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Abstract: In today’s datacenter network, the quantity growth and complexity increment of 
traffic is unprecedented, which brings not only the booming of network development, but 
also the problem of network performance degradation, such as more chance of network 
congestion and serious load imbalance. Due to the dynamically changing traffic patterns, 
the state-of the-art approaches that do this all require forklift changes to data center 
networking gear. The root of problem is lack of distinct strategies for elephant and mice 
flows. Under this condition, it is essential to enforce accurate elephant flow detection and 
come up with a novel load balancing solution to alleviate the network congestion and 
achieve high bandwidth utilization. This paper proposed an OpenFlow-based load 
balancing strategy for datacenter networks that accurately detect elephant flows and enforce 
distinct routing schemes with different flow types so as to achieve high usage of network 
capacity. The prototype implemented in Mininet testbed with POX controller and verify the 
feasibility of our load-balancing strategy when dealing with flow confliction and network 
degradation. The results show the proposed strategy can adequately generate flow rules and 
significantly enhance the performance of the bandwidth usage compared against other 
solutions from the literature in terms of load balancing. 
 
Keywords: Load balancing, OpenFlow, data center network, elephant flow, multi-path 
routing. 

1 Introduction 
The current networks are facing tremendous traffic growth with so many new types of 
network applications emerge rapidly, which turned it to a mega-datacenter era. However, 
the big data situation is degrading application performance due to the dynamically 
changing traffic patterns. This calls for more efficient and effective network management 
technologies, especially in traffic monitoring aspect [Al-Fares, Radhakrishnan, Raghavan 
et al. (2010)]. As SDN (Software-defined networking), a novel network structure, 
decouples the control plane and data plane and offers a flexible and programmable idea 
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for network operators, it enables dynamic, fine-granularity and network-wide traffic 
scheduling. The new emerging network applications (data center, traffic engineering and 
etc.) take advantages of it, which significantly increases the importance of SDN-based 
traffic monitoring. 
According to some authoritative DCN traffic researches, flows in DCN are classified as 
elephant flows and mice flows. The former is long-lived and the latter is short-lived. To be 
specific, the elephant flow could be video data such as YouTube streams and the mice 
flows could represent query traffic like Google search. Another report published by Cisco 
shows that video-based traffic will reach 80%-90% of the overall datacenter traffic in 2019 
but only account for 10% of the whole flow population [Basat, Einziger, Friedman et al. 
(2017)]. The mice flows tend to be more latency-intensive and hard to manage due to the 
dramatic increment in quantity. Moreover, in order to process tremendous data aggregated 
from thousands of machines in DCN, multi-rooted trees with equal-cost path is needed 
based on port densities limitation. This might cause big problems with elephant flows and 
mice flows are treated equal. So, elephant flow detection and load balancing technologies 
are very heated topics in academic field [Liu, Liu, Liu et al. (2018)]. And it is important to 
distinguish elephant flows from mice flow and treat them with different manner. 
The mainstream way dedicated on handling elephant flows properly and left mice flows 
for load-unaware network management methods. Existing flow detection methods can be 
concluded into four types, which are host-based detection, proactive query detection, 
passive report detection and sampling. Mahout, a host-based detection method, breaks the 
limitation of round procedure between controller and switches and create a shim layer on 
each end-host while monitoring flows, but it needs additional modification on hardware 
[Wu, Chen, Durairajan et al. (2013)]. Proactive query methods detect elephant flows by 
periodically querying statistics from switches. This could guarantee correctness, but to 
cause heavy monitoring costs. Passive report detection upload flow information when 
reaching the threshold. Considering the complexity and dynamic of network, it can cause 
severe detection error due to the static threshold [Akyildiz, Lee, Wang et al. (2016)]. 
Sampling has a long history in traffic monitoring, but the intrinsic defect of inaccuracy 
and useless samples always exists. Equally, ignoring mice flows through load-unaware 
network management methods is far from effective and efficient. Mice flow is abrupt and 
hard to detect in the first place, once encounters busy network, load-unaware method may 
induce huge flow detection error. To conclude, the aforementioned monitoring methods 
have the following problems: high bandwidth occupation, large memory and computation 
overhead, low detecting efficiency, unbearable error confine and etc. 
According to these problems, we are motivated to propose an intelligent traffic 
monitoring method with OpenFlow-based load balancing strategy, aiming at minimizing 
the bandwidth cost, memory overhead and error confinement. To achieve the goal, we 
decided to split it into two-stage. First stage, we start the initiation actions by pre-defining 
a small amount of high bandwidth routing paths under the confinement of minimal hops. 
This is for elephant flow monitoring when a flow is tagged elephant flow, which we call 
elephant zone. The rest will be called mice zone. We calculated weight for every 
available path and arrange the minimal workload path for flows. The weighted route path 
is based on current workload of switches which can be represented by numbers of 
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installed flow entries. The higher number of flow entries a switch contained, the lower 
weight it will get. The second stage is load balancing procedure. We design a persistent 
classification algorithm to distinguish elephant flows from mice flows in a proactive way. 
Once a flow is tagged on elephant flow, it will be removed from mice zone to elephant 
zone and redirected to pre-defined path for further monitoring actions. The mice flow will 
be routed under the consideration of shedding workload evenly to every switch in the 
network. In this way, we can maximize bandwidth usage, avoid network congestion and 
improve traffic monitoring efficiency and accuracy at the same time. An experimental 
prototype is constructed to verify the use of OpenFlow-based load balancing strategy and 
evaluate the benefits under the comparison of correctness, effectiveness, bandwidth 
consumption with other solutions [Liu, Cai, Xu et al. (2015)]. The main contributions of 
this paper are summarized as follows: 
(1) We confine elephant flows with several fixed route paths under the requirement of 
minimal switch occupations due to its long-lived and less changeable characteristics 
[Curtis, Andrew, Kim et al. (2011)]. In this way, we expect to avoid network congestions 
and promote further elephant flow monitoring. 
(2) We design weighted route path calculation algorithm for mice flows. This is capable 
of shedding monitoring workload evenly to all switches, maximizing the use of 
bandwidth and alleviating the network congestion [Vijay, Vishnoi and Bidkar (2013)]. To 
be specific, the heavy loaded paths will be allocated a relatively low weight so that fewer 
traffic will go through these loaded paths. 
(3) We fulfill flow detection function by proposing a persistent classification method. 
Considering the importance of flow detection correctness, we actively poll switches for 
flow statistics to detect its features and set tags on it with high detection accuracy and 
efficiency [Marco, Kindler and Schapira (2017)]. 
The rest of the paper is organized as follows: Section 2 discusses the background and 
related works and Section 3 formally states the problems and introduce implementation 
details. Section 4 covers the experimental evaluation of our load-balancing solution and 
analyze the results. Finally, we conclude this paper in Section 5. 

2 Background and related works 
2.1 OpenFlow 
OpenFlow now becomes the standard communication protocol in SDN network. The basic 
idea is to deploy network applications without designing new devices, in other words, 
hardware independency. It designs for devices with inbuilt TCAM storage so that 
OpenFlow protocol can enable controller to monitor the network and make rules for 
devices in data plane. In v1.3, the format has changed into pipeline of flow tables, which 
contains information about transfer actions and other records such as execution times. The 
minor element will be flow entries, these are instructions for every flow so that controller 
could conduct fine-granularity management of network [Tang, Li, Barolli et al. (2017)]. 
The basic operations between controller and switches are as follows. Once the switch 
launched, the connection will be established to controller, which is called OpenFlow 
channel. There are proactive and reactive modes. It depends on who takes the first move. 
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The controller pre-installed flow entries in switches is called proactive mode. It can 
happen at the whole functioning time and it doesn’t need to send flow entries directly 
after the OpenFlow channel established. The reactive mode is opposite [Ramon, Katrinis 
and Muntean (2017)]. Once the OpenFlow switches receive a new packet and no flow 
entries match it, the switch will encapsulate it in Packet_In message and forwarded it to 
the controller over OpenFlow channel. The controller responds with a flow table and the 
original packet, then the switches finish the rest execution as instructed [Wang, Wang, 
and Yan (2016)]. Also, if a flow action set contains an option of forwarding to controller, 
the flow packet will also be sent to controller, which we call it specialized reactive action. 

2.2 SDN-based load balancing technologies 
Datacenter network is facing high workload for most times, which relies on multipath 
planning between pairs of end hosts to share burden among links and avoid network 
congestions as much as possible [Lan and Heidemann (2003)]. In this end, load balancing 
is needed for network traffic management. The most commonly used routing algorithm is 
OSPF (Open Shortest Path First), which pre-set the shortest path between node pairs and 
all destined traffic will go through soon afterwards. However, OSPF doesn’t provide load 
balancing strategy over multipath situation, which may cause insufficient bandwidth 
usage and network congestion [Xu and Li (2014)]. In the meantime, flow monitoring 
error can be magnified due to poor bandwidth condition. 
ECMP (Equal-Cost Multi-Path) is a novel way to compensate the defect of bandwidth 
waste. It adopts the idea of OSPF to pre-calculate shortest routing path but making it 
multiple for further traffic distribution [Cai, Wang, Zheng et al. (2013)]. All road is 
statically decided without a real-time response from the network, which cannot guarantee 
the effectiveness of load balancing [Nathan, Porter, Sivasankar et al. (2010)]. What’s more, 
ECMP doesn’t differentiate between elephant flows and mice flows, and fail to fully utilize 
bandwidth. TinyFlow fixed the problem by breaking elephant flows into a large number of 
mice flows, flexibly arrange these flows across the network. TinyFlow presents a per-mice 
routing approach and automatically change the traffic characteristics, which alleviates head-
of-line block caused by egress buffer full of elephant flow packets [Brownlee and Claffy 
(2002)]. But breaking and aggregating elephant flows may create a large number of mice 
flows and causes unexpected error based on disorder and other situations happened in the 
network, and it is not a good way to have a good visual of the network. 

2.3 Flow detection solutions 
Many literatures have addressed the importance of flow detection, especially on network 
congestion occasion. It may cause much more trouble for flow monitoring and the 
elephant flows are the chief culprit. As mentioned before, there are many solutions for 
elephant flow detection. In this section, we are giving a brief introduction for up-to-date 
flow detection technologies and their features. 
Hedera is an OpenFlow-based flow management solution which detects elephant flows 
by per-flow statistics query. The idea is simple. In first step, all flows are recognized as 
mice flows and forwarded through equal-cost paths [Lin, Chen, Chang et al. (2014)]. And 
the switches are gathering the information during the process. When elephant flow 
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demand is detected, controller will compute good path and instruct switches to redirect 
elephant flows. Based on periodically polling switches during the detect time, too much 
statistics of flows may cause OpenFlow channel congestions. ESHSP (Elephant Sensitive 
Hierarchical Statistics Pulling) detects elephant flows by combining aggregation and 
individual statistical messages based on OpenFlow protocol. ESHSP sent query messages 
to switches with aggregate statistical request, when the flow size reaches the threshold, it 
then divided the aggregated flows into smaller ones by changing the IP range [Dias, 
Esteves, Granville et al. (2017)]. The iteration stops when elephant flows are detected. 
The core part is elephant store and range split, which avoid counting known elephant 
flows and enhance new elephant flow detection. ESHSP reduces bandwidth consumption 
and process time, but it fails to offer further actions. The ignorance of mice flows in also 
an inevitable defect. 
Mahout breaks the limitation of elephant flow detection by shifting the detection burden 
to end hosts. Mahout adds a shim layer to every end host for flow monitoring. When 
elephant flow detected, the flow packet will be marked, and switches will forward the 
marked packet to controller for best transfer paths, while mice flows will be managed in a 
load-unaware way. Though this method can reduce overhead for controllers and enhance 
feasibility of elephant flows, it needs modifications for every end hosts which kills 
mahout for further promotion. DevoFlow is a flow management solution that 
differentiates between mice flows and elephant flows and report only elephant flows to 
the DevoFlow controller. In this way, the controller can only have the visibility of 
elephant flows [Cui, Zhang, Cai et al. (2018)]. The detail of the detection is to monitor 
elephant flows at the edge switch by setting a threshold for transfer bytes. It keeps flow in 
data plane at their best effort and concentrate more on elephant flows while leaving mice 
flows for randomly selected microflow path. This static threshold way is more subjective 
not precise when making detection decision. 
NetFlow and sFlow are very typical sampling flow detection scheme, which devoted to 
achieving fine-grained flow measurement by conducting packet sampling. The basic idea 
is to mandate switch capture packet at a certain rate. Once the packet is captured, the 
header will be forwarded to controller with an extra metadata containing necessary 
information such as capture timestamp, sampling frequency, port number etc. This 
information may help deduce the probabilistic result of flow information. Estan and 
Varghese focus on elephant flows by using random samplings. It offers two algorithms 
by conducting multistage filter, sample and hold. In the final step, it keeps a certain 
memory in switches to contain flow statistics. However, it is not suitable for network 
with high volume traffic, because it can’t afford the memory usage with SRAM. 
OpenSample is a low-latency, sampling-based traffic measurement platform, devoted to 
accelerating control loops for software-defined network. It relies on TCP sequence 
numbers of sampled packets and divide the difference by time to get the result. It is near 
real-time for both workload and individual flows. After a flow is classified as elephant, it 
is rerouted to another path using a global first fit algorithm [Tan, Liu, Xie et al. (2018)]. 
Comparing with polling-based solutions, it is far more efficient, however it sacrifices the 
precision of flow detection and more suitable for micro flows through aggregation. 
In summary, current proposed solutions for traffic monitoring in the context of datacenter 
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networks have their advantages in promoting bandwidth usage [Liu, Guo, Cai et al. 
(2019)], alleviating network congestion and confining result error rate. However, their 
limitations are obvious, which guarantee performance of one aspect by sacrificing the 
other (shown in Tab. 1). Inspired by the above approach and take those pros and cons into 
consideration, we propose an intelligent traffic monitoring technology with OpenFlow-
based load balancing strategy in order to solve the aforementioned problems effectively. 
We separate different zones for elephant flows and mice flows, treating them with 
customized strategy, as well as a suitable flow classification method to facilitate the 
further flow monitoring and guarantee the correctness and effectiveness. 

Table 1: Summary of four flow detection types 
Methods Tech Names Shortcomings Overhead Accuracy 
Proactive 
pulling Hedera, ESHSP High bandwidth consumption high 

and statistics overhead High High 

Reactive 
detection FlowSense Not suitable for time sensitive 

applications Low Low 

Host-based 
detection Mahout, DevoFlow Need modification in edge devices Low Medium 

Sampling NetFlow, sFlow, 
OpenSample Costs in proportion to accuracy Medium Medium 

3 Problem formulation and implementation 
In this section, we define the general running datacenter network model and formulate the 
inevitable load balancing problem and introduce our solutions. 

3.1 Problem formulation 
A datacenter network topology is commonly represented by a connected graph G= (E, V), 
V is the set of nodes and E is the set of direct links between nodes. Usually, a path is 
denoted by finite distinct nodes, 𝑝𝑝 = (𝑣𝑣0,𝑣𝑣1⋯𝑣𝑣𝑛𝑛), 𝑠𝑠. 𝑡𝑡.∀𝑖𝑖 ∈ [0,𝑛𝑛], (𝑣𝑣𝑖𝑖, 𝑣𝑣𝑖𝑖+1)  ∈ 𝐸𝐸. This 
routing path is decided by OSPF in a traditional way. Moreover, in datacenter network, 
it’s a huge waste for other links in idle state and the mainstream path may suffer from 
data torrent, which accelerate the improvement of multi-path routing technologies. Based 
on ECMP, 𝑃𝑃𝑖𝑖,𝑗𝑗  represents the set of equal cost paths between source node i and 
destination node j, and ∀𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖,𝑗𝑗, 𝑒𝑒 ∈ 𝐸𝐸,∃𝑘𝑘 ∈ (0,𝐾𝐾),𝑘𝑘 = 𝐻𝐻𝐻𝐻𝑠𝑠ℎ(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)%𝜃𝜃, which 
K is the number of p in 𝑃𝑃𝑖𝑖,𝑗𝑗, k is the selected number of p and is the selection factor for 
flowIDs, due to the equal weight of every path. However, ECMP only function well 
when network flow sizes are similar and may cause capacity constraints. The following 
definitions rigorously illustrate the problem. 

Theorem 1. Given a network topology G= (E, V) and  ∀𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖,𝑗𝑗 , the available 
capacity 𝐶𝐶𝑝𝑝 of path p is the minimum 𝑐𝑐𝑒𝑒 of all links in the path. 𝐶𝐶𝑝𝑝 = 𝑀𝑀𝑖𝑖𝑛𝑛 𝑐𝑐𝑒𝑒 ,∀𝑒𝑒 ∈ 𝐸𝐸.    

Theorem 2. Given a network topology G= (E, V) and current link flow bandwidth 𝑓𝑓𝑒𝑒, the 
link congestion factor is denoted by 𝑓𝑓𝑒𝑒/𝑐𝑐𝑒𝑒.    
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Theorem 3. Given a network topology G= (E, V), a flow capacity 𝑓𝑓𝑝𝑝 and the appear time 
𝜎𝜎  of link e among all flow paths. Thus, the capacity constraint is ∀𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖,𝑗𝑗 , 𝑒𝑒 ∈
𝐸𝐸,∑𝜎𝜎

1 𝑓𝑓𝑝𝑝 ≈ 𝐶𝐶𝑝𝑝 < 𝑐𝑐𝑒𝑒.  

It is strongly believed that hash collision plays a key role for network congestion which 
some links of the path reaches the maximum bandwidth while others not and result in low 
bandwidth utilization (shown in Fig. 1). In case (a), 𝑆𝑆5 and 𝑆𝑆3 run into downstream link 
congestion and in case (b), 𝑆𝑆1 and 𝑆𝑆5 run into upstream link congestion. 
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Figure 1: Problem formulation 

3.2 Architecture design 
In this section, we will first give the ideal result we want to achieve and then analyze the 
detail implementation of our architecture and solutions. As aforementioned problems 
illustrated before, we’d like to vividly share our opinion through Fig. 2. The flows are 
scheduled properly and can effectively avoid network congestion.  

 
Figure 2: Expected result for load balancing implementation 
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We notice the defect and propose an OpenFlow-based load balancing strategy to mitigate the 
problems and enhance traffic monitoring effect. There are two benefits that we can achieve. 
The first is intellectual flow detection for elephant and mice flows. The second is 
elephant/mice zone separation and distinct flow scheduling for different flow types. As we 
mentioned before, the root of problem is flow collision between elephant and mice flows. 
We need to adjust measures to specific flow conditions so as to avoid bandwidth congestions 
based on flow classification. The whole procedure can be divided into three stages. 
Stage one-elephant/mice one separation. The first stage is conducting the initialization 
job. The objective is to reserve one or two idle paths in advance for elephant flow 
placement, with which these paths requires minimum hops and minimum workloads. 
This work should be done directly after controller and switches finished OpenFlow 
channel built. At the Controller side, it will compute the set of minimal cost paths, based 
on the minimum number of hops between source and destination nodes and minimum 
link congestion factors. Once the idle path is reserved, the following elephant flows will 
go through smoothly without any retardation when flow rules are inserted to switches. 
To be specific, once a flow is tagged, the flow path will be fixed until the flow is expired 
or paths condition in elephant zone need a rearrangement. 
Stage two-elephant flow detection. As we do not know any information of flows 
initially, we coarsely aggregate the ingress flows and forward them by using ECMP. So, 
when a new flow starts, the default switch action is to encapsulate it in a Packet In 
message to forward it based on a hash on the 5 tuples along the minimal-weight path. 
Based on OpenFlow protocol, flow entries contain several important counters for flow 
statistics, we focus on Received Packets, Received Bytes, Duration (msec) from Per Flow 
Counter and Per Queue Counter. Once the flow grows past a threshold rate, switches will 
actively report it to Control Logic in controller, and the flow will be tagged and 
redirected to elephant zone, by which the preset flow rules will be installed to 
corresponding switches in elephant zone (shown in Fig. 3).  

 
Figure 3: Elephant flow detection 

As for the preset threshold, used as a core flow judgment, based on current research about 
90% of bytes in datacenters are generated by elephant flows and their duration time is 
much longer than mice flows, the controller will actively query flow statistics from 
switches and believe 100 Mbps of a flow throughput within any time interval (10% of 
each host 1 GbE per link) is appropriate in our implementation. 
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Stage three-load balancing. After the second stage, all tagged flows will traverse 
through elephant zone. However, the remaining flows also need a rearrangement 
schedule, according to the large amount of flow population. At the controller site, the 
path with lowest bandwidth occupation and minimum hops will be the potential selection. 
To take full advantages of datacenter network bandwidth utilization and guarantee 
network performance, the mice zone will generate the set of paths with corresponding 
weight respectively. Here, we propose a method of path weight 𝑊𝑊𝑝𝑝 (given in Definition 4) 
calculation for path condition judgement. 
Theorem 4. Given a network topology G= (E, V) and ∀𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖,𝑗𝑗 , 𝑒𝑒 ∈ 𝐸𝐸, the weight of a 
link 𝑓𝑓𝑒𝑒 relates to link congestion factor as described in definition 2. So 𝑓𝑓𝑒𝑒 = 1 − 𝑓𝑓𝑒𝑒/𝑐𝑐𝑒𝑒. 
The weight of a path 𝑊𝑊𝑝𝑝 = (∑𝐻𝐻1 𝑓𝑓𝑒𝑒)/𝐾𝐾. To be specific, H is the number of hops, K is the 
number of p in 𝑃𝑃𝑖𝑖,𝑗𝑗 and ∑𝐾𝐾1 𝑊𝑊𝑝𝑝 = 1.   
Once the weight is computed, the path weight is updated to the Action Set module and 
stored in a special bucket group. And based on its short-lived feature, all mice flow with 
scheduled path will persist until the flow entry reaches a hard/soft timeout, which means 
the flow expired. To this end, flows with different tags will run in separate zones and 
perfectly avoid flow collision and network congestion (Shown in Fig. 4).  

 
Figure 4: Load balancing strategy 

4 Experimental evaluation 
This section describes the experimental scenarios, presents the results and performs result 
analysis. The aim of this section is to validate the benefit of our strategy in terms of 
routing elephant and mice flows to their own zones according the generated flow rules so 
as to enable load balancing. We begin by introducing the experimental scenario and the 
methodology used in the tests. Following that, we present and discuss the main results 
achieved so far. 

4.1 Scenario 
We emulate the topology (shown in Fig. 2) by using the Mininet emulator running in a 
virtual machine (VM), which is hosted in a Core i5-6360 MacBook Pro 13 Laptop with 8 
GB RAM through VMfusion. OpenVSwitch (OVS) is used for it perfectly supports every 
version of OpenFlow implementation. The POX Controller is hosted in the same VM 
with the controller IP address is set 127.0.0.1 and port number 6633 for communication 
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convenience. In this scenario, the fabric consists of 6 OpenFlow-based OVS and 6 hosts 
generating traffic inside each one. Each switch is a 16-port 1 Gbps switch, and the 
network has full bisection bandwidth. 
To be specific, we prefer empirical workloads close to traffic condition in reality. We 
consider the traffic follows Poisson distribution from a datacenter mostly running web 
search, which is heavy-tailed with a mix of mice and elephant flows. In this workload, we 
approximate 80% of the bytes are from 20% of the flows whose throughput is larger than 
100 Mbps, each flow is composed of a sequence of packets which share the same 5-tuple 
(Source Port, Destination Port, Source IP, Destination IP, Protocol Type). The workload 
increases gradually to evaluate our load-balancing performance in different conditions. We 
also implemented the ECMP routing algorithm for performance comparison with ours. 

4.2 Results and discussion 
Our goal is to locate the problem of network congestion and compare the network 
performance, here we choose latency and throughput metrics used as reflection of 
network congestion degree. As we increase the workload by adjusting the proportion of 
elephant flows in network traffic, ECMP can control latency to some extend and achieve 
relative high saturation point, but when elephant flow proportion goes higher, ECMP will 
run into serious flow collision and latency rises. Latency still rises in our Load-balancing 
strategy as elephant flows account for much of the whole network traffic, but it controls 
the latency well and performs better than ECMP (As shown in Fig. 5).  

 
Figure 5: Network latency comparison between ECMP and our load balancing strategy 

Also, we still need an intuitive view of bandwidth utilization performance under different 
traffic conditions (shown in Fig. 6). In first stage, utilization increases near linearly for 
both routing strategies. As traffic load keeps increasing, ECMP takes the lead of reaching 
the bottleneck, network performance degrades and bandwidth utilization drops, while our 
load-balancing strategy meets the bottleneck later than ECMP and the maximum value is 
higher than ECMP. To be more specific, when workload starts from zero and reaches the 
maximum, for ECMP the link utilization rate can reach 73% at most and averages to 62%, 
for our load-balancing strategy, the maximum utilization rate is near 90% and the average 
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utilization can stabilize in 78%. The result shows that our load-balancing strategy has a 
better performance than ECMP in dealing with network traffic with diversity.  

 
Figure 6: Utilization performance comparison between ECMP and our load balancing strategy 

5 Conclusion 
In this paper, we proposed the design and evaluation of an OpenFlow-based load-
balancing strategy that logically split elephant zone and mice zone for different flow 
types. This solution naturally shed elephant traffic load on elephant zone with several 
pre-defined idle paths while the rest is confined in mice zone with minimal weighted path, 
which is calculated in accordance with current load conditions. We implement the 
prototype in Mininet testbed with POX controller and verify the feasibility of our load-
balancing strategy when dealing with flow confliction and network degradation. The 
simulation shows that our solution can effectively alleviate network congestion and 
improve network utilization in comparison with ECMP.  
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