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Abstract: When a tunnel is excavated below the groundwater table, groundwater flows 
in through the excavated wall of the tunnel and seepage forces act on it. These forces 
significantly affect the ground reaction curve, which is defined as the relationship 
between the internal pressure and radial displacement of the tunnel wall. This study 
investigates analytical solutions for seepage forces acting on the lining of a circular 
tunnel under steady-state groundwater flow. Considering the tunnel’s construction or 
service period and boundary conditions, the direction of maximum principal stress 
changes, and the input stress of the Mohr-Coulomb criterion varies. The stress 
distribution and yield range of the surrounding soils and linings are studied. The first, 
second, and third critical inner pressures are defined and evaluated. The influence of the 
seepage field on the plastic radius, first critical pressure, and stress distribution of the 
tunnel is analyzed. It is shown that during the construction period, the seepage force 
promotes the expansion of the yield area, whereas during the service period, the opposite 
is the case. The first critical pressure increases nearly linearly with the distant water 
pressure. The radial stress distribution decreases clearly in comparison with that when the 
seepage force is not considered, and the reduction is more prominent when internal 
pressure increases. The tangential stress distribution increases clearly compared with that 
when the seepage force is not considered. 
 
Keywords: Tunnel lining, surrounding soils, elastoplastic analysis, critical pressure, 
plastic radius, seepage force.  

1 Introduction 
The seepage force in porous media deforms and damages soils and rocks, and its 
influence is distinct on different soils or rock masses. For poroelastic media, fracture 
behavior is controlled by the phase field model [Zhou, Rabczuk and Zhuang (2018); 
Zhou and Xia (2018); Zhou, Zhuang and Rabczuk (2018); Zhou, Zhuang, Zhu et al. 
(2018)]. Moreover, fracture propagation is driven by elastic energy, where the phase field 
is used as an interpolation function to transition the property of the fluid from the intact 
medium to the fully broken one. The phase field method for dynamic cracks in a single-
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phase solid has been extended for fluid-driven dynamic cracks [Zhou, Zhuang and 
Rabczuk (2019)]. Research on computational methods to study cracks has also been 
pursued in Ren et al. [Ren, Zhuang and Rabczuk (2017); Ren, Zhuang, Cai et al. (2016); 
Rabczuk, Zi, Bordas et al. (2010); Rabczuk and Belytschko (2004)].  
When a tunnel is excavated below the groundwater table, groundwater flows in through 
excavated wall of the tunnel and seepage forces act on it. These seepage forces 
significantly affect the ground reaction curve, which is defined as the relationship 
between the internal pressure and radial displacement of the tunnel wall. Groundwater 
seepage acts on surrounding soils and linings through the seepage volume force, which 
affects the distribution of stress and displacement fields of the tunnel’s structures. When 
groundwater flows into a tunnel below the groundwater table, the stress of the soil mass 
is the state of “the submerged weight plus seepage force.” In this case, seepage forces are 
considered among the most influential factors, and their calculation is crucial in 
determining the behavior of the tunnel. 
Most mast research on the ground reaction curve [Brown, Bray, Ladanyi et al. (1983); 
Stille, Holmberg and Nord (1989); Carranza-Torres and Fairhurst (1999, 2000); Sharan 
(2003); Oreste (2003)] did not consider seepage forces, and was confined to examining 
dry conditions. A few studies on the effects of seepage forces on the faces of tunnels and 
their support systems were conducted by Wood et al. [Wood (1975); Atkinson and Mair 
(1983); Bobet (2003)]. 
For deep tunnels with high water head, the influence of seepage fields cannot be ignored, 
and the stress distribution of the surrounding soils and linings of the tunnels exhibit 
prominent changes [Shin, Kim, Shin et al. (2010); Fernandez and Alvarez (1994); Lee 
and Nam (2001)]. In addition, with the differences in tunnel construction and service 
periods, the stress state of the lining and surrounding soil changes, and the selection of 
the maximum principal stress is very important [Ren and Zhang (2001)]. For example, 
during tunnel construction, radial stress is usually chosen as the maximum principal 
stress due to in-situ stress release [Lu, Xu, Sun et al. (2010); Jiang, Yaneda, Tanabashi et 
al. (2001); Carranza-Torres (2004)]. When high-pressure diversion tunnels in service 
usually bear relatively large internal pressure [Li, Cai, Zhuang et al. (2009)], the tunnel 
linings and surrounding soils also yield, and the maximum principal stress is the 
tangential stress in this case. Because of the transformation of the maximum principal 
stress, the mechanism of the influence of seepage force on the stress distribution of the 
lining and surrounding soil also change in different periods of the tunnel, in construction 
and in service. The modes of its influence on the plastic radius and critical internal 
pressure of the tunnel change as well. 
In this paper, the circular tunnel with a lining structure in a water-rich stratum is 
considered. According to different periods of the tunnel in construction and service, the 
maximum principal stress in the Mohr-Coulomb yield criterion is reasonably selected to 
determine the yield range of tunnel by considering different stress boundary conditions. 
The influence of the seepage field on the stress distribution and plastic radius is also 
studied, and the stress distribution formulae of the surrounding soil and lining structure 
are deduced. By combining examples, the variation in the plastic radius with internal 
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pressure is studied, and the stress distributions of the lining and surrounding soil under 
different internal pressures are given. 

2 Calculation of seepage force 
A deep buried circular tunnel is simplified as a circular structure in infinite homogeneous 
elastic ground. The seepage analysis model of the lining of surrounding soil is shown in 
Fig. 1. Assume that a stable seepage field is formed within radius wr ; the water head on 
radius wr  is 0h  (corresponding water pressure is 0wp ), the inner and outer diameters of 
the lining are ar  and br , respectively, and the permeability coefficients of the surrounding 
soil and lining are sk  and ck , respectively. Because the tunnel’s axial length is much 
longer than the section size, it is a plane problem. The flow rate at any radius in the lining 
is as follows: 

2 w
c c

dpQ rk
dr

π=                                                                                                                  (1) 

The boundary condition of Eq. (1) is 

1,  0;  ,  a w b w wr r p r r p p= = = =                                                                                         (2) 
where 1wp  is water pressure on the external lining.  From Eqs. (1) and (2), we can get 

12 ,     
ln /
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c a b
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π
= ≤ ≤                                                                                                (3)  

Similarly, the flow rate at any radius in the surrounding soil can be obtained as follows: 
0 12 ( ) ,     
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w b
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π −
= ≤ ≤                                                                                   (4) 

The seepage flow through each section in a steady seepage field is the same. Combining 
Eqs. (3) and (4), the permeation pressure at any radius in the linings and soils is 
calculated by 
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Figure 1: Stable seepage field around tunnel 

3 Radial stress as maximum principal stress 
For high-pressure diversion tunnels in service, the linings usually bear relatively large 
internal pressure. Assume that the tunnel is subjected to internal pressure ap  and the far-
field stress is 0p , and the volume force is ignored. Young’s modulus and Poisson's ratio 
of the lining are then, respectively, 1E  and 1µ , and the shear strength parameters are 1c  
and 1ϕ . Young’s modulus and Poisson's ratio of the surrounding soil are 2E  and 2µ , 
respectively, and the shear strength parameters are 2c  and 2ϕ . The plastic radius is pr . 

During the construction of a tunnel, the stress redistribution caused by stress release leads 
to the yield of surrounding soil or lining structure near the excavation face because the 
in-situ stress release or inner support resistance is not large enough. Setting the tensile 
stress to positive and compressive stress to negative, 0rθσ σ≤ ≤ , and the maximum 
principal stress is considered to be radial stress. 

3.1 Elastic-plastic interface located in lining 
This subsection considers the situation where the elastic-plastic interface is located inside 
the tunnel lining (see Fig. 2). The model is simplified as an axisymmetric problem. When 
the seepage water pressure acts on the micro-element body in the form of the volume force, 
the stress distribution satisfies the differential equations for equilibrium below. 

 



 
 
 
Elastoplastic Analysis of Circular Tunnel in Saturated Ground                                    183 

 
Figure 2: Plastic radius located inside the lining 

0r wr dpd
dr r dr

θσ σσ β
+

+ − =                                                                                               (6) 

In the above, rσ  and θσ  are the radial and circumferential effective stresses, 
respectively, and β  is the area action coefficient of seepage pressure related to the 

porosity of the material. For concrete materials, 
2 1
3

β  ⊂   
 ; for surrounding soil near 

failure, 1β ≈ [Xie (1994)]. 

In the plastic region, the stress must satisfy the Mohr–Coulomb yield condition. With 
1 r wpσ σ β= +  and 3 wpθσ σ β= + , the yield condition can be expressed as 

( ) ( )1 sin 1 sin 2 cos 2 sinr wc pθϕ σ ϕ σ ϕ β ϕ+ − − = −                                                        (7) 
Using Eq. (7), Eq. (6) can be rewritten as follows: 

( )
2 cos 2 sin2sin 0

1 sin 1 sin
w wr r c p dpd

dr r r dr
ϕ β ϕσ σ ϕ β

ϕ ϕ
−

− + − =
− −

                                                  (8) 

Considering the boundary condition ( )
arc ar r

pσ
=

= −  and solving differential Eq. (8), the 
stress distribution of the plastic region of the lining is given by 
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1
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σ
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where 
1 1 1

1 1
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According to knowledge of elasticity [Timoshenko and Goodier (1969)], stress 
distribution in the elastic region can be calculated by considering the boundary 
conditions and the displacement compatibility condition of the soil lining (11): 
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                                                                     (11) 

where rcu  and rsu  represent the radial displacement of the lining and the surrounding soil, 
respectively, and rpq  is normal stress at the elastic-plastic interface. The stress 
distribution of the lining and surrounding soil in the elastic zone is calculated by 
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Normal stress at the elastic–plastic interface rpq can be obtained using Eqs. (7) and (12) 
as follows: 
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If the plastic radius is exactly at the inner diameter of the lining, i.e., p ar r= , then 

rp aq p= . Define this internal pressure as the first critical pressure 1crp , i.e., limit pressure 
as in-situ stress unloading causes the initial lining yield. According to Eqs. (9) and (11),  

( )
2sin

1 sin

lnp p
rp a

a a

r r
q p A A B

r r

ϕ
ϕ−   

− = − − + −   
   

                                                                     (13) 

The above equation is a transcendental equation of pr  that can be solved by the 
iterative method. 

3.2 Elastic-plastic interface in soil 

 
Figure 3: Plastic radius in the surrounding soil 

This subsection deals with the situation where the elastic–plastic interface is located 
inside the surrounding soils (see Fig. 3). In the plastic region, the stress distribution 
should still satisfy the equilibrium condition (8) and yield criterion (7). Using boundary 
conditions ( )

arc ar r
pσ

=
= −  and ( )

prs rpr r
qσ

=
= − , plastic stress distribution in the lining and 

surrounding soil can be obtained by solving Eq. (8): 
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At the interface of the surrounding soil and the lining ( ) ( )
b brc rsr r r r

σ σ
= =

= , the plastic 
radius can be calculated by 
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In elastic areas pr r≥ . By combining boundary conditions ( )
prs rpr r

qσ
=

= −  and 

( ) 0rs r
pσ

→∞
= − , the stress distribution can be given by Lame’s solution in elasticity: 
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The above formula 02rs s pθσ σ+ = −  holds at pr r= . According to the yield condition (7), 

normal stress at the elastic–plastic interface rpq  is calculated as follows: 

0 2 2 2 2(1 sin ) cos + sinrp wq p c pϕ ϕ β ϕ= − − . 

4 Tangential stress as maximum principal stress 
For hydraulic pressure tunnels, the inner surface of the lining bears very high water 
pressure while in service. When the internal water pressure is large enough or the support 
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pressure is too large, the plastic the structure of the tunnel can yield. In this case, the 
radial compressive stress is large, and circumferential compressive stress is small and can 
even appear as tensile stress. The maximum principal stress should thus be chosen as θσ . 
Then, 1 wpθσ σ β= + , 3 r wpσ σ β= + , and the Mohr–Coulomb yield condition can be 
expressed as 

( ) ( )1 sin 1 sin 2 cos 2 sinr wc pθϕ σ ϕ σ ϕ β ϕ+ − − = −                                                       (17) 
Using Eq. (17), the differential equation for equilibrium (6) can be rewritten as follows: 
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w wr r c p dpd
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ϕ ϕ
−

+ − − =
+ +

                                                 (18) 

4.1 Elastic-plastic interface located in lining 
The stress distribution of the lining in the plastic area can be obtained by solving Eq. (18) 
with the boundary conditions ( )

arc ar r
pσ

=
= − , and introducing 1c c=  and 1=ϕ ϕ , 
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In the elastic area pr r≥ , according to boundary conditions at the elastic-plastic interface, 
can get 
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If the plastic radius is exactly at the inner diameter of the lining p ar r= , rp aq p= . This 
internal pressure is defined as the second critical pressure 2crp , i.e., critical internal 
pressure when the lining begins to yield owing to excessive internal pressure. The plastic 
radius can be determined using the above equation and Eq. (19): 
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4.2 Elastic-plastic interface located in soil 

Considering the boundary conditions ( )
arc ar r

pσ
=

= −  and ( )
prs rpr r

qσ
=

= − , and solving Eq. 
(18), the plastic stress distribution in the lining and surrounding soil is obtained as follows: 
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According to the contact condition between the surrounding soil and the lining 
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    (24) 
The third critical pressure can be defined by the above equation: When the internal 
pressure ap  continues to increase and the plastic radius extends only to the surrounding 
soil, this critical internal pressure is called the third critical pressure 3crp . In the elastic 
area 0+ 2rs s pθσ σ = − , by combining the yield condition (17), normal corresponding 
forces on the elastic–plastic interface is calculated by 

0 2 2 2 2(1+sin )+ cos sinrp wq p c pϕ ϕ β ϕ= −  

5 Calculation of an example 
According to the elastic–plastic analysis of the surrounding soil and lining, the stress 
state of a deep circular tunnel is clearly different under different loads. For instance, the 
formulae for the yield radius and stress are altered, and the seepage forces influence 
every coefficient of stress distribution. For a more intuitive analysis, the following 
examples is used, and its parameters are given in Tab. 1. The influence of these input 
parameters on the model is a key point, as noted in the literature [Hamdia, Ghasemi, 
Zhuang et al. (2018); Hamdia, Silani, Zhuang et al. (2017)]. 
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Table 1: Geometry and material parameters of tunnel example 

Parameter definition Symbol Unit Value 
Internal diameter of lining 

ar  m 4 

External diameter of lining 
br  m 5 

Far-field stress  
0p  MPa 10 

Young’s modulus of lining 
1E  MPa 2.00×104 

Poisson’s ratio of lining 
1µ  - 0.167 

Cohesive force of lining 
1c  MPa 5 

Internal friction angle of lining 
1ϕ  ° 45 

Young’s modulus of surrounding soil 
2E  MPa 2.00×103 

Poisson’s ratio of surrounding soil 
2µ  - 0.25 

Cohesive force of surrounding soil 
2c  MPa 1 

Internal friction angle of surrounding soil 
2ϕ  ° 45 

Permeability coefficients of surrounding soil 
sk  m/d 0.304 

Permeability coefficients of lining 
ck  m/d 0 

Area action coefficient of seepage pressure β  - 0.83 

If water pressure on the external lining is w w wp Hγ= , we can get w
w w

w

pr H
γ

≈ = . When 

internal pressure ap  is fixed, an increase in the cohesive force or internal friction angle 
reduces the area of the plastic region. This area increases with a decrease in the cohesive 
force or internal friction angle. Moreover, the far-field stress 0p  and internal pressure ap  
also affect the stress distribution of the surrounding soil and lining. The results below can 
be obtained from the values in Tab. 1 for the Young’s modulus and Poisson’s ratio, 
which control the displacement of lining and surrounding soil. For the permeability 
coefficients of lining 

ck , we consider a special case where the lining has a waterproof 

function (impervious grade P12). 
ck  is thus set to zero. 

If the influence of the seepage force on the tunnel is not considered, i.e., 0β = , Ren’s 
result is obtained: in-situ stress release after tunnel excavation and inner pressure =0ap , 
and the plastic radius is calculated as 4.9 mpr = , and is located inside the lining. To 
reduce the yield radius, it is necessary to increase the support force ap . When the 
support force reaches the first critical pressure of 4.13 MPa, the plastic area disappears. If 
the tunnel is a hydraulic pressure tunnel, the inner pressure ap  is very large when the 
tunnel is in service. If ap  is between the first critical pressure 1 4.13 MPacrp =  and the 
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second critical pressure 2 18.55 MPacrp = , both the lining and the surrounding soil are in 
the state of elastic stress. When 18.55 MPaap > , the lining begins to yield first. If the 
inner pressure continues to increase and reaches =19.5 MPaap , the plastic area extends 
to the interface between the lining and the surrounding soil, i.e., 5 mpr = . At this stage, 
the excessive inner pressure leads to a change in the maximum principal stress from 
radial stress to tangential stress. If the inner pressure continues to increase, the plastic 
area extends to the surrounding soil. The results of calculation are: =22.4 MPaap  and 

=5 mp br r= . Following this, with the increase in inner pressure, the plastic area further 
expands in the surrounding soil. 

Considering the influence of seepage water forces on the tunnel, following tunnel 
excavation, according to Eq. (13) if the plastic radius 5 mpr =  and inner pressure 

=0.55MPaap . Therefore, when =0ap , the plastic radius considering the seepage force 
( 5mpr > ) is larger than that when this force is not considered ( 4.9 mpr = ). With the 
increase in inner pressure ap , the first critical pressure can be obtained according to Eq. 
(13), and 1 4.1258 MPacrp = . If the inner pressure continues to increase, the maximum 
principal stress is transformed from radial to tangential stress, and the second critical 
pressure can be obtained according to Eq. (21). As inner pressure increases, the plastic 
area extends to the entire section of the lining, i.e., =5 mp br r= , and =20.33 MPaap . 
Subsequently, the plastic radius reaches the surrounding soils and, according to Eq. (24), 
the third critical pressure at which the area of the surrounding soil begins to yield can be 
obtained as 3 23.33 MPacrp = . 

Considering the relationship between inner pressure and plastic radius, the selection of 
the maximum principal stress and seepage force influences plastic radius (see Fig. 4). 
The plastic radius decreases with an increase in the inner pressure when the maximum 
principal stress is not assumed to transform from radial to tangential stress. Plastic radius 

pr  is smaller than the lining inner diameter ar  as 1a crp p> , which is unreasonable. It is 
thus necessary to consider the transformation of the maximum principal stress from 
radial to tangential stress. Moreover, the curve of change in the plastic radius with 
internal pressure when water pressure is considered shifts to the right compared with its 
shape water pressure is ignored. This shows that the inner pressure needs to offset the 
effect of seepage water pressure in addition to overcoming the yield stress of the lining 
and surrounding soil. During construction, when the inner pressure is given, the seepage 
water pressure promotes the expansion of the yield area. During operation, when the 
inner pressure is large enough, the maximum principal stress changes into tangential 
stress and the seepage pressure inhibits the expansion of the plastic zone. 
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Figure 4: Relationship between plastic radius and inner pressure 

During the construction of a tunnel, a redistribution of stress is caused by stress release. 
The calculation of the first critical pressure in tunnel construction directly affects the 
design of the tunnel support. The influence of seepage water pressure on the first critical 
pressure is considered. As shown in Fig. 5, the first critical pressure increases almost 
linearly with an increase in seepage water pressure. This indicates that the effect of 
seepage water pressure should be carefully considered during the construction of the 
tunnel because it plays an important role in restraining the expansion of the plastic range 
of the lining and surrounding soil. The variation in the second critical pressure with 
seepage water pressure is contrary to that of the first critical pressure, i.e., it decreases 
almost linearly with increase in seepage water pressure. 
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(a) Relationship between first critical pressure 1crp  and seepage water force 0wp  

 
(b) Relationship between second critical pressure 2crp  and seepage water force 0wp  

Figure 5: The influence of distant seepage water pressure on the first and second 
critical pressures 

The laws of stress distribution of the lining and surrounding soil under given inner 
pressure are now analyzed, and the results obtained by considering seepage water 
pressure are compared with those when this pressure is ignored. Given inner pressure 

=19MPaap , the plastic radius is 4.19 m according to Eq. (21). According to the first and 
third formulae of Eq. (12) and Eq. (19), the curve of radial stress distribution can be 
given. Compared with the results when seepage water pressure is considered, the radial 
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stress has clearly decreased (see Fig. 6). Similarly, according to the second and fourth 
formulae of Eqs. (12) and (19), the curve of tangential stress distribution can be given, 
and is clearly larger than that when seepage water pressure is not considered (see Fig. 6). 

 
 

(a) Radial stress distribution contrast with and without seepage 
 

 
 

(b) Tangential stress distribution contrast with and without seepage 

Figure 6: The influence of seepage force on stress distribution of lining and soil 
( 19 MPaap = ) 
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Given inner pressure =19MPaap , the plastic radius is 5.50 m according to Eq. (24). 
Considering the seepage force, according to Eq. (22) and Lame’s solution, the curves of 
the radial and tangential stress distributions are given by Fig. 7. Compared with Fig. 6, 
the higher the inner pressure, the more prominent the influence of seepage water pressure 
on radial stress distribution, while the change in tangential stress is not prominent. 

 
 

(a) Radial stress distribution contrast with and without seepage 
 

 
 

(b) Tangential stress distribution contrast with and without seepage 
 

Figure 7: The influence of seepage force on stress distribution of lining and soil 
( 25 MPaap = ) 
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The above calculation and analysis show that it is necessary to select the maximum 
principal stress reasonably according to different periods of tunnel construction and 
service, and the mechanism of the influence of seepage water pressure on stress on the 
tunnel changes. 

6 Conclusions 
Based on previous studies, this paper studied the effect of the seepage force on 
elastoplastic behavior of a tunnel with lining during construction and service. The 
maximum principle stress may change under different loads, and lead to differences in 
the elastoplastic behaviors of the surrounding soil and lining. 
Owing to different distributions of internal pressure, the mechanisms of plastic failure of 
the tunnel’s lining structure and surrounding soil change. The lining and surrounding soil 
entering the yield state generally encounter the following two situations: Support 
resistance during construction is insufficient to resist in-situ stress unloading caused by 
stratum disturbance, and the plastic failure of the lining structure (and part of the 
surrounding soil) occurs owing to excessive inner support resistance or pressure 
distribution in the tunnel. Methods to calculate the first, second, and third critical 
pressures were given. The stress field and plastic radius were determined by choosing 
appropriate calculation formulae according to the state of inner pressure distribution. 
Using an example the following was noted: 
(1) The mechanism of influence of seepage water pressure on plastic radius varied in the 
construction and service periods of the tunnel. During tunnel construction, the seepage 
water pressure promoted the plastic zone development of the lining and surrounding soil: 
That is, under the same inner pressure, the plastic radius was larger when the effect of 
seepage water pressure was considered. During the service period, however, with 
increasing inner pressure, the maximum principal stresses in the lining and surrounding soil 
changed into tangential stress while the seepage water pressure inhibited plasticity. The 
expansion of the plastic radius decreased when seepage water pressure was considered. 
(2) The first critical pressure increased with an increase in seepage water pressure. 
During construction, the inner support pressure of the tunnel needed to provide greater 
reaction force when the groundwater head was large. When the support force reached the 
first critical pressure, the development of plastic zone was theoretically restrained. 
(3) Considering the effect of seepage water pressure, the radial stress distribution was 
clearly different. Using inner pressure and comparing the results with those when the effect 
of seepage water pressure was ignored showed that the radial stress distribution when this 
pressure was considered was significantly reduced. The higher the inner pressure, the more 
obvious the influence of seepage water pressure on the radial stress distribution. 
  (4) The influence mechanism of seepage water pressure on the stress distribution of the 
lining and surrounding soil also changed in different periods of tunnel construction and 
service, as did the mode of influence of seepage water pressure on the plastic radius and 
critical inner pressure of the tunnel. 
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