y Components of the stress tensor
e.

Y Components of strain tensor

Ui Components of the displacement vector
E Body force vector

K Thermal conductivity

7,,U  Relaxation times

=

1 Introduction

Biot constructed the coupled thermoelasticity model (CTE), in which the heat conduction
is a parabolic type partial differential equation, which leads to infinite velocity of the
thermal wave [Biot (1956)]. To fix this paradox, generalized thermoelasticity theory has
been introduced by Lord and Shulman (L-S) by using the definition of the second sound
phenomena [Lord and Shulman (1967)]. This definition leads to heat conduction of
parabolic type partial differential equation, which generates the finite velocity of the
thermal wave. The Green and Lindsay (G-L) theory suggests two relaxation times, and
both the energy equation and the equation of motion have been modified [Green and
Lindsay (1972)]. Many mathematical models of the infinite body with a spherical cavity
in the context of different types of thermoelasticity models have been solved and
published [Youssef (2005a, 2006, 2009); Youssef and El-Bary (2014)]. The mixed initial
boundary value problem for a dipolar body in the context of the thermoelastic theory was
proposed by Matin et al. [Matin and Ochsner (2017)]. Marin studied the asymptotic of
total energy for the solutions of the mixed initial boundary value problem within the
context of the thermoelasticity of dipolar bodies [Marin (1997)].

Recently, much attention has been devoted to numerical methods that do not require the
discretization of time-space variables, and to the linearization of the nonlinear equations
[Sweilam (2007)].

The Adomian method is a decomposition method that solves linear and nonlinear partial
and ordinary differential equations [Admoian, Cherruault and Abbaouui (1996); Adomian
(1988)]. This method offers computable, accurate, convergent solutions to linear and
nonlinear partial and ordinary differential equations. The solution can be verified to any
degree of approximation. Recently, the Adomian decomposition approach has been
applied to obtain formal solutions for a wide class of partial and ordinary differential
equations [Ciarlet, Erell and Felix (2016); Duz (2017); El-Sayed and Kaya (2004);
Gorecki and Zaczyk (2016); Kaya and El-Sayed (2003); Kaya and Inan (2005); Kaya and
Yokus (2005); Lesnic (2002, 2005); Li, Licheng, Rustam et al. (2017); Mustafa (2005);
Vadasz and Olek (2000)]. The Adomian method has been used to solve different
mathematical models of the mechanical interaction of the immune system with viruses,
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antigens, bacteria, or tumor cells, which had been modelled as systems of nonlinear
partial differential equations by the ADM [Adomian, Cherruault and Abbaoui (1996)].

Adomian’s decomposition method (ADM) separates the differential equations into linear
and nonlinear parts, inverts the highest-order derivative in both sides, and obtains the
successive terms of the solution using recurrent relation [Lesnic (2005) and Sweilam
(2007)]. Many modifications have been made to the method to enhance the accuracy or to
expand the applications of the original method by many authors [Kaya and E Inan (2005),
Lesnic (2002); Vadasz and Olek (2000)]. Recently, the decomposition method has been
used in fractional partial differential equations [Gejji and Jafari (2005); Ray and Bera
(2005); Shawagfeh (2002)].

This work introduces, for the first time, the use of an Adomian’s method for solving the
problem of thermoelasticity in the context of spherical co-ordinates under three different
models of thermoelasticity. The solution will be based on Adomian’s decomposition
method. The numerical results will be calculated and represented in figures to stand on
the influence of the functionally graded parameter on the temperature increment, the
strain, the stress, and the displacement.

2 Basic equations

The unified system of governing equations in the context of CTE, L-S and (G-L) has been
constructed for a linear and homogeneous isotropic medium without any external heat
source to be in the following form [Youssef and El-Bary (2014)]:

,uul.,j/,+(l+y)u_}.>ﬂ+Fi—y(]+U%j]} = pii,, (1)
0 0’ 0 o°
Krii ='OCE(E+T0WJT+%7{E+HTOWJMJ'f’ (2)
0
o, =p(u,, +u,,)+Au,,—y I+o— (T-1,)5, . 3)

1. Putting 7, =0 =0 for coupled thermoelasticity (Biot model).

2. Puttingn=1, v=0 and 7,#0 , for generalized thermoelasticity with one
relaxation time (Lord-Shulman, i.e., the L-S model).

3. Putting n=0, and 7,#0, U#0 for generalized thermoelasticity with two
relaxation times (Green-Lindsay, i.e., the G-L model).

i,j=1,2,3 are the indicators of the coordinates system.
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3 Formulation of the problem

Consider a perfectly conducting thermoelastic infinite body with spherical cavity that
occupies the region R < 7 < . The spherical system of coordinates (r,@,¢) with the z-
axis lying along the axis of the cylinder will be used.

Due to symmetry, the problem is one-dimensional with all the functions considered
depending on the radial distance » and the time ¢. It is assumed that there are no body
forces and no heat sources in the medium and the surface of the cavity.

Thus, the governing one-dimensional equations of (1)-(3) in spherical coordinates take
the following forms [Youssef (2005b, 2010)]:

Oe 0 0 O’u
A+2u)——-y—| 1+o— |T= 4
(A+2u)7, yar( Uazj Por @
2 T 2
VZT:pCE 0 +’l'oa T+ i+nraa—2 e, &)
K \ot otr’ K \ ot ot
—2,u—+/1e }/L ) T T) (6)
—2,u +Ale— }/[ jT T) (7)
o.=Ale— 7/(]+U J (3)
O-zrzaz//r zz 0’ (9)
10
o120 (ru) (10
r o or
2
where V° = d 2+ii
rror

For convenience, we will use the following non-dimensional [Youssef and El-Bary
(2014)]:

"o T AN T-T, , pC
(ru')=cp(ru), (¢.0,7,,0")=cn(t,z,0), l9=( T 0), o :%,77= KE ,
02:/1+2,u.

Coop

Egs. (4)-(8) take the forms (the primes are suppressed for simplicity)
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2
Ve—al| 1402 |v? =a—f, (11
ot ot
2 2
V0 = i+2'Oa—2 O+¢ i+nroa—2 e, (12)
ot ot ot ot
2 u 2 0
o,.=pe-2—apf|l+v— |0, (13)
r ot
ou 0
,, :'Bze‘zg‘“ﬁ{”ugj‘g’ (14)
o =(ﬂ2—2)e—aﬂ2 I+z)i 0, (15)
zz at
2
where a:y—TO __r ﬁzzu,and 7=(32+2,u)ar.

A+2u " pC,

4 Adomian’s Decomposition Method (ADM)
To apply Adomian’s method, we re-write Eqs. (11) and (12) to be in the forms:

2 2 2

0 e(};,t)za e(;;,t)+a[]+uij6 e(j’t)+a(l+uijlae(r’t)—lae(r’t), (16)
or ot ot or ot)r or r or

and

o’0(r.t) (o o’ d 0’ 100(r,t)

—=—+7,— |O(r,t)+e| —+ — ) —— : 17
o [az op |Plrt)re| g g el =T an

The Adomian’s decomposition method usually defines the equation in an operator form by
considering the highest-ordered derivative in the problem. We define the differential
operator L in terms of the two derivatives that are contained in the problem [Adomian,
Cherruault and Abbaoui (1996)].

Consider Egs. (16) and (17) in the operator form as follows:

Le(rt)=Le(ri)+a(i+oL)L,0(rt)+a(1+oL) L0(r)~LLe(r). (18)
r r

L,0(rt)= (L, +1,L,)0(rt)+ £, (L, +nt,L, )e(rt)~ L Lo (r1). 19)
r

where the operators which appeared in the above equations are defined as:
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2 2
IZQ’ tt:a_Z’LrZE’er:a_z'
ot ot or or

Assuming that the inverse of the operator L;: exists and is taken as a definite integral with

L (20)

respect to » from R to r as following [ Adomian, Cherruault and Abbaoui (1996)]:

J] . @D

r=R

Thus, applying the inverse operator on both the sides of (18)-(19), we obtain
Le(rt)+a(l1+vL)L 0(r.t)+ ]

r R]

r &

Ll (=[] r(&)ag s, LLr(n)]=r (r){f (R)+(F_R)(@;—(:)

de(r,t)

e(r,t) = e(R,t)+(r—R)£T

+L! , (22)

rr

a(1+UL,)%Lﬁ(r,t)—%Lre(r,t)

p (L +7,L,)0(r.t)+ g, (L, +nz,L,)e(r,1)
a(r,t):e(R,t)+(r_R)[M ]+er ) L3)
o |, —;L}_H(r,t)

Now, we will decompose the unknown functions H(r,t) and e(r,t) by a sum of

components defined by the following series:

e(r,t):iek (r,t):eo+iek (r.1), (24)
k=0 k=1

0(r1)=30,(r1)=6,+3 6, (r1). (25)
k=1

=0
The zero-components are defined by the terms that arise from the boundary conditions on
the surface of the cavity » = R, which give

e, =e(R,t)+(r—R)[@ ) }, (26)
6, :H(R,t)+(r—R)£% ] 27)

Substituting from Egs. (24)-(27) in Eqgs. (22) and (23), we obtain
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e(r’t):e(R,t)'i'(r—R) ae(}",l‘) ]4_
or | _,
Lﬂiek(r,t)+a(l+uLt)erigk(r,t)+ > (28)
L—] k=0 =0
a(1+uLt)lLr 3 0, (r,t)——Lriek(r )
L r k=0 rooe
(L +7,L,) 30, (r1)+
k=0
0(w>=9<R,r)+(r—R)(‘”§”) }L,.: (Ll
(R k=0
_iLrigk(” t)
L 7 k=0 ]

We obtain these components by e, (r,t)and 0, (r,t) , which are the recursive formulas
[Adomian, Cherruault and Abbaoui (1996)]:

L, (rt)+a(l+vL)L,0, (rt)+

e (rt)=L) k>0, (30)

a(]+uLt)§Lr6’k (r,t)—%Lrek (1) ’

(L +7,L,)6, (r.t)+e,(L +nz,)L,)e (r1)

6,.,(r.t)=L , k>0, (31)

1
—;Lﬁk (V,t)

We assume that the surface of the cavity » = R is thermally loaded by harmonic heat
with zero strain and heat flux.

Hence, we have:

0(0.1)= 6 sin(ar), 56’;””) ~0., (32)
r
r=R
e(0.)=0, Uy (33)
or | _,

where 0’ is constant and @ is the angular thermal load and assumed to be constant.
Thus, we have

0,=0"sin(wt), e,=0. (34)
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Substituting from Eq. (36) into Egs. (30) and (31), we obtain the complete iteration
formulas.

The first components of the iteration take the forms:
e,(r,t)zO , (35
Qj(r,t)zg(cos(a)t)—a)ro sin(a)t))(r—R)Z. (36)

The remaining components of the iteration formulas (30) and (31) have been calculated
by using MAPLE 17. Moreover, the decomposition series solutions (30) and (31)
converge very rapidly in physical problems, and this convergence has been investigated
by Kaya et al. [Kaya and Inan (2005); Kaya and Yokus (2005); Lesnic (2002, 2005)]. In
an algorithmic form, the ADM can be expressed and implemented in linear generalized
magneto-thermoelasticity models with the suitable value for the tolerance Tol =10° and k

is the iteration index, as follows:

Algorithm
1- Compute the initial approximations 6, = 9(0,t) ande, = e(0, t) .

2- Use the calculated values of 6, (r,t) and e, (r,t) to compute Hk”(r,t) and
e, (r,t) from (30) and (31).

3- Ifmax|¢9k”(r,t)—6?k (r,t)|<Tol and max|ek+,(r,t)—ek (r,t)|<Tol , stop and set

k + 1 = m, otherwise continue and go back to Step 2.
4- Calculating e(r,?) Zek (r.t)and O(r,¢) 29 r,t)

5- Calculating the displacement from Egs. (10) and (28) as follows:
u(r,t)= j e(£,1)dE== jzek E,t)dé& (37)

6- Calculating the stress from the Egs. (13), (28), and (29), as follows:

Zekrt (JZek§td§j

(1+U—j o, (r
k=0

For the numerical evaluations, the copper material has been chosen and the constants of
the problem were taken as follows [ Youssef (2005); Youssef and El-Bary (2016)]:

(38)

5 Numerical results and discussion
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K=386W/(mK) ,a,=178x10"K",C, =383.1J/(kgK) ,11=8886.73 s/m’,
T,=293K , u=386x10"N/m’, A=7.76x10"N/m’ , p=8954kgm’ ,
7,=0.35x10", 0=0.33x107".

Thus, the following non-dimensional parameters have been obtained;
£=1618,v=0.02,7,=0.05.

We calculate the numerical solutions when the non-dimensional value of the time is
t =2.0, the non-dimensional value of the distance is [.0<R<2.0,w=rx, and
6’ =1.0. According to the above algorithm, we stopped the calculation on the 5®
componentd; (r,¢) and e, (r,t).

Figs. 1-4 show the temperature increment, the strain, the radial stress, and the
displacement distribution, respectively, with different values of angular thermal loading
parameter @ = (7[, 1.1 72') under the three models of thermoelasticity; Biot, L-S, and G-L.
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Figure 1: The temperature increment distribution with various values of angular thermal
Load
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Figure 2: The strain distribution with various values of angular thermal load
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Figure 3: The stress distribution with various values of angular thermal load
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Figure 4: The displacement distribution with various values of angular thermal load

The numerical results of the L-S model and G-L model are identical almost particularly,
the temperature increment distribution and the stress distribution for the different values
of w, while the strain and the displacement distributions are not.

According to the difference between the results of the Biot model and the results of the
other models, the relaxation times have significant effects on all the studied functions and
play a vital rule in the propagation of the thermal and mechanical waves through the
thermoelastic materials.

Moreover, the angular thermal load parameter has significant impact on the temperature
increment, strain, radial stress, and displacement distribution and in the propagation of
the thermal and mechanical waves through the thermoelastic materials. The figures also
show that, a small change in the value of the angular thermal loading parameter @ leads
to significant changing in all the studied functions. When the value of the parameter ®
increases, the values of the temperature increment, strain, radial stress, and displacement
also increase.

Figs. 5 and 6 show the temperature increment, strain, radial stress, and displacement
distribution for the L-S model with respect to the time ¢ and the radial distance » when
o = and w = 27 in 3-D figures, respectively.
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(c): Stress (d): Displacement

Figure 5: The studied functions for the L-S model when w =7

(a): Temperature increment (b): Strain
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(c): Radial stress (d): Displacement

Figure 6: The studied functions for the L-S model when w =27

Again, the angular thermal load parameter has significant effects on all the distributions.
The number of the peak points of the increment temperature and the strain distribution
increase when the value of the angular thermal load parameter increases. Finally, the
temperature increment, strain, radial stress, and displacement have high values in the
context of the Biot model compared to the L-S and G-L models due to the relaxation times.

6 Conclusions

A mathematical model of a thermoelastic infinite body with a spherical cavity has been
constructed. A unified system of governing equations has been formulated in the context of
three different models of thermoelasticity: the Biot model, the Lord-Shulman model, and
the Green-Lindsay model. Adomian’s decomposition method has been used when the
surface of the cavity is subjected to harmonic thermal loading with zero heat flux and strain.

The numerical results show that:

e The relaxation times and the angular thermal load have significant effects on all the
studied fields.

e The results from the Lord and Shulman model almost match the results obtained when
applying the Green and Lindsay model.

e The temperature increment, strain, radial stress, and the displacement have higher
values in the context of the Biot model compared to the L-S and G-L models.
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