

Computers, Materials & Continua CMC, vol.62, no.1, pp.385-398, 2020

CMC. doi:10.32604/cmc.2020.06418 www.techscience.com/cmc

An OpenFlow-Based Load Balancing Strategy in SDN

Xiaojun Shi1, Yangyang Li2, *, Haiyong Xie2, 3, Tengfei Yang2, Linchao Zhang2,
Panyu Liu4, Heng Zhang4 and Zhiyao Liang5

Abstract: In today’s datacenter network, the quantity growth and complexity increment of
traffic is unprecedented, which brings not only the booming of network development, but
also the problem of network performance degradation, such as more chance of network
congestion and serious load imbalance. Due to the dynamically changing traffic patterns,
the state-of the-art approaches that do this all require forklift changes to data center
networking gear. The root of problem is lack of distinct strategies for elephant and mice
flows. Under this condition, it is essential to enforce accurate elephant flow detection and
come up with a novel load balancing solution to alleviate the network congestion and
achieve high bandwidth utilization. This paper proposed an OpenFlow-based load
balancing strategy for datacenter networks that accurately detect elephant flows and enforce
distinct routing schemes with different flow types so as to achieve high usage of network
capacity. The prototype implemented in Mininet testbed with POX controller and verify the
feasibility of our load-balancing strategy when dealing with flow confliction and network
degradation. The results show the proposed strategy can adequately generate flow rules and
significantly enhance the performance of the bandwidth usage compared against other
solutions from the literature in terms of load balancing.

Keywords: Load balancing, OpenFlow, data center network, elephant flow, multi-path
routing.

1 Introduction
The current networks are facing tremendous traffic growth with so many new types of
network applications emerge rapidly, which turned it to a mega-datacenter era. However,
the big data situation is degrading application performance due to the dynamically
changing traffic patterns. This calls for more efficient and effective network management
technologies, especially in traffic monitoring aspect [Al-Fares, Radhakrishnan, Raghavan
et al. (2010)]. As SDN (Software-defined networking), a novel network structure,
decouples the control plane and data plane and offers a flexible and programmable idea

1 Department of Science and Technology, China Electronics Technology Group Corporation, Beijing, China.
2 National Engineering Laboratory for Public Safety Risk Perception and Control by Big Data, China

Academy of Electronics and Information Technology, Beijing, China.
3 University of Science and Technology of China, Hefei, China.
4 National University of Defense Technology, Changshan, China.
5 Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau.
* Corresponding Author: Yangyang Li. Email: liyangyang@cetc.com.cn.

386 CMC, vol.62, no.1, pp.385-398, 2020

for network operators, it enables dynamic, fine-granularity and network-wide traffic
scheduling. The new emerging network applications (data center, traffic engineering and
etc.) take advantages of it, which significantly increases the importance of SDN-based
traffic monitoring.
According to some authoritative DCN traffic researches, flows in DCN are classified as
elephant flows and mice flows. The former is long-lived and the latter is short-lived. To be
specific, the elephant flow could be video data such as YouTube streams and the mice
flows could represent query traffic like Google search. Another report published by Cisco
shows that video-based traffic will reach 80%-90% of the overall datacenter traffic in 2019
but only account for 10% of the whole flow population [Basat, Einziger, Friedman et al.
(2017)]. The mice flows tend to be more latency-intensive and hard to manage due to the
dramatic increment in quantity. Moreover, in order to process tremendous data aggregated
from thousands of machines in DCN, multi-rooted trees with equal-cost path is needed
based on port densities limitation. This might cause big problems with elephant flows and
mice flows are treated equal. So, elephant flow detection and load balancing technologies
are very heated topics in academic field [Liu, Liu, Liu et al. (2018)]. And it is important to
distinguish elephant flows from mice flow and treat them with different manner.
The mainstream way dedicated on handling elephant flows properly and left mice flows
for load-unaware network management methods. Existing flow detection methods can be
concluded into four types, which are host-based detection, proactive query detection,
passive report detection and sampling. Mahout, a host-based detection method, breaks the
limitation of round procedure between controller and switches and create a shim layer on
each end-host while monitoring flows, but it needs additional modification on hardware
[Wu, Chen, Durairajan et al. (2013)]. Proactive query methods detect elephant flows by
periodically querying statistics from switches. This could guarantee correctness, but to
cause heavy monitoring costs. Passive report detection upload flow information when
reaching the threshold. Considering the complexity and dynamic of network, it can cause
severe detection error due to the static threshold [Akyildiz, Lee, Wang et al. (2016)].
Sampling has a long history in traffic monitoring, but the intrinsic defect of inaccuracy
and useless samples always exists. Equally, ignoring mice flows through load-unaware
network management methods is far from effective and efficient. Mice flow is abrupt and
hard to detect in the first place, once encounters busy network, load-unaware method may
induce huge flow detection error. To conclude, the aforementioned monitoring methods
have the following problems: high bandwidth occupation, large memory and computation
overhead, low detecting efficiency, unbearable error confine and etc.
According to these problems, we are motivated to propose an intelligent traffic
monitoring method with OpenFlow-based load balancing strategy, aiming at minimizing
the bandwidth cost, memory overhead and error confinement. To achieve the goal, we
decided to split it into two-stage. First stage, we start the initiation actions by pre-defining
a small amount of high bandwidth routing paths under the confinement of minimal hops.
This is for elephant flow monitoring when a flow is tagged elephant flow, which we call
elephant zone. The rest will be called mice zone. We calculated weight for every
available path and arrange the minimal workload path for flows. The weighted route path
is based on current workload of switches which can be represented by numbers of

An OpenFlow-based Load Balancing Strategy in SDN 387

installed flow entries. The higher number of flow entries a switch contained, the lower
weight it will get. The second stage is load balancing procedure. We design a persistent
classification algorithm to distinguish elephant flows from mice flows in a proactive way.
Once a flow is tagged on elephant flow, it will be removed from mice zone to elephant
zone and redirected to pre-defined path for further monitoring actions. The mice flow will
be routed under the consideration of shedding workload evenly to every switch in the
network. In this way, we can maximize bandwidth usage, avoid network congestion and
improve traffic monitoring efficiency and accuracy at the same time. An experimental
prototype is constructed to verify the use of OpenFlow-based load balancing strategy and
evaluate the benefits under the comparison of correctness, effectiveness, bandwidth
consumption with other solutions [Liu, Cai, Xu et al. (2015)]. The main contributions of
this paper are summarized as follows:
(1) We confine elephant flows with several fixed route paths under the requirement of
minimal switch occupations due to its long-lived and less changeable characteristics
[Curtis, Andrew, Kim et al. (2011)]. In this way, we expect to avoid network congestions
and promote further elephant flow monitoring.
(2) We design weighted route path calculation algorithm for mice flows. This is capable
of shedding monitoring workload evenly to all switches, maximizing the use of
bandwidth and alleviating the network congestion [Vijay, Vishnoi and Bidkar (2013)]. To
be specific, the heavy loaded paths will be allocated a relatively low weight so that fewer
traffic will go through these loaded paths.
(3) We fulfill flow detection function by proposing a persistent classification method.
Considering the importance of flow detection correctness, we actively poll switches for
flow statistics to detect its features and set tags on it with high detection accuracy and
efficiency [Marco, Kindler and Schapira (2017)].
The rest of the paper is organized as follows: Section 2 discusses the background and
related works and Section 3 formally states the problems and introduce implementation
details. Section 4 covers the experimental evaluation of our load-balancing solution and
analyze the results. Finally, we conclude this paper in Section 5.

2 Background and related works
2.1 OpenFlow
OpenFlow now becomes the standard communication protocol in SDN network. The basic
idea is to deploy network applications without designing new devices, in other words,
hardware independency. It designs for devices with inbuilt TCAM storage so that
OpenFlow protocol can enable controller to monitor the network and make rules for
devices in data plane. In v1.3, the format has changed into pipeline of flow tables, which
contains information about transfer actions and other records such as execution times. The
minor element will be flow entries, these are instructions for every flow so that controller
could conduct fine-granularity management of network [Tang, Li, Barolli et al. (2017)].
The basic operations between controller and switches are as follows. Once the switch
launched, the connection will be established to controller, which is called OpenFlow
channel. There are proactive and reactive modes. It depends on who takes the first move.

388 CMC, vol.62, no.1, pp.385-398, 2020

The controller pre-installed flow entries in switches is called proactive mode. It can
happen at the whole functioning time and it doesn’t need to send flow entries directly
after the OpenFlow channel established. The reactive mode is opposite [Ramon, Katrinis
and Muntean (2017)]. Once the OpenFlow switches receive a new packet and no flow
entries match it, the switch will encapsulate it in Packet_In message and forwarded it to
the controller over OpenFlow channel. The controller responds with a flow table and the
original packet, then the switches finish the rest execution as instructed [Wang, Wang,
and Yan (2016)]. Also, if a flow action set contains an option of forwarding to controller,
the flow packet will also be sent to controller, which we call it specialized reactive action.

2.2 SDN-based load balancing technologies
Datacenter network is facing high workload for most times, which relies on multipath
planning between pairs of end hosts to share burden among links and avoid network
congestions as much as possible [Lan and Heidemann (2003)]. In this end, load balancing
is needed for network traffic management. The most commonly used routing algorithm is
OSPF (Open Shortest Path First), which pre-set the shortest path between node pairs and
all destined traffic will go through soon afterwards. However, OSPF doesn’t provide load
balancing strategy over multipath situation, which may cause insufficient bandwidth
usage and network congestion [Xu and Li (2014)]. In the meantime, flow monitoring
error can be magnified due to poor bandwidth condition.
ECMP (Equal-Cost Multi-Path) is a novel way to compensate the defect of bandwidth
waste. It adopts the idea of OSPF to pre-calculate shortest routing path but making it
multiple for further traffic distribution [Cai, Wang, Zheng et al. (2013)]. All road is
statically decided without a real-time response from the network, which cannot guarantee
the effectiveness of load balancing [Nathan, Porter, Sivasankar et al. (2010)]. What’s more,
ECMP doesn’t differentiate between elephant flows and mice flows, and fail to fully utilize
bandwidth. TinyFlow fixed the problem by breaking elephant flows into a large number of
mice flows, flexibly arrange these flows across the network. TinyFlow presents a per-mice
routing approach and automatically change the traffic characteristics, which alleviates head-
of-line block caused by egress buffer full of elephant flow packets [Brownlee and Claffy
(2002)]. But breaking and aggregating elephant flows may create a large number of mice
flows and causes unexpected error based on disorder and other situations happened in the
network, and it is not a good way to have a good visual of the network.

2.3 Flow detection solutions
Many literatures have addressed the importance of flow detection, especially on network
congestion occasion. It may cause much more trouble for flow monitoring and the
elephant flows are the chief culprit. As mentioned before, there are many solutions for
elephant flow detection. In this section, we are giving a brief introduction for up-to-date
flow detection technologies and their features.
Hedera is an OpenFlow-based flow management solution which detects elephant flows
by per-flow statistics query. The idea is simple. In first step, all flows are recognized as
mice flows and forwarded through equal-cost paths [Lin, Chen, Chang et al. (2014)]. And
the switches are gathering the information during the process. When elephant flow

An OpenFlow-based Load Balancing Strategy in SDN 389

demand is detected, controller will compute good path and instruct switches to redirect
elephant flows. Based on periodically polling switches during the detect time, too much
statistics of flows may cause OpenFlow channel congestions. ESHSP (Elephant Sensitive
Hierarchical Statistics Pulling) detects elephant flows by combining aggregation and
individual statistical messages based on OpenFlow protocol. ESHSP sent query messages
to switches with aggregate statistical request, when the flow size reaches the threshold, it
then divided the aggregated flows into smaller ones by changing the IP range [Dias,
Esteves, Granville et al. (2017)]. The iteration stops when elephant flows are detected.
The core part is elephant store and range split, which avoid counting known elephant
flows and enhance new elephant flow detection. ESHSP reduces bandwidth consumption
and process time, but it fails to offer further actions. The ignorance of mice flows in also
an inevitable defect.
Mahout breaks the limitation of elephant flow detection by shifting the detection burden
to end hosts. Mahout adds a shim layer to every end host for flow monitoring. When
elephant flow detected, the flow packet will be marked, and switches will forward the
marked packet to controller for best transfer paths, while mice flows will be managed in a
load-unaware way. Though this method can reduce overhead for controllers and enhance
feasibility of elephant flows, it needs modifications for every end hosts which kills
mahout for further promotion. DevoFlow is a flow management solution that
differentiates between mice flows and elephant flows and report only elephant flows to
the DevoFlow controller. In this way, the controller can only have the visibility of
elephant flows [Cui, Zhang, Cai et al. (2018)]. The detail of the detection is to monitor
elephant flows at the edge switch by setting a threshold for transfer bytes. It keeps flow in
data plane at their best effort and concentrate more on elephant flows while leaving mice
flows for randomly selected microflow path. This static threshold way is more subjective
not precise when making detection decision.
NetFlow and sFlow are very typical sampling flow detection scheme, which devoted to
achieving fine-grained flow measurement by conducting packet sampling. The basic idea
is to mandate switch capture packet at a certain rate. Once the packet is captured, the
header will be forwarded to controller with an extra metadata containing necessary
information such as capture timestamp, sampling frequency, port number etc. This
information may help deduce the probabilistic result of flow information. Estan and
Varghese focus on elephant flows by using random samplings. It offers two algorithms
by conducting multistage filter, sample and hold. In the final step, it keeps a certain
memory in switches to contain flow statistics. However, it is not suitable for network
with high volume traffic, because it can’t afford the memory usage with SRAM.
OpenSample is a low-latency, sampling-based traffic measurement platform, devoted to
accelerating control loops for software-defined network. It relies on TCP sequence
numbers of sampled packets and divide the difference by time to get the result. It is near
real-time for both workload and individual flows. After a flow is classified as elephant, it
is rerouted to another path using a global first fit algorithm [Tan, Liu, Xie et al. (2018)].
Comparing with polling-based solutions, it is far more efficient, however it sacrifices the
precision of flow detection and more suitable for micro flows through aggregation.
In summary, current proposed solutions for traffic monitoring in the context of datacenter

390 CMC, vol.62, no.1, pp.385-398, 2020

networks have their advantages in promoting bandwidth usage [Liu, Guo, Cai et al.
(2019)], alleviating network congestion and confining result error rate. However, their
limitations are obvious, which guarantee performance of one aspect by sacrificing the
other (shown in Tab. 1). Inspired by the above approach and take those pros and cons into
consideration, we propose an intelligent traffic monitoring technology with OpenFlow-
based load balancing strategy in order to solve the aforementioned problems effectively.
We separate different zones for elephant flows and mice flows, treating them with
customized strategy, as well as a suitable flow classification method to facilitate the
further flow monitoring and guarantee the correctness and effectiveness.

Table 1: Summary of four flow detection types
Methods Tech Names Shortcomings Overhead Accuracy
Proactive
pulling Hedera, ESHSP High bandwidth consumption high

and statistics overhead High High

Reactive
detection FlowSense Not suitable for time sensitive

applications Low Low

Host-based
detection Mahout, DevoFlow Need modification in edge devices Low Medium

Sampling NetFlow, sFlow,
OpenSample Costs in proportion to accuracy Medium Medium

3 Problem formulation and implementation
In this section, we define the general running datacenter network model and formulate the
inevitable load balancing problem and introduce our solutions.

3.1 Problem formulation
A datacenter network topology is commonly represented by a connected graph G= (E, V),
V is the set of nodes and E is the set of direct links between nodes. Usually, a path is
denoted by finite distinct nodes, 𝑝𝑝 = (𝑣𝑣0,𝑣𝑣1⋯𝑣𝑣𝑛𝑛), 𝑠𝑠. 𝑡𝑡.∀𝑖𝑖 ∈ [0,𝑛𝑛], (𝑣𝑣𝑖𝑖, 𝑣𝑣𝑖𝑖+1) ∈ 𝐸𝐸. This
routing path is decided by OSPF in a traditional way. Moreover, in datacenter network,
it’s a huge waste for other links in idle state and the mainstream path may suffer from
data torrent, which accelerate the improvement of multi-path routing technologies. Based
on ECMP, 𝑃𝑃𝑖𝑖,𝑗𝑗 represents the set of equal cost paths between source node i and
destination node j, and ∀𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖,𝑗𝑗, 𝑒𝑒 ∈ 𝐸𝐸,∃𝑘𝑘 ∈ (0,𝐾𝐾),𝑘𝑘 = 𝐻𝐻𝐻𝐻𝑠𝑠ℎ(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)%𝜃𝜃, which
K is the number of p in 𝑃𝑃𝑖𝑖,𝑗𝑗, k is the selected number of p and is the selection factor for
flowIDs, due to the equal weight of every path. However, ECMP only function well
when network flow sizes are similar and may cause capacity constraints. The following
definitions rigorously illustrate the problem.

Theorem 1. Given a network topology G= (E, V) and ∀𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖,𝑗𝑗 , the available
capacity 𝐶𝐶𝑝𝑝 of path p is the minimum 𝑐𝑐𝑒𝑒 of all links in the path. 𝐶𝐶𝑝𝑝 = 𝑀𝑀𝑖𝑖𝑛𝑛 𝑐𝑐𝑒𝑒 ,∀𝑒𝑒 ∈ 𝐸𝐸.

Theorem 2. Given a network topology G= (E, V) and current link flow bandwidth 𝑓𝑓𝑒𝑒, the
link congestion factor is denoted by 𝑓𝑓𝑒𝑒/𝑐𝑐𝑒𝑒.

An OpenFlow-based Load Balancing Strategy in SDN 391

Theorem 3. Given a network topology G= (E, V), a flow capacity 𝑓𝑓𝑝𝑝 and the appear time
𝜎𝜎 of link e among all flow paths. Thus, the capacity constraint is ∀𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖,𝑗𝑗 , 𝑒𝑒 ∈
𝐸𝐸,∑𝜎𝜎

1 𝑓𝑓𝑝𝑝 ≈ 𝐶𝐶𝑝𝑝 < 𝑐𝑐𝑒𝑒.

It is strongly believed that hash collision plays a key role for network congestion which
some links of the path reaches the maximum bandwidth while others not and result in low
bandwidth utilization (shown in Fig. 1). In case (a), 𝑆𝑆5 and 𝑆𝑆3 run into downstream link
congestion and in case (b), 𝑆𝑆1 and 𝑆𝑆5 run into upstream link congestion.

392 CMC, vol.62, no.1, pp.385-398, 2020

Figure 1: Problem formulation

3.2 Architecture design
In this section, we will first give the ideal result we want to achieve and then analyze the
detail implementation of our architecture and solutions. As aforementioned problems
illustrated before, we’d like to vividly share our opinion through Fig. 2. The flows are
scheduled properly and can effectively avoid network congestion.

Figure 2: Expected result for load balancing implementation

An OpenFlow-based Load Balancing Strategy in SDN 393

We notice the defect and propose an OpenFlow-based load balancing strategy to mitigate the
problems and enhance traffic monitoring effect. There are two benefits that we can achieve.
The first is intellectual flow detection for elephant and mice flows. The second is
elephant/mice zone separation and distinct flow scheduling for different flow types. As we
mentioned before, the root of problem is flow collision between elephant and mice flows.
We need to adjust measures to specific flow conditions so as to avoid bandwidth congestions
based on flow classification. The whole procedure can be divided into three stages.
Stage one-elephant/mice one separation. The first stage is conducting the initialization
job. The objective is to reserve one or two idle paths in advance for elephant flow
placement, with which these paths requires minimum hops and minimum workloads.
This work should be done directly after controller and switches finished OpenFlow
channel built. At the Controller side, it will compute the set of minimal cost paths, based
on the minimum number of hops between source and destination nodes and minimum
link congestion factors. Once the idle path is reserved, the following elephant flows will
go through smoothly without any retardation when flow rules are inserted to switches.
To be specific, once a flow is tagged, the flow path will be fixed until the flow is expired
or paths condition in elephant zone need a rearrangement.
Stage two-elephant flow detection. As we do not know any information of flows
initially, we coarsely aggregate the ingress flows and forward them by using ECMP. So,
when a new flow starts, the default switch action is to encapsulate it in a Packet In
message to forward it based on a hash on the 5 tuples along the minimal-weight path.
Based on OpenFlow protocol, flow entries contain several important counters for flow
statistics, we focus on Received Packets, Received Bytes, Duration (msec) from Per Flow
Counter and Per Queue Counter. Once the flow grows past a threshold rate, switches will
actively report it to Control Logic in controller, and the flow will be tagged and
redirected to elephant zone, by which the preset flow rules will be installed to
corresponding switches in elephant zone (shown in Fig. 3).

Figure 3: Elephant flow detection

As for the preset threshold, used as a core flow judgment, based on current research about
90% of bytes in datacenters are generated by elephant flows and their duration time is
much longer than mice flows, the controller will actively query flow statistics from
switches and believe 100 Mbps of a flow throughput within any time interval (10% of
each host 1 GbE per link) is appropriate in our implementation.

394 CMC, vol.62, no.1, pp.385-398, 2020

Stage three-load balancing. After the second stage, all tagged flows will traverse
through elephant zone. However, the remaining flows also need a rearrangement
schedule, according to the large amount of flow population. At the controller site, the
path with lowest bandwidth occupation and minimum hops will be the potential selection.
To take full advantages of datacenter network bandwidth utilization and guarantee
network performance, the mice zone will generate the set of paths with corresponding
weight respectively. Here, we propose a method of path weight 𝑊𝑊𝑝𝑝 (given in Definition 4)
calculation for path condition judgement.
Theorem 4. Given a network topology G= (E, V) and ∀𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖,𝑗𝑗 , 𝑒𝑒 ∈ 𝐸𝐸, the weight of a
link 𝑓𝑓𝑒𝑒 relates to link congestion factor as described in definition 2. So 𝑓𝑓𝑒𝑒 = 1 − 𝑓𝑓𝑒𝑒/𝑐𝑐𝑒𝑒.
The weight of a path 𝑊𝑊𝑝𝑝 = (∑𝐻𝐻1 𝑓𝑓𝑒𝑒)/𝐾𝐾. To be specific, H is the number of hops, K is the
number of p in 𝑃𝑃𝑖𝑖,𝑗𝑗 and ∑𝐾𝐾1 𝑊𝑊𝑝𝑝 = 1.
Once the weight is computed, the path weight is updated to the Action Set module and
stored in a special bucket group. And based on its short-lived feature, all mice flow with
scheduled path will persist until the flow entry reaches a hard/soft timeout, which means
the flow expired. To this end, flows with different tags will run in separate zones and
perfectly avoid flow collision and network congestion (Shown in Fig. 4).

Figure 4: Load balancing strategy

4 Experimental evaluation
This section describes the experimental scenarios, presents the results and performs result
analysis. The aim of this section is to validate the benefit of our strategy in terms of
routing elephant and mice flows to their own zones according the generated flow rules so
as to enable load balancing. We begin by introducing the experimental scenario and the
methodology used in the tests. Following that, we present and discuss the main results
achieved so far.

4.1 Scenario
We emulate the topology (shown in Fig. 2) by using the Mininet emulator running in a
virtual machine (VM), which is hosted in a Core i5-6360 MacBook Pro 13 Laptop with 8
GB RAM through VMfusion. OpenVSwitch (OVS) is used for it perfectly supports every
version of OpenFlow implementation. The POX Controller is hosted in the same VM
with the controller IP address is set 127.0.0.1 and port number 6633 for communication

An OpenFlow-based Load Balancing Strategy in SDN 395

convenience. In this scenario, the fabric consists of 6 OpenFlow-based OVS and 6 hosts
generating traffic inside each one. Each switch is a 16-port 1 Gbps switch, and the
network has full bisection bandwidth.
To be specific, we prefer empirical workloads close to traffic condition in reality. We
consider the traffic follows Poisson distribution from a datacenter mostly running web
search, which is heavy-tailed with a mix of mice and elephant flows. In this workload, we
approximate 80% of the bytes are from 20% of the flows whose throughput is larger than
100 Mbps, each flow is composed of a sequence of packets which share the same 5-tuple
(Source Port, Destination Port, Source IP, Destination IP, Protocol Type). The workload
increases gradually to evaluate our load-balancing performance in different conditions. We
also implemented the ECMP routing algorithm for performance comparison with ours.

4.2 Results and discussion
Our goal is to locate the problem of network congestion and compare the network
performance, here we choose latency and throughput metrics used as reflection of
network congestion degree. As we increase the workload by adjusting the proportion of
elephant flows in network traffic, ECMP can control latency to some extend and achieve
relative high saturation point, but when elephant flow proportion goes higher, ECMP will
run into serious flow collision and latency rises. Latency still rises in our Load-balancing
strategy as elephant flows account for much of the whole network traffic, but it controls
the latency well and performs better than ECMP (As shown in Fig. 5).

Figure 5: Network latency comparison between ECMP and our load balancing strategy

Also, we still need an intuitive view of bandwidth utilization performance under different
traffic conditions (shown in Fig. 6). In first stage, utilization increases near linearly for
both routing strategies. As traffic load keeps increasing, ECMP takes the lead of reaching
the bottleneck, network performance degrades and bandwidth utilization drops, while our
load-balancing strategy meets the bottleneck later than ECMP and the maximum value is
higher than ECMP. To be more specific, when workload starts from zero and reaches the
maximum, for ECMP the link utilization rate can reach 73% at most and averages to 62%,
for our load-balancing strategy, the maximum utilization rate is near 90% and the average

396 CMC, vol.62, no.1, pp.385-398, 2020

utilization can stabilize in 78%. The result shows that our load-balancing strategy has a
better performance than ECMP in dealing with network traffic with diversity.

Figure 6: Utilization performance comparison between ECMP and our load balancing strategy

5 Conclusion
In this paper, we proposed the design and evaluation of an OpenFlow-based load-
balancing strategy that logically split elephant zone and mice zone for different flow
types. This solution naturally shed elephant traffic load on elephant zone with several
pre-defined idle paths while the rest is confined in mice zone with minimal weighted path,
which is calculated in accordance with current load conditions. We implement the
prototype in Mininet testbed with POX controller and verify the feasibility of our load-
balancing strategy when dealing with flow confliction and network degradation. The
simulation shows that our solution can effectively alleviate network congestion and
improve network utilization in comparison with ECMP.

Acknowledgement: This work was supported by the CETC Joint Advanced Research
Foundation (Grant Nos. 6141B08010102, 6141B08080101) and the National Science and
Technology Major Project for IND (investigational new drug) (Project No.
2018ZX09201014).

References
Al-Fares, M.; Radhakrishnan, S.; Raghavan, B.; Huang, N.; Vahdat, A. (2010):
Hedera: dynamic flow scheduling for data center networks. Proceedings of USENIX
Conference on Networked Systems Design and Implementation. USENIX Association,
Berkeley, CA, USA.
Akyildiz, I.; Lee, A.; Wang, P.; Luo, M.; Chou, W. (2016): Research challenges for
traffic engineering in software defined networks. IEEE Network, vol. 30, no. 3, pp. 52-58.
Basat, R. B.; Einziger, G.; Friedman, R.; Kassner, Y. (2017): Optimal elephant flow
detection. IEEE International Conference on Computer Communications, Atlanta, GA,

An OpenFlow-based Load Balancing Strategy in SDN 397

USA, pp. 1-9.
Brownlee, N.; Claffy, K. C. (2002): Understanding internet traffic streams: dragonflies
and tortoises. IEEE Communications Magazine, vol. 40, no. 10, pp. 110-117.
Cai, Z. P.; Wang, Z. J.; Zheng, K.; Cao, J. N. (2013): A distributed TCAM
coprocessor architecture for integrated longest prefix matching, policy filtering, and
content filtering. IEEE Transactions on Computers, vol. 62, no. 3, pp. 417-427.
Cui, J. H.; Zhang, Y. Y.; Cai, Z. P.; Liu, A. F.; Li, Y. Y. (2018): Securing display path
for security-sensitive applications on mobile devices. Computers, Materials & Continua,
vol. 55, no. 1, pp. 17-35.
Curtis, A. R.; Kim, W.; Yalagandula, P. (2011): Mahout: low-overhead datacenter
traffic management using end-host-based elephant detection. International Conference on
Computer Communications, vol. 11, pp. 1629-1637.
Dias, K. L. A.; Esteves, R. P.; Granville, L. Z.; Tarouco, L. M. R. (2017): Mitigating
elephant flows in SDN-based IXP networks. IEEE Symposium on Computers and
Communications.
Farrington, N.; Porter, G.; Radhakrishnan, S.; Bazzaz, H. H.; Subramanya, V. et al.
(2011). Helios: a hybrid electrical/optical switch architecture for modular data centers.
ACM International Conference on the Applications, Technologies, Architectures, and
Protocols for Computer Communication, vol. 41, no. 4, pp. 339-350.
Lan, K.; Heidemann, J. (2003): On the correlation of internet flow characteristics.
Technical Report ISI-TR-574, USC/ISI.
Lin, C. Y.; Chen, C.; Chang, J. W.; Chu, Y. H. (2014): Elephant flow detection in
datacenters using OpenFlow-based hierarchical statistics pulling. IEEE Global
Communications Conference.
Liu, S. H.; Cai, Z. P.; Xu, H.; Xu, M. (2015): Towards security-aware virtual network
embedding. Computer Networks, vol. 91, no. 4, pp. 151-163.
Liu, F.; Guo, Y. T.; Cai, Z. P.; Xiao, N.; Zhao, Z. M. et al. (2019): Edge-enabled
disaster rescue: a case study of searching for missing people. ACM Transactions on
Intelligent Systems and Technology, vol. 10, no. 5, pp. 36-49.
Liu, Y. X; Liu, A. F; Liu, X.; Huang, X. D (2018): A statistical approach to participant
selection in location-based social networks for offline event marketing. Information
Sciences, vol. 480, pp. 90-108.
Liu, F.; Tang, G. M.; Li, Y. H. Z.; Cai, Z. P.; Zhang, X. Z. et al. (2019): A survey on
edge computing systems and tools. Proceedings of the IEEE, vol. 107, no. 8, pp. 1-26.
Marco, C.; Kindler, G.; Schapira, M. (2017): Traffic engineering with equal-cost-
multipath: an algorithmic perspective. IEEE/ACM Transactions on Networking, vol. 25,
no. 2, pp. 779-792.
Ramona, T.; Katrinis, K.; Muntean, G. M. (2017): OFLoad: an OpenFlow-based
dynamic load balancing strategy for datacenter networks. IEEE Transactions on Network
and Service Management, vol. 14, no. 4, pp. 792-803.
Tan, J. W; Liu, W.; Wang, T.; Xiong, N. N; Song, H. B. et al. (2019): An adaptive

398 CMC, vol.62, no.1, pp.385-398, 2020

collection acheme based matrix completion for data gathering in energy-harvesting
wireless sensor network. IEEE Access, vol. 7, pp. 6703-6723.
Tan, J.; Liu, W.; Xie, M.; Song, H.; Liu, A. et al. (2019): A low redundancy data
collection scheme to maximize lifetime using matrix completion technique. EURASIP
Journal on Wireless Communications and Networking, vol. 2019, no. 1, pp. 5-13.
Tang, F. L.; Li, L.; Barolli, L.; Tang, C. (2017): An efficient sampling and
classification approach for flow detection in SDN-based big data centers. IEEE
International Conference on Advanced Information Networking and Applications.
Teng, H. J; Liu, Y. X; Liu, A. F; Xiong, N. N.; Cai, Z. P. et al. (2018): A novel code
data dissemination scheme for internet of things through mobile vehicle of smart cities.
Future Generation Computer Systems, vol. 94, pp. 351-367.
Vijay, M.; Vishnoi, A.; Bidkar, S. (2013): Living on the edge: monitoring network
flows at the edge in cloud data centers. International Conference on Communication
Systems and Networks.
Wang, H.; Wang, Y.; Yan, Y. J. (2016): A distributed network traffic monitoring
platform based on SDN. Electric Power Information and Communication Technology,
vol. 14, no. 10, pp. 22-27.
Wu, W. F.; Chen, Y. Z.; Durairajan, R.; Kim, D. C.; Anand, A. et al. (2013):
Adaptive data transmission in the cloud. IEEE/ACM International Symposium on Quality
of Service.
Xu, H.; Li, B. C. (2014): TinyFlow: breaking elephants down into mice in data center
networks. IEEE International Workshop on Local & Metropolitan Area Networks.

	An OpenFlow-Based Load Balancing Strategy in SDN
	Xiaojun Shi0F , Yangyang Li2, *, Haiyong Xie2, 3, Tengfei Yang2, Linchao Zhang2, Panyu Liu4, Heng Zhang4 and Zhiyao Liang5

	1 Introduction
	2 Background and related works
	2.1 OpenFlow
	2.2 SDN-based load balancing technologies
	2.3 Flow detection solutions

	3 Problem formulation and implementation
	4 Experimental evaluation
	4.1 Scenario
	4.2 Results and discussion

	5 Conclusion
	Acknowledgement: This work was supported by the CETC Joint Advanced Research Foundation (Grant Nos. 6141B08010102, 6141B08080101) and the National Science and Technology Major Project for IND (investigational new drug) (Project No. 2018ZX09201014).
	References

