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Abstract: With the popularity of deep learning tools in image decomposition and natural 
language processing, how to support and store a large number of parameters required by 
deep learning algorithms has become an urgent problem to be solved. These parameters 
are huge and can be as many as millions. At present, a feasible direction is to use the 
sparse representation technique to compress the parameter matrix to achieve the purpose 
of reducing parameters and reducing the storage pressure. These methods include matrix 
decomposition and tensor decomposition. To let vector take advance of the compressing 
performance of matrix decomposition and tensor decomposition, we use reshaping and 
unfolding to let vector be the input and output of Tensor-Factorized Neural Networks. 
We analyze how reshaping can get the best compress ratio. According to the relationship 
between the shape of tensor and the number of parameters, we get a lower bound of the 
number of parameters. We take some data sets to verify the lower bound. 
 
Keywords: Deep neural network, parameters compressing, matrix decomposition, tensor 
decomposition. 

1 Introduction 
Deep learning is the most useful tool for may applications, such as image recognize 
[Zhang, Yang, Li et al. (2018); Zhang, Jin, Sun et al. (2018); Chen, Xu, Zuo et al. (2018)], 
nature language processing [Zeng, Dai, Li et al. (2018); Xiang, Zhao, Li et al. (2018)]. 
But huge computation power and millions of parameters are needed in large models, 
which may cannot be supported and stored. It prevents the deep learning from be applied 
in mobile devices [Li, Liu, Wang et al. (2018); Li, Chen, Gao et al. (2018)]. How to 
compress the parameter has become an urgent problem to be solved. For solving this 
problem, there are four categories technology [Cheng, Wang, Zhou et al. (2017)]: low-
rank factorization, parameter pruning, quantization, and knowledge distillation.  
Low-rank factorization from sparse representation is the basic technology for network 
compressing. Some works try to compress the dense weight matrices with matrix 
decomposition [Pilászy, Takács, Németh et al. (2008); Xie, Wang, Wang et al. (2018); 
Lathauwer, Moor, Vandewalle et al. (2000)], and tensor decomposition [Kolda and Bade  
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(2009)]. Because of the significant redundancy of weight matrix, [Misha, Babak, Dinh et al. 
(2013)] exploits low-rank matrix decomposition to predict weight parameters. Then, tensor 
decomposition is introduced to treat the high order parameters. Several kinds of  tensor 
decomposition are used to compress parameters, such as generalized singular value 
decomposition (GSVD) [Zhang, Zou, He et al. (2015); Tai, Xiao, Zhang et al. (2016)], CP 
(Canonical decomposition/Parallel factor) decomposition [Lebedev, Ganin, Rakhuba et al. 
(2014); Xie, Peng, Wang et al. (2018); Xie, Li, Wang et al. (2018)], tucker decomposition 
[Xie, Li, Wang et al. (2017); Kim, Park, Yoo et al. (2016)], tensor train decomposition 
[Tjandra, Sakti, Nakamura et al. (2017); Novikov, Podoprikhin, Osokin et al. (2015); Tjandra, 
Sakti, Nakamura et al. (2018)], and block term decomposition [Chen, Jin, Kang et al. (2018)].  
For full connection layer, most of above works are designed to compress parameters for 
vector inputs or matrix inputs. In real life, there are always multi-way features from 
different perspectives which can be treated as tensors. To jointly perform factorization 
and training of an NN, chien et al. [Chien and Bao (2018)] use the tucker decomposition 
to replace the affline transformation in a neural network, and builds a tensor-factorized 
multi-layer perceptron (MLP), named tensor-factorized neural networks (TFNN). TFNN 
allows the tensor inputs and preserves the tensor structure from input layer to hidden 
layer. It can significantly reduce the number of parameters and time complexity. 
However, this improvement is not guaranteed for vector inputs, because of only one-way 
in the input.  
With MLP, we usually unfold the high order tensor input into a one-way vector. With 
tensor-factorized MLP, can we reshape the one-way vector input into a high order tensor 
to get this improvement? Inspired by this, this paper explores the reshaping and unfolding 
to flexibly use the TFNN for further compressing parameters. The main contributions of 
this work can be summarized as follows. 
 To take advance of the good compressing performance of matrix decomposition and 

tensor decomposition, we let a vector be reshaped into a matrix or tensor as the input 
of the TFNN, and the output of the TFNN be unfolded into a vector.  

 We analyze how reshaping can get the best compress ratio. According to the 
relationship between the shape of tensor and the number of parameters, we can get a 
lower bound of the number of order and dimensions of the tensor without integer 
constraint and with integer constraint.  

 We take some data sets to verify the lower bound.  
The remainder of this paper is organized as follows. The related works is reviewed in 
Section 2. Section 3 introduces the preliminaries of tensor and tensor decomposition. 
Section 4 introduces the basic NN and tensor-factorized neural network. The detail of 
parameters compressing neural networks and analysis of the parameter compressed ratio are 
present in Section 5. Section 6 provides simulation results. In the end, we conclude this work. 

2 Related works 
For compressing and accelerating model of deep neural networks, some works tried to 
compress the dense weight matrices with sparse representations technologies. We classify 
these works by the technologies that these works used. 

https://arxiv.org/search/cs?searchtype=author&query=Lebedev,+V
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https://arxiv.org/search/cs?searchtype=author&query=Rakhuba,+M
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Matrix decomposition: Misha et al. [Misha, Babak, Dinh et al. (2013)] demonstrates 
that significant redundancy generally exists in the deep learning models. According to 
the redundancy, this work learns only a part of weights and predicts the rest by low-
rank matrix decomposition.   
Tensor decomposition: Zhang et al. [Zhang, Zou, He et al. (2015)] uses generalized 
singular value decomposition to solve the reconstruction method that takes into account the 
nonlinear neurons and a low-rank constraint. Tai et al. [Tai, Xiao, Zhang et al. (2016)] 
speeds up the CNN and reduces the redundancy of convolution kernels by a new algorithm 
of computing the low-rank tensor decomposition. Lebedev et al. [Lebedev, Ganin, Rakhuba 
et al. (2014)] uses a sum of a small number of rank-one tensors to approximate the 4D 
convolutional kernels tensor according to the low-rank CP-decomposition.  
To apply deep CNNs on mobile devices, Kim et al. [Kim, Park, Yoo et al. (2016)] uses 
tucker decomposition on each kernel tensor and the decomposition rank is dependent on a 
global analytic solution of variational Bayesian matrix factorization. Chien et al. [Chien 
and Bao (2018)] use the tucker decomposition to replace the affline transformation in a 
neural network, named tensor-factorized neural networks. It preserves the tensor structure 
and builds a tensor-factorized MLP, for which it can allow the tensor inputs.  
Novikov et al. [Novikov, Podoprikhin, Osokin et al. (2015)] use the tensor train (TT) 
format instead of the low rank matrix decomposition to represent the weight matrix of the 
fully connected layer in the CNN. Tjandra et al. [Tjandra, Sakti, Nakamura et al. (2017)] 
propose a TT based RNN architecture, which redefines two different RNNs using the TT 
format: simple RNN and GRU RNN. Tjandra et al. [Tjandra, Sakti, Nakamura et al. (2018)] 
study the performance of several different parameter compression methods, such as CP 
decomposition, tucker decomposition and TT decomposition. This work demonstrates that 
TT based GRU can obtain the best performance within different parameters. 
Chen et al. [Chen, Jin, Kang et al. (2018)] proposes a new architecture to enhance the 
parameter efficiency of deep neural networks through block term decomposition, in 
which a high order tensor is approximated in a sum of several low-rank tuckers. It shares 
knowledge across different residual units by shared factors.  

3 Preliminaries 
For clarification, we firstly describe the notation as follows. We use lowercase letters (a, 
b,...), boldface lowercase (a, b,...), and boldface capitals (A, B,...) to represent scalars, 
vectors, and matrices, respectively. Higher-order tensors are represented as calligraphic 
letters ( , , ...).  

3.1 Preliminaries of tensor 
Definition 1 (Tensor). A tensor is a multidimensional array, which can be considered as a 
higher-order generalization of a vector (first-order tensor) and a matrix (second-order 
tensor). For an M-way or Mth-order tensor 1 2 MI I I× ×⋅⋅⋅×∈ , M is the order of , also 
known as way or mode, and iI  is the dimension of ith way. The element 1 2( , , , )mi i i of  
is denoted by

1 2
, {1,2, },1

mi i i m mx i I m M∈ ≤ ≤


  . 
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https://arxiv.org/search/cs?searchtype=author&query=Lebedev,+V
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Definition 2 (Slice and Mode-m unfolding). When fixing all indexes except two indexes, 
the tensors can be divided into slices which are matrices. For a three-way tensor , there 
are three kinds of slices, such as horizontal slices, lateral slices and frontal slices, which 
are denoted by  ::iX ,  : :jX , and  : :kX , respectively.  

horizontal slices  lateral slices  frontal slices  
Figure 1: Slices of three-way tensor 

The Kiers unfolding or matricizing of tensor is the mosaics of slices, as shown in Fig. 2. 
The mode-m unfolding of   is denoted by X(m). 
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Figure 2:  Unfolding of three-way tensor 

Definition 3 (Outer product of vectors). For M vectors ( ) 1, 1, ,i i i m×∈ = x , the outer 
product of these vectors is a M-way tensor, denoted as (1) (2) ( )m

 x x x . Or It can be 
defined in element form as 

1 2 1 2

(1) (2) ( ) (1) (2) ( )( )
m m

m m
i i i i i ix x x=


  x x x , where ( )i
jx is the 

jth element of vector ( )ix . 
Definition 4 (Rank one tensor). A 3-way tensor   is a rank one tensor if it can be 
written as the outer product of three vectors, i.e. =   a b c . 
Definition 5 (m-mode product). The m-mode product of a tensor 1 2 MI I I× × ×∈ 

 and a 
matrix ( ) mmm J I×∈U   is denoted by ( )m

m× U , which is a m 1 m 11 m MI I J I I− +× × × × × ×   
tensor and the element is defined as 

( )
m

1 21 1 1

( )

=1
=

M mm m M
m

I
m

m i i i jii i ji i
i

x u
− +

× ∑U


 

  .                                                                           (1) 
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For example,  is a 3-way tensor as shown in Fig. 3. U is a matrix and the value is set to 
1 3 5 7
2 4 6 8
 

=  
 

U . The 2-mode product 3 2 2
2 U × ×= × ∈   is a tensor, whose mode-2 

unfolding matrix is  

(2)

236 268 300 620 652 684
280 320 360 760 800 840
 

=  
 

B .                                                                             (2) 
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Figure 3: A tensor 3 4 2× ×∈  

In addition, the following properties of the k-mode matrix product are true. 
X Y= Y Xm n n m m n× × × × ≠（ ）                                                                             (3) 

X Y= YXm m m× × ×（ ）                                                                                              (4) 

3.2 Tensor decomposition 
Tensor decomposition is a method used to analyze multi-channel data structures. We 
introduce two basic tensor decomposition models, one is CP model, the other is tucker 
model. The CP model can be considered as a special implementation of tucker model, in 
which the core tensor is hyper diagonal. 

3.2.1 CP-decomposition 
CP-decomposition is also called as CANDECOMP/PARAFAC model, as shown in Fig. 4. 

Inspired of matrix fraction (
1

R

ij ir ir
r

x a b
=

= ∑ ),  an element of a three-way tensor 1 2 3I I I× ×∈  

can be calculated by the sum of a finite number of multiply of three scalars, 

1

R

ijk ir jr kr
r

x a b c
=

= ∑                                                                                                                  (5) 

where R>0. Thus, the three-way tensor can be expressed as the sum of R rank one tensors 
which can be calculated by the outer product of three vectors. 

1
=

R

r r r
r=
∑   a b c                                                                                                                  (6) 
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where 31 2

1 2 3

11 1
1 1 1[ ,..., ] , [ ,..., ] , [ ,..., ] II IT T T

r r I r r r I r r r I ra a b b c c ×× ×= ∈ = ∈ = ∈  a b c  are the factor 
vectors. Further, we can get the tenor’s factor matrices. 

 
31 2

1 1 1[ ,..., ] , [ ,..., ] , [ ,..., ] I RI R I R
R R R

×× ×= ∈ = ∈ = ∈A B C  a a b b c c                                         (7) 
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Figure 4: The CP-decomposition of three-way tensor 

3.2.2 Tucker tensor decomposition 
For a three-way tensor 1 2 3I I I× ×∈ , the tucker tensor decomposition is to divide the 
tensor into the produce of a core-tensor and three factor matrices.  

(1) (2) (3)
1 2 3= × × ×U U U                                                                                                    (8) 

where 1 2 3 3 31 1 2 2(1) (2) (3), ,J J J J IJ I J I× × ×× ×∈ ∈ ∈ ∈U U U   ,  are the core-tensor and three 
factor matrices, k× is the mode-k produce, as shown in Fig. 5. Of course, its elements are 
expressed as follow: 

31 2

1 2 3 1 2 3 1 1 2 2 3 3
1 2 3

(1) (2) (3)

1 1 1

JJ J

i i i j j j i j i j i j
j j j

x a u u u
= = =

=∑∑∑                                                                                     (9) 
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J2J3

 
Figure 5: The tucker tensor decomposition of three-way tensor 

Be universally known, the tucker decomposition in tensors is a multi-linear extension of the 
SVD. There is a conversion relation between High-order SVD and the tucker decomposition. 

4 Unfolding based deep neural network and tensor-factorized neural network 
In this section, we introduce the basic NN and tensor-factorized neural network. 

4.1 Unfolding based deep neural network 
Fig. 6 is the structure of full connection layer with the transformations of h=g(vW), 
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where v is an input vector with I1-dimensional input, h is an output vector with J1-
dimensional, and W is an I1×J1 matrix of parameters. And the number of parameters on 
this layer is I1J1. 

.

.

.

.

.

I1

J1

 
Figure 6: The full connection layer of NN 

For matrix or tensor input, the matrix or tensor needs to be unfolded into vector and then 
fed into the full connection layer. For a I1×I2 matrix input and a J1×J2 matrix output, it is 
unfolded into an input vector with I1I2-dimensional and an output vector with J1J2-
dimensional. The weight matrix is an I1I2×J1J2 matrix. And the number of parameters on 
this layer is I1I2J1J2. Similarly, for the three-way and N-way tensor input and output, the 

number of parameters are 1 2 3 1 2 3I I I J J J  and 
1

N

n n
n

I J
=
∏ , respectively.  
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Figure 7: The full connection layer on matrix input and output by unfolding 

4.2 Tensor-factorized neural network 
According to the tucker decomposition introduced in Section 3.2.2, a N-way input tensor 

1 2 N... I I I× ×∈  is converted to a core tensor 1 2 ... NJ J J× × ×∈  with N factor matrices. 
Based on the Eq. (9), we can consider the core tensor   as a tensor weight. However, 
the decomposition solution is non-unique. We may need to find a unique solution with 
some constraints. From the other point of view, we can get the inverse of the tucker 
decomposition by the Eq. (10), as shown in Fig. 8. 

(1) (2) ( ) (1) (2) ( )
1 2 3 1 2 3

N N
N N

+ + += × × × × = × × × ×⇒U U U U U U         (10) 
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In the above equation, ( ) ( )T ( ) - 1 ( )T( )n n n n+ =U U U U is the pseudo inverse of ( )nU . When the 
dimensions 1 2 , ,..., NJ J J  of the core tensor are less than the dimensions 1 2, ,..., NI I I of the 
original tensor, we can treat the core tensor   as a compressed version of the tensor  . 
Thus, the core tensor   extracts the features of the tensor   via N factor matrices 

(1) ( ){ }N+ +U U, , . 

U(1)+ U(2)+

I1

J1

U(3)+

I2

I3

J2

J3

I1

I2

I3

J1

J2J3

 
Figure 8: The inverse of the three-way tucker decomposition 

According to the inverse of tucker decomposition, Chien et al. [Chien and Bao (2018)] 
propose a tensor-factorized MLP named Tensor-Factorized Neural Networks (TFNN), 
which can take the tensor as input and output of full connected layer directly, as shown in 
Fig. 9. The original tensor   is the input tensor and the core tensor   is the output 
tensor. There are 1 2 3J J J  weight tensors that have the same dimensions and way with the 
original input tensor. The inner product of the input tensor and a weight tensor is the 
value of one element on the output tensor. Specially, all the weight tensors are the rank-
one tensor and they share the vectors which are the row of the pseudo inverse matrices 

(1) (2) (3)+ + +U U U, ,  from the tucker decomposition. 
TFNN tightly combines TF and NN. For the three-way tensor, the three-way TFNN is 
constructed by decomposing and activating the input tensor   into a feature tensor   
using three factor matrices (1) (2) (3)+ + +U U U, , . Chien et al. [Chien and Bao (2018)] also 
gives the back propagation procedure of TFNN. Similar to the 3-way decomposition, the 
N-way tensor input can be decomposed to construct an N-way TFNN by N factor 
matrices (1) ( )N+ +U U, , .  
TFNN use the decomposing to retain the tensor structure, while NN unfolds the N-way  
tensor 1 2 ... NI I I× × ×∈  into a one-way vectors 1 2 ...

t
NI I I∈x  . As a result, all the 

parameters are just stored in the factor matrices. The number of parameters of two-way 
and three-way TFNN are 1 1 2 2 1 1 2 2 3 3+ + +I J I J I J I J I J， , respectively. For the N-way tensor, 

the number of parameters is 
1

N

n n
n

I J
=
∑ , which is significantly compressed comparing with 

unfolding NN in Section 4.1. It is an efficient parameter compressing method. The 

compressed ratio is 
11

/
N N

n n n n
nn

I J I J
==
∑∏ . 
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Figure 9: The three-way tensor layer with tucker decomposition 

5 Parameters compressing neural networks 
Based on the compressed ratio of the TFNN, we can get that when the way of tensor is large, 
the compressed ration is big with the same size of the input data. If a vector is reshaped into 
a matrix or tensor as the input of the TFNN and the output of the TFNN is unfolded into a 
vector, it may further control the size of parameters and improve the efficiency. 

5.1 Basic ideas 
As shown in Fig. 10, the input vector with '

1I -dimension is reshaped into a three-way 
tensor 1 2 3I I I× ×∈ , and the output tensor 1 2 3J J J× ×∈ of the TFNN is unfolded into a 
output vector with '

1J -dimension. Obviously, the number of parameters with vector input 
and output can be further reduced by tensor decomposition. 
However, the input vector can be reshaped into two-way, three-way, and even N-way 
tensor. Reshaping into a two-way, three-way or N-way tensor will produce various 
parameter compressed ratio and representation power. After reshaping and unfolding, the 
representation power is dependent on the structure of the input data. Therefore, in this 
paper, we only focus on that how to reshaping and unfolding can get the best parameter 
compressed ratio.  



 
 
 
330                                                                              CMC, vol.62, no.1, pp.321-336, 2020 

.

.

.

J1J2J3

I1

I3
I2

I1

I3
I2

I1

I3

I2

J1

J3
J2

I’1
J’1reshape unflod

 
Figure 10: The parameters compressing neural network with vector input and output 

Assume that the dimension of the input and output vectors are '
1I and '

1J , respectively, the 
input vectors can be reshaped into a N-way tensor with 1 2( , ,..., )NI I I dimension and the N-
way output tensor of TFNN is 1 2( , ,..., )NJ J J dimension. To store the all element in the 
vector, the dimensions between vectors and tensors should satisfy the following constrains. 

' '
1 1

1 1

,    
N N

n n
n n

I I J J
= =

= =∏ ∏                                                                                                       (11) 

The compressed ratio can be represented as ' '
1 1

1
/

N

n n
n

I J I J
=
∑ .  

5.2 Analysis of the parameter compressed ratio 
To get the best parameter compressed ratio, we need to minimize the number of 
parameters in the N-way TFNN. The problem can be formulated as following. 

, , 1

'
1

1

'
1

1

min

. .

    

    , ,  for 
    

N

n nI J N n
N

n
n
N

n
n

n n

I J

s t I I

J J

I J n
N

=

=

=

≥

≥

∈
∈

∑

∏

∏




                                                                                                           (12) 

where In and Jn is the n-th dimensional of tensors, and N is the way of the input and 
output tensors of TFNN.  
 
 



 
 
 
Parameters Compressing in Deep Learning                                                     331 

5.2.1 Without integer constraint 
In this sub-section, we ignore the integer constrain of ,n nI J . Specially, if all the 
dimension Jn  of output tensor are equal, the number of weight parameters is dependent on 
the sum of the links’ length of input tensor. Intuitively, the sum of the links’ length of the 
super-cube is minimum, that is, ( )1/'

1=
N

nI I .  

If N is given and we ignore the integer constrain, the best solution of problem (12) is 

( )1/

1 1

N
N I J' '  , when the dimension of each way satisfies the following equation.  

( )1/

1 1=  for 
N

n nI J I J n' ' ，                                                                                                          (13) 

Proof: When N is given, the problem of (12) without the integer constrain is transformed 
into problem (14). 

, 1

'
1

1

'
1

1

min

. .

    

N

n nI J n
N

n
n
N

n
n

I J

s t I I

J J

=

=

=

=

=

∑

∏

∏

                                                                                                                     (14) 

In order to solve it, we get the Lagrange function of the problem (14) as follows.  

' '
1 1

1 1 1

( ) ( )
N NN

n n n n
n n n

L I J I I J Jα β
= = =

= + − + −∑ ∏ ∏                                                                           (15) 

where ,  α β  are the Lagrange multipliers. And then we can solve it by KKT (Karush 
Kuhn Tucker) conditions. 

1,

1,

' '
1 1

1 1

/ 0 for 

/ 0 for 

0, 0

0, 0

N

n n i
i i n

N

n n i
i i n

N N

n n
n n

L I J I n

L J I J n

I I J J

α

β

α β

= ≠

= ≠

= =

∂ ∂ = + =

∂ ∂ = + =

≠ ≠

− = − =

∏

∏

∏ ∏

，

，
                                                                                     (16) 

The optimal dimension relationships between the reshaped input tensor and output tensor 
are as follows.  

1 1 2 2= = =  for n nI J I J I J n ，                                                                                                  (17) 

At the same time, to satisfy the storing constrains ( ' '
1 1

1 1

0, 0
N N

n n
n n

I I J J
= =

− = − =∏ ∏ ), we can 

get that the multiple of n nI J  is ( )1/' '
1 1

N
I J  .                                                                           
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Then, we can get the best way of tensor *N . 

( ) ( )

( ) ( ) ( )
( )

1 1
' ' ' '
1 1 1 1, , 1 1

1 1
' ' ' ' ' '
1 1 1 1 1 1

* ' '
1 1

min min min

(1 ln / ) 0

ln

N N
N N

n nI J N N Nn n

N N

I J I J N I J

N I J N I J I J N

N I J

= =

= =

∂ ∂ = − =

=

∑ ∑

                                                                    (18) 

The number of parameters is  

( ) ( ) ( )( ) ( )' '
1 11/ 1/ 1/ ln' '

1 1 1 1 1 1 1 1
1 1

= = ln
N N N N I J

n n
n i

I J I J N I J I J I J
= =

=∑ ∑ ' ' ' ' ' ' .                                                    (19) 

5.2.2 With integer constraint 
Considering integer constraints, we need to do a rounding operation to *N . 

( ) ( )* ' ' * ' '
1 1 1 1ln lnN I J N I J   = =    or                                                                                  (20) 

where        ,  are the ceiling and floor functions. The optimal *N  may be one of the two 
candidate values. Therefore, we take the two values as *N  to calculate the result separately. 

In each value of *N , we set the default value of  nI , nJ  as  the ceiling of ( ) ( )
* *1/ 1/' '

1 1,
N N

I J .  
And then, with the constrain of storing all input and out data in Eq. (11), we orderly 

reduce the value of nI , nJ to the floor of ( ) ( )
* *1/ 1/' '

1 1,
N N

I J . After reducing, we check 

whether switching the value of nJ with different subscript will further reduce the object 
value. If yes, we switch the value of nJ . Finally, we compare the the object value of the 
two candidate values to get the optimal number of parameters. The overall algorithm is 
described as Algorithm 1. 

Algorithm 1 Reduced Iteration Algorithm   
Input: The dimensions of the input and output vectors '

1I , '
1J   

Output: The optimal number of parameters 

1： ( ) ( ) ( )
* *1/ 1/* ' ' ' '

1 1 1 1ln , = =
N N

n nN I J I I J J    =         
，  

2:  for n = 1 to *N  do  
3:     if *

'
1 2 1( 1)n N

I I I I I× × − × ≤   then break 

4:     1nI − =  

5:  for n = 1 to *N  do  
6:     if *

'
1 2 1( 1)n N

J J J J J× × − × ≤   then break 
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7:     1nJ − =  
8: end for  
9: for a = 1 to *N  do 
10:     for b = a+1 to *N  do 
11:         if a a b b a b b aI J I J I J I J+ > +  then  

12:             swap ,a bJ J  

13:         end if 
14:     end for  
15: end for 

16: 
*

1
1

N

n n
n

S I J
=

= ∑  

17: ( ) ( ) ( )
* *1/ 1/* ' ' ' '

1 1 1 1ln , = =
N N

n nN I J I I J J    =         
，  

18: Repeat steps 2 to 15 

19: 
*

2
1

N

n n
n

S I J
=

= ∑  

20: return ( )1 2min ,S S  

6 Simulation 
We use the input and output sizes of different data sets for evaluation in Tab. 1. First is 
from Qian et al. [Qian, Fan, Hu et al. (2014)] where the input vector contains 355 
dimensions and the output vector contains 127 dimensions. Second is the Mixed National 
Institute of Standards and Technology (MNIST) database [Lecun, Bottou, Bengio et al. 
(1998)] which consists of gray-scale images of size 28×28 and a layer of the output 
matrix is 20×20. We only consider the vector size of MNIST. The metric is the number of 
parameters after reshaping. Fig. 11 shows the number of parameters according to Eq. (14) 
with reshaping to N-way tensor from 1 to 20.  Fig. 11(a) is the number of parameters 
without integer constraint, (b) is the number of parameters with integer constrain. We can 
see that there are two stages, the quick decreasing and the slow increasing. Tab. 1 shows 
the reshaping result of data sets obtained by the Eq. (19) and Algorithm 1, in which the 
best value of N is same as the Fig. 11. 
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(a)                                                                (b) 

Figure 11: The number of parameters with different way of tensor: (a) without integer 
constraint, (b) with integer constraint 

Table 1: The reshaping result of data sets with different input and output size 

Data set [Qian, Fan, Hu et 
al. (2014)] 

MNIST [Lecun, 
Bottou, Bengio et al. 

(1998)] 
Input size 355 784(28×28) 

Output size 127 400(20×20) 

 N* 
/objec

t 
value 

nI nJ N without integer 
constraint 

10.72/29.13 12.66/34.4 

only N with integer constraint 11/29.13 13/34.41 

nI nJ N with integer constraint 10/32 12/38 

nI  1,2,2,2,2,2,2,2,2,2, 1,1,2,2,2,2,2,2,2,2,2,2 

nJ  2,2,2,2,2,2,2,1,1,1 2,2,2,2,2,2,2,2,2,1,1,1 

From the Fig. 11(b), our algorithm cannot always get the optimal result. The optimal N 
for Qian et al. [Qian, Fan, Hu et al. (2014)] is 8 and object value is 31. It is noticed that it 
can lead to a N*-way tensor. This shape may not be suitable for all data sets. But this is a 
lower bound. To trade off the representation power and the number of parameters, we can 
consider the way of tensor from 2 to N*.   

7 Conclusion 
In order to control the size of parameters and improve the training efficiency, we let a 
vector be reshaped into a matrix or tensor as the input of the TFNN. We analyse how 
reshaping can get the best compress ratio. According to the relationship between the 
shape of tensor and the number of parameters, we get a lower bound of the number of 
parameters. We take some data sets to verify the lower bound. The future work is to 
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choose a better shape of tensor for keeping representation power.  
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