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Abstract: The suitability of six higher order root solvers is examined for solving the 
nonlinear equilibrium equations in large deformation analysis of structures. The applied 
methods have a better convergence rate than the quadratic Newton-Raphson method. These 
six methods do not require higher order derivatives to achieve a higher convergence rate. 
Six algorithms are developed to use the higher order methods in place of the Newton-
Raphson method to solve the nonlinear equilibrium equations in geometrically nonlinear 
analysis of structures. The higher order methods are applied to both continuum and discrete 
problems (spherical shell and dome truss). The computational cost and the sensitivity of 
the higher order solution methods and the Newton-Raphson method with respect to the 
load increment size are comparatively investigated. The numerical results reveal that the 
higher order methods require a lower number of iterations that the Newton-Raphson 
method to converge. It is also shown that these methods are less sensitive to the variation 
of the load increment size. As it is indicated in numerical results, the average residual 
reduces in a lower number of iterations by the application of the higher order methods in 
the nonlinear analysis of structures. 

Keywords: Geometrically nonlinear analysis, higher order methods, predictor-corrector 
algorithms, convergence rate, sensitivity to the increment size. 

1 Introduction 
For several decades nonlinear analysis of structures has been one of the most challenging 
issues in structural and mechanical engineering. In general, the nonlinear behavior of the 
structures is modeled as a system of algebraic nonlinear equations. In many practical 
modeling techniques, the computational methods such as the finite element method, Iso-
geometric method, boundary element method and the meshless method create a system of 
nonlinear equations [Han, Rajendran and Atluri (2005); Cai, Paik and Atluri (2009); 
Ghadiri Rad, Shahabian and Hosseini (2015a, 2015b); Nguyen-Thanh, Zhou, Zhuang et al. 
(2017)]. In most of structural systems analysis, the nonlinear response of the structure can 
present more applicable results than the linear one [Wang and Li (2015); Wang, Li, Wang 
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et al. (2017)]. Especially in thin shells, consideration of large deformation is truly important, 
and several challenges regarding the complex geometry appears during the modeling 
process [Li, Nguyen-Thanh and Zhou (2018); Nguyen-Thanh, Li and Zhou (2018)]. It 
should be mentioned that several numerical techniques have been developed to improve 
the accuracy of the geometrically nonlinear analysis of the structures with complex 
geometry and materials [Schillinger, Düster and Rank (2012); Frikha, Wali, Hajlaoui et al. 
(2016); Hajlaoui, Triki, Frikha et al. (2017); Hajlaoui, Chebbi, Wali et al. (2019)].  During 
the analysis, the solution to the nonlinear equations is used to trace the equilibrium path 
and can be utilized to indicate the structure’s response. Many attempts have been made to 
extend families of the predictor and corrector methods to solve the nonlinear equations [Liu 
and Atluri (2008); Liu, Yeih, Kuo et al. (2009); Liu and Atluri (2011)]. Different iterative 
methods have been developed as the alternative of Newton-Raphson method for solving 
nonlinear solid mechanics problems such as: modified Newton-Raphson [Crisfield (1979)], 
dynamic relaxation method [Brew and Brotton (1971); Alamatian (2012)], Jacobian free 
Newton Krylov methods [Hales, Novascone, Williamson et al. (2012)], preconditioned 
iterative techniques [Saffari, Maghami and Mansouri (2015)], optimization based method 
[Rezaiee-Pajand and Naserian (2018); Habibi and Bidmeshki (2019)], and a group method 
of data handling techniques [Nguyen, Lee, Nguyen-Xuan et al. (2019)]. Solving the 
equilibrium equations shows some disadvantages such as sensitivity to the increment size, 
numerous iterations and even failure in some cases [Carrera (1994); Ritto-Correa and 
Camotim (2008); Leon, Paulino, Pereira et al. (2011)]. Till date, the most dominant method 
to solve the nonlinear problems in structural mechanics is the classical Newton-Raphson 
method [Leon, Paulino, Pereira et al. (2011)]. The Newton-Raphson method is an iterative 
method which is based on Taylor series expansion. The Newton-Raphson method has been 
widely used as the main root solver to develop other techniques in many nonlinear practical 
problems such as pre-and post-buckling analysis [Pagani and Carrera (2017); Pagani, 
Carrera and Augello (2019)], damage detection procedures [Sotoudehnia, Shahabian and 
Aftabi-Sani (2019)] and power flow problems [Sereeter, Vuik and Witteveen (2019)]. It 
should be noted that the performance of Newton–Raphson method has a characteristic that 
makes it sensitive to initial prediction and step size that leads to the development of line 
search method to improve it [Kelley (2003)]. Several attempts have been done to improve 
the nonlinear solvers by improving the convergence rate in nonlinear structural analysis. 
One of the ways to increase the order of convergence is to employ higher order derivatives 
of the functions. The major weak point of these ways is the necessity of higher derivatives 
[Torkamani and Shieh (2011)]. On the other hand, computation of higher order derivatives 
requires lots of computational costs and it is impossible to compute higher order derivatives 
of the function in some cases. 
The other accepted way to improve the convergence rate of an algorithm is to evaluate 
several functions at each iteration, which has been developed in the literature for both 
multivariate and scalar cases [Traub (1982); Petkovic, Neta, Petkovic et al. (2012)]. These 
procedures are named higher order multipoint methods. The most efficient schemes for 
solving nonlinear equations in both multivariate and scalar cases are multipoint iterative 
methods. To overcome the theoretical limits of one-point methods including computational 
efficiency and order of convergence, the multipoint methods are widely investigated 
recently [Petkovic, Neta, Petkovic et al. (2012, 2014)]. In the last decade, because of the 
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fast development of digital computers, a renewed interest in developing and utilizing these 
schemes has emerged. Recently, these methods have been applied to increase the ability of 
nonlinear solution techniques in different fields of engineering. Arroyo et al. [Arroyo, 
Cordero and Torregrosa (2011)] applied a higher order method to approximate the artificial 
satellite preliminary orbits. Six higher order methods are used instead of the Newton-
Raphson method in J2 and Gurson plasticity constitutive model by Krian et al. [Krian, Li 
and Khandelwal (2015)]. The applicability of higher order nonlinear methods to solve the 
power flow equations is investigated by Derakhshandeh and Pourbagher [Derakhshandeh 
and Pourbagher (2016)]. The performance of higher order methods to solve the nonlinear 
equations in fracture analysis is tested by Kiran and Khandelwal [Kiran and Khandelwal 
(2018)]. More recently, Maghami et al. [Maghami, Shahabian and Hosseini (2018)], 
presented four modified techniques for the equilibrium path following of structures beyond 
the limit points based on the Multipoint methods. 
The main novelty of this paper is to study the effect of convergence rate on the performance 
of geometrically nonlinear analysis in different fidelity levels. To achieve this purpose in 
the present study, six higher order methods with different convergence rate are employed 
to solve the nonlinear equilibrium equations arise in large deformation analysis of 
structures. The higher order methods consist of two third order, two fourth order and two 
fifth order convergence rate procedures. It worth noting that these higher order methods 
have been developed as iterative solvers. In this article, six algorithms are utilized that 
employs the higher order methods as the root solvers in an incremental-iterative manner 
for nonlinear analysis of the structures. As the number of increments controls the number 
of converged points and the fidelity level, the present study helps to understand the 
performance of higher order methods when deals with incremental process. 
The main purposes of this study include, (i) to investigate the efficiency of six higher order 
iterative methods with different order of convergence rate in geometrically nonlinear 
analysis of structures, (ii) to evaluate the feasibility and computational cost of these 
procedures in practical nonlinear examples, (iii) to apply six step by step algorithms to use 
higher order method instead of Newton-Raphson in nonlinear analysis, (iv) to evaluate the 
sensitivity of higher order methods and the Newton-Raphson method with respect to the 
load increment size, (v) to investigate the convergence characteristics of different higher 
order methods and the average residual in nonlinear analysis of structure. 

2 Geometric nonlinearity and large deformation analysis of structures 
It is better to consider the geometric nonlinearities in all kinds of incremental analysis. To 
analyze the large deformation of structure it is necessary to apply the loads in an 
incremental manner and the geometric nonlinearity should be considered in the formulation. 
The consideration of geometric nonlinearities is well known in buckling, fabric structures, 
cable nets and so many other problems. The variation formulation of a body based on the 
principle of the virtual work is expressed as 

ext int 0.W W Wδ δ δ= − =              (1) 

The internal work intWδ can be described as 
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int :
V

W dVδ δ= ∫ E S              (2) 

where δE denotes the variation of strains, and S is the second Piola–Kirchhoff stress tensor. 
It worth mentioning that Eq. (2) can be written in details for any arbitrary solid element 
e.g., the internal virtual work for a shell element is integrated through the thickness of the 
shell as follows 

( ): : :
V A

dV dAδ δ δ= +∫ ∫E S n ε m κ              (3) 

here, t=n Cε  is the membrane stresses, and ( )3 /12t=m Cκ denotes the bending stress 

with the material tensor C  [Li, Nguyen-Thanh, Huang et al. (2020)]. The external work 
can be expressed as 

ext
A

W dA dδ δ δ
Γ

= + Γ∫ ∫ 0b x h x              (4) 

where, b is the body force, and 0h is the prescribed traction. The first derivative of the 
virtual work yields the unbalanced force vector: 

ext int
ext int

W W∂ ∂ = − = − = ∂ ∂ 
F F F 0

x x
             (5) 

here, extF is the external load vector, and intF is the internal load vector.  
In this paper, the higher order solution techniques are applied in nonlinear analysis of truss 
and shell examples. The stiffness matrix and the internal force vector are obtained based on 
load perturbation [Green, Knops and Laws (1968); Levy and Gal (2003); Gal and Levy 
(2006)] of the linear discrete equilibrium equations of an element in global coordinates. This 
formulation leads to the description of the stiffness matrix as the gradient of the nodal force 
vector. The equations of equilibrium for large deformation of structure can be written as 

T
int ext=N f F              (6) 

here, intf  is a vector containing the internal member forces resulting from stresses, N is an 
operator that describes the system geometric in equilibrium. Eq. (6) takes the below form 
under a perturbation 

T T
int int extd +N d =d .N f f F              (7) 

The total displacement vector ( x ) is used to represent the deformation of the structure. 
The nodal displacement variation vector δ  is the perturbation of the total displacement 
vector. By use of the chain rule of partial differentiation, the term T

intN df  in Eq. (7) 
indicates the variation of the member forces while the matrix N  is fixed. In fact, this term 
of the equation is the linear elastic theory as follows 

T
int EN d →f K δ              (8) 

here, EK is the elastic stiffness matrix. Whereas, the geometric stiffness matrix is obtained 
from the term T

intdN f  in Eq. (7) as follows 
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( )
int

T
int G fixed

d →
f

N f K δ              (9) 

where, GK  is the geometric stiffness matrix, and the following equation represents the 
relation between the displacements and the external forces 

( )E G extd+ =K K δ F              (10) 

where this equation represents that a small change in the external forces leads to a variation 
in nodal displacement vector [Levy and Spillers (2013)]. The tangent stiffness matrix can 
be obtained as follows 

T E G .= +K K K              (11) 
This matrix is obtainable by analytical methods only for some simple structures and it is 
constructed by numerical methods such as finite element and meshless for real problems. 
In this article, a two-node bar element is utilized to model the truss domes and the shell 
element is a combination of constant stress flat triangular element and the discrete 
Kirchhoff theory flat plate element [Levy and Spillers (2013)]. 

2.1 The Geometric stiffness matrix of bar element 

The geometric stiffness matrix of a bar element is the gradient of  T
int

e eN f  [Levy and 

Spillers (2013)]. int
ef  is the internal force of element e  and Te N is a vector that contains the 

geometric characteristics of the element in the following formula 

{ } { }e e e e e e e e e
x y z x y zn n n n n n= − = − − −N n n             (12) 

where en is a unit vector that is shown in Fig. 1, and e
xn , e

xn  and e
zn  are its componenets. 

The geometric stiffness matrix could be obtained as follows 

( )
sub sub

T G G
G int sub sub

G G

e e  −
= ∇ =  − 

K K
K N f

K K
                         (13) 

sub
GK can be computed as  

( )sub Tint
G

e
e e

eL
 

= − 
 

fK I n n                          (14) 
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Figure 1: Bar element 

2.2 The Geometric stiffness matrix of shell element 
The geometric stiffness matrix of triangular shell element in local space can be split into 
three distinct matrices: 

mem shell plate

G G G GIP OP IP
       = + +       K K K K              (15) 

where the three terms on the right hand side of Eq. (15) is in-plane geometric stiffness 
matrix of the triangular membrane element, out-of-plane geometric stiffness matrix of 
triangular shell element and in-plane geometric stiffness matrix of triangular plate element 
respectively. It is important to note that the tangential stiffness also includes the linear 
elastic stiffness that is formed as follows 

mem plate

E E E     = +     K K K              (16) 

where first and second terms on the right hand side of Eq. (16) are the linear elastic stiffness 
matrix of plane stress triangular element (Fig. 2) and linear elastic stiffness matrix of 
triangular plate element (Fig. 3). Therefore, the final geometrically nonlinear triangular 
shell element has eighteen degrees of freedom including three displacements and three 
rotations at each node. A detail description on the stiffness matrices is explained by Levy 
et al. [Levy and Spillers (2013)]. 

 
Figure 2: Triangular membrane element 
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Figure 3: Triangular plate element 

3 The Newton-Raphson and higher order methods for nonlinear analysis 
Let F be a real function. If ( ) =F α 0  then α  is called a root of the equation 

( ) =F x 0              (17) 
As it is obvious, the roots of Eq. (5) can be obtained analytically only for some special 
cases. The mathematical formulation of the Newton-Raphson (NR) method to find the roots 
of Eq.  (5) in an iterative manner is  

( ) ( )1
1n n n n

−
+ ′= −x x F x F x              (18) 

where, ( ) n n
n

×′ ∈F x R  is a nonsingular Jacobian matrix which is given as 

( )

1 1

1

1
n

m

n

m m

m x x

F F
x x

F F
x x

=

∂ ∂ 
 ∂ ∂ 

′  =
 ∂ ∂ 
 ∂ ∂ 

F x



  



             (19) 

The higher order multipoint methods are effective numerical techniques that can be applied 
in solving any nonlinear equation [Petkovic, Neta, Petkovic et al. (2012)]. Six higher order 
methods are addressed here. It should be noted that these higher order methods are applied 
instead of the Newton-Raphson method to solve the nonlinear equilibrium equations of 
structures in this paper. These higher order methods do not require higher order derivatives 
to achieve a higher convergence rate. 

3.1 Homeier method (HM) 
A two-steps cubically convergent method was developed by Homeier [Homeier (2004)] 
for the multivariate case, which can be given as 

( ) ( )11
2n n n n

−′= −y x F x F x              (20) 
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( ) ( )1
1n n n n

−
+ ′= −x x F y F x              (21) 

This method was earlier presented as a modification of the Newton-Raphson method for 
finding the root of a univariate function [Homeier (2003)]. In each iteration, the procedure 
needs one evaluation of the function vector and the Jacobian has to be evaluated twice for 
solving two linear systems with the Jacobian as the coefficient matrix. 

3.2 Weerakoon and Fernando method (WFM) 
The two-step method for solving the nonlinear equations is as follows 

( ) ( )11
2n n n n

−′= −y x F x F x              (22) 

( ) ( ) ( )-1
1 2 .n n n n n+ ′ ′= −  +  x x F y F x F x              (23) 

This iterative third order method is a special case of Traub’s techniques [Traub (1982)]. In 
this iterative method, the Jacobian matrix is evaluated two times in each iteration. 

3.3 Jarrat method (JM) 
The fourth order Jarratt's method [Jarrat (1966)] is given as 

( ) ( )12
3n n n n

−′= −y x F x F x              (24) 

( ) ( ) ( ) ( ) ( ) ( )-1 1
1 3 3 .n n n n n n n n

−
+ ′ ′ ′ ′ ′= −  −   +    x x F y F x F y F x F x F x           (25) 

At first, this fourth order procedure was proposed by Jarrat (1966) for the univariate case. 
Later, this method is applied in multivariate cases in many studies [Sharma and Sharma 
(2010); Sharma and Gupta (2014)]. This two-steps procedure requires the evaluations of 
one function, two first derivatives and two matrix inversions. 

3.4 Darvishi and Barati method (DBM) 
The fourth order Darvishi and Barati method [Darvishi and Barati (2007a)] is defined as 

( ) ( )-1 ,n n n n′= −y x F x F x              (26) 

( ) ( ) ( )( )-1 ,n n n n n′= − +z x F x F x F y              (27) 

( ) ( ) ( )
-1

1
1 2 1 .
6 3 2 6

n n
n n n n n+

 + ′ ′ ′= − + +  
  

x zx x F x F F z F x            (28) 

This method is a modification of a third order method presented by Darvishi et al. [Darvishi 
and Barati (2007b)]. DBM requires the evaluations of two functions, three first derivatives 
and two matrix inversions. 

3.5 Cordero and Torregrosa method (CTM) 
The fifth order method presented by Cordero et al. [Cordero and Torregrosa (2007)] is 
given as 
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( ) ( )-1 ,n n n n′= −y x F x F x              (29) 

( ) ( ) ( )-1
2 ,n n n n n′ ′= −  +  z x F x F y F x              (30) 

( ) ( )-1
1 .n n n n+ ′= −x z F y F z              (31) 

In this three-step method two function evaluations, two Jacobean matrix evaluations and 
three matrix inversions are required. 

3.6 Sharma and Gupta method (SGM) 
This method is a fifth order convergence technique that is proposed by Sharma et al. 
[Sharma and Gupta (2014)] as 

( ) ( )-11 ,
2n n n n′= −y x F x F x              (32) 

( ) ( )-1 ,n n n n′= −z x F y F x              (33) 

( ) ( ) ( )-1 -1
1 2 .n n n n n+

 ′ ′= − − x z F y F x F z              (34) 

In each iteration of SGM, two function evaluation and two matrix inventions are needed. 

4 The implementation of the higher order methods in nonlinear analysis of structures 
The nonlinear analysis of structures is an incremental-iterative manner and the solution 
algorithms are called predictor-corrector techniques. In this section, the higher order 
methods are presented in an incremental-iterative framework. Three step by step 
algorithms are presented to apply the higher order methods to solve the nonlinear 
equilibrium equations. The HM, WFM and JM techniques have two steps in each iteration. 
Therefore, the corresponding algorithms have many steps in common. The first three 
methods are represented in Algorithm 1. Algorithm 2 is utilized to represent DBM 
technique. The CTM and SGM are utilized to develop Algorithm 3.  
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Algorithm 1: The implementation of HM, WFM and JM. 
Initialization 

 For j=1: ninc 
 ( ) ( ) 1

ext ext ext
j j−← + ∆F F F  

  While j
iRes tol≤  for i=1: maxit 

  Calculate ( )int
j

iF and ( )Tx
j

iK according to j
ix  

  Compute the unbalanced force ( ) ( ) ( )ext int
j j j

i i i= −F F F  

HM and WFM ( ) ( ) ( )
1

Tx
1
2

j j j
y i ii

−
 =  δ K F  

JM ( ) ( ) ( )
1

Tx
2
3

j j j
y i ii

−
 =  δ K F  

  Update the global nodal displacement ( ) jj j
i i y i
← +y x δ  

  Calculate ( )Ty

j

i
K according to j

iy  

HM ( ) ( ) ( )
1

Ty

jj j
x i ii

−
 =   

δ K F  

WFM ( ) ( ) ( ) ( )
1

Tx Ty2
jj j j

x i i ii

−
 = +  

δ K K F  

JM ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

Tx Ty Tx Ty Tx3 3
j jj j j j j

x i i i i ii i

− −     = − +        
δ K K K K K F  

  Update the global nodal displacement ( )1
jj j

i i x i+ ← +x x δ  

  End 
 Save the converged load and displacement 
 End 
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Algorithm 2: The implementation of DBM. 
Initialization 

 For j=1: ninc 
 ( ) ( ) 1

ext ext ext
j j−← + ∆F F F  

  While j
iRes tol≤  for i=1: maxit 

  Calculate ( )int
j

iF and ( )Tx
j

iK according to j
ix  

  Compute the unbalanced force ( ) ( ) ( )ext int
j j j

i i i= −F F F  

  ( ) ( ) ( )
1

Tx

j j j
y i ii

−
 =  δ K F  

  Update the global nodal displacement ( ) jj j
i i y i
← +y x δ  

  Calculate ( )int

j

y i
F according to j

iy  

  Compute the unbalanced force ( ) ( ) ( )ext int

j jj
y yii i

= −F F F  

  ( ) ( ) ( ) ( )
1

Tx

jj j j
z yi i i i

−   = +    
δ K F F  

  Update the global nodal displacement ( ) jj j
i i z i← +z x δ  

  Calculate ( )Tz
j

iK according to j
iz  

  Calculate ( )Txz
j

iK according to ( ) / 2j j
i i+x z  

  ( ) ( ) ( ) ( ) ( )
1

Tx Txz Tz
1 2 1
6 3 6

j j j j j
x i i i i i

−
 = + +  

δ K K K F  

  Update the global nodal displacement ( )1
jj j

i i x i+ ← +x x δ  

  End 
 Save the converged load and displacement 
 End 
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Algorithm 3: Implementation of CTM and SGM 
Initialization 

 For j=1: ninc 
 ( ) ( ) 1

ext ext ext
j j−← + ∆F F F  

  While j
iRes tol≤  for i=1: maxit 

  Calculate ( )int

j

y i
F and ( )Tx

j

iK according to j
ix  

  Compute the unbalanced force ( ) ( ) ( )ext int
j j j

i i i= −F F F  

CTM ( ) ( ) ( )
1

Tx

j j j
y i ii

−
 =  δ K F  

SGM ( ) ( ) ( )
1

Tx
1
2

j j j
y i ii

−
 =  δ K F  

  Update the global nodal displacement ( ) jj j
i i y i
← +y x δ  

  Calculate ( )Ty

j

i
K according to j

iy  

CTM ( ) ( ) ( ) ( )
1

Tx Ty2
jj j j

z i i ii

−
 = +  

δ K K F  

SGM ( ) ( ) ( )
1

Ty

jj j
z i ii

−
 =   

δ K F  

  Update the global nodal displacement ( ) jj j
i i z i← +z x δ  

  Calculate ( )int
j

z i
F  and ( ) ( ) ( )ext int

j j j
z zi i i

= −F F F  according to j
iz  

CTM ( ) ( ) ( )
1

Ty

jj j
x zi ii

−
 =   

δ K F  

SGM ( ) ( ) ( ) ( )
1 1

Ty Tx2
jj j j

x zi i ii

− −    = −      
δ K K F  

  Update the global nodal displacement ( )1
jj j

i i x i+ ← +x z δ  

  End 
 Save the converged load and displacement 
 End 
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In the developed Algorithms, the upper index is used to show the number of increment ( j ), 
the lower index shows the number of iteration ( i ), and maxit is the maximum number of 
iterations. Also, ninc denotes the maximum number of load increments. In fact, the 
maximum number of load increments specifies the increment size as follows 

ext
ext ninc

∆ =
FF              (35) 

where, extF is the total external load vector that is applied on the structures in an 
incremental manner by equal increment size of ext∆F . It should be emphasize that the 
number of converged points on the equilibrium is equal to ninc. Therefore, the level of 
fidelity of the obtained equilibrium path is dependent to the maximum number of load 
increments. As it was mentioned before, the main goal of this paper is to study the 
performance of different higher order methods in different fidelity levels. As a consequence, 
the numerical analysis is done in different ninc. In the presented algorithms, the 
convergence criterion is defined as 

( )
ext

j

ij
iRes tol= ≤

F

F
             (36) 

here, j
iRes  is the residual and tol is the tolerance [De Borst, Crisfield, Remmers et al. 

(2012)]. To show the characteristics of different methods for solving the nonlinear 
equilibrium equations, the average residual in each analysis case is computed. The average 
residual is the mean of the residual in different loading steps at a certain iteration which is 
computed as follows 

1

ninc
j

i
j i

Res
AR

ninc
==
∑

             (37) 

5 Numerical examples and discussions 
The efficiency of the higher order methods for nonlinear analysis of structures is 
comparatively explored in this section. Two examples were solved for numerical 
verification and evaluation of the presented algorithms. A computer program based on the 
presented procedures is developed in MATLAB. In order to evaluate the number of 
iterations, the nonlinear equilibrium path for each example is followed in an incremental-
iterative manner. Each example is solved by 95 different load increment size and the 
sensitivity of the algorithms with respect to the change in the load increment size is 
evaluated. The number of load increments varies from 5 to 100. The tolerance (tol) is set 
to 1 10e − . The maximum number of iteration is equal to 20 in all the analysis. The 
definitions of the terms utilized in numerical results are presented in Tab. 1. 
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Table 1: The abbreviations and their definitions in numerical results 
Term Definition 

NR Newton-Raphson 
HM Homeier Method 

WFM Weerakoon and Fernando Method 
JM Jarrat Method 

DBM Darvishi and Barati Method 
CTM Cordero and Torregrosa method 
SGM Sharma and Gupta Method 
NIT Number of Iterations 
NUE Number of Unbalanced Force Evaluations 
NSE Number of Stiffness Matrix Evaluations 
NMI Number of Matrix Inversions 

RPR% Relative Percentage Reduction % 
AR Average Residual 

ninc Maximum Number of Increments 

5.1 Schewdeler’s dome  
The first example shown in Fig. 1, is a truss dome with 264 elements and 97 nodes. The 
axial stiffness of all elements is 6.4 5EA e= + kN  and the structure has 291 DOFs. The 
structure’s hinged supports are shown as black nodes in Fig. 4. A downward load 30P =
kN  is applied at the apex of this dome truss. This structure has been used to evaluate several 
numerical methods [Greco, Gesualdo, Venturini et al. (2006); Saffari, Maghami and 
Mansouri (2015)]. 

 
Figure 4: Schewdeler’s dome truss (dimensions are given in cm) 
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The Schewdeler’s dome truss is analyzed by the represented algorithms and the Newton-
Raphson method. The load-displacement curve of the apex node is depicted in Fig. 5. As 
can be seen in this figure, the load-deformation curves that are obtained from the higher 
order methods and the Newton-Raphson are nearly the same. The contour plots of stress in 
the deformed configuration is depicted in Fig. 6. Fig. 7 shows the contour plots of 
displacements in the last converged point on the equilibrium path. 

 
Figure 5: The nonlinear load-displacement curve of Schewdeler’s dome truss 

 
Figure 6: The contour plots of stress in Schewdeler’s dome truss after deformation 
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Figure 7: The contour plots of displacements in Schewdeler’s dome truss after deformation 

To investigate the sensitivity of the higher order root solvers with respect to the variation 
of increment size, the nonlinear analysis of Schewdeler’s dome truss is conducted by 
various ninc. The number of load increments varies from 5 to 100. The results related to 
the analysis of the Schewdeler’s dome truss in five different analysis cases (5, 25, 50, 75 
and 100) are provided in Tab. 2. As can be seen in this table, all the higher order methods 
require a lower number of iterations to converge in all the loading cases. As it was 
mentioned earlier, the HM and WFM have the same order of convergence, JM and DBM 
are fourth order methods and CTM and SGM are the methods with fifth order of 
convergence. Based on Tab. 2, every two methods that have the same converge rate (e.g., 
HM and WFM) show the similar performance during the analysis and the required number 
of iterations in the nonlinear analysis of the truss dome is nearly the same. In this table, 
among the higher order methods, CTM has the most value of RPR in all the analysis cases 
and HM and WFM require the least computational cost. It is reflected in Tab. 2 that the 
raise in maximum number of load increment (increase in fidelity level) leads to an increase 
in the required number of iterations to show the convergence. 
Fig. 8 shows the average residual in each iteration. This figure can be considered as the 
main result that shows the cause of the difference occurred during the analysis by different 
higher order methods. The characteristics and the accelerated convergence rate of the 
presented algorithms in three different load increments are shown in this figure. As can be 
seen in Fig. 8, the higher order methods accelerate the convergence rate and the Newton-
Raphson method requires more iterations to reduce the average residual when it is 
compared to the higher order methods. It is clear in Fig. 8, which the cubic convergence 
methods (HM and WFM) have the same behavior and the required number of iterations by 
these methods is more than the other higher order techniques to reduce the average residual. 
As indicated in Fig. 8, the fifth order methods follow shorter paths to achieve the 
convergence. In fact, this figure shows that different methods follow the various paths for 
the convergence. These convergence paths are the reason that these methods have different 
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characteristics. It is obvious that all the higher order methods have a better convergence 
characteristics than the Newton-Raphson method. 

Table 2: comparison of different methods in various number of load increments for 
analysis of Schewdeler’s dome truss 

 Methods 
NR HM WFM JM DBM CTM SGM 

T
he

 m
ax

im
um

 n
um

be
r 

of
 in

cr
em

en
ts

 (n
in

c)
 

5 

NIT 27 21 21 16 17 16 16 
NUE 27 21 21 16 34 32 32 
NSE 27 42 42 32 51 32 32 
NMI 27 42 42 32 34 48 32 

RPR% --- 22.22 22.22 40.74 37.04 40.74 40.74 

25
 

NIT 108 79 80 76 76 75 75 
NUE 108 79 80 76 152 150 150 
NSE 108 158 160 152 228 150 150 
NMI 108 158 160 152 152 225 150 

RPR% --- 26.85 25.92 29.63 29.63 30.55 30.55 

50
 

NIT 205 153 153 150 150 150 150 
NUE 205 153 153 150 300 300 300 
NSE 205 306 306 300 450 300 300 
NMI 205 306 306 300 300 450 300 

RPR% --- 25.36 25.36 26.83 26.83 26.83 26.83 

75
 

NIT 304 227 227 225 225 222 225 
NUE 304 227 227 225 450 444 450 
NSE 304 454 454 450 675 444 450 
NMI 304 454 454 450 450 666 450 

RPR% --- 25.33 25.33 25.99 25.99 26.97 25.99 

10
0 

NIT 403 301 302 300 300 267 273 
NUE 403 301 302 300 600 534 546 
NSE 403 602 602 600 900 534 546 
NMI 403 602 602 600 600 801 546 

RPR% --- 25.31 25.06 25.56 25.56 33.75 32.26 
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Figure 8: Convergence characteristics of different methods in nonlinear analysis of 
Schewdeler’s dome truss 
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To show the variation of the number of iterations in different analysis cases, ninc and the 
corresponding number of iterations required to trace the equilibrium path is shown in Fig. 
9. As can be seen in this figure, the higher order methods require a lower number of 
iterations in all the load increment size cases. Literally, the main reason is the convergence 
speed in different methods. As can be observed in Fig. 9, the fifth order methods have a 
better convergence rate than the fourth order methods and the cubic convergence methods 
perform better than Newton-Raphson method. As ninc increases, the CTM and SGM show 
a better performance than the other presented techniques (Fig. 9). It can be concluded that 
in the high level of fidelity that the applicant requires numerous converged points on the 
path, the fifth order techniques (CTM and SGM) due to their convergence speed, performs 
better among the other techniques.  

 
Figure 9: number of iterations vs. ninc curve in nonlinear analysis of Schewdeler’s dome 
truss 

Fig. 10 compares the relative percentage reduction (RPR%) of iterations for higher order 
methods when compared to the Newton-Raphson method. In this figure, the variation of 
RPR is plotted for different load increment size cases to compare the behavior of the higher 
order methods in the different ninc. As can be seen in this figure, HM and WFM have a 
lower amount of RPR in all the situations than the other higher order methods. These two 
cubic methods reduce the number of the iterations with respect to the Newton-Raphson 
method, but as they have lower convergence speed than the other higher order methods, 
their RPR is lower in all the fidelity levels. In the higher values of ninc (high level of 
fidelity), the performance of the fourth order and the cubic methods are similar together, 
but the fifth order techniques (CTM and SGM) show better performance than the others 
(Fig. 10). It can be concluded that for different level of fidelities the fifth order methods 
have the highest RPR, but in the high level of fidelity, the fifth order methods because of 
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their convergence speed, have a significantly better performance when they are compared 
to the other higher order methods. 

 
Figure 10: relative percentage reduction (RPR%) of iterations vs. ninc graph in nonlinear 
analysis of Schewdeler’s dome truss for higher order methods 

5.2 Shallow spherical shell 
Fig. 11 shows the shallow spherical shell that its geometry is formed as a cut from a sphere 
of radius R. The structure has a circular base with radius r, and it is subjected to a 
concentrated load at its crown. The structure’s support condition is rigid. Penning [Penning 
(1966)] reported the experimental results for the large displacements of this structure for 
the thickness of t=0.05 in, r=3.8 in, R=19.8 in, Poisson’s ratio of 0.3υ = , and Young’s 
modulus of 1.06 7 psiE e= + . The structure is modeled with 176 shell elements. The 
experimental results of this structure have been used for the verification of the numerical 
results in Levy et al. [Levy and Spillers (2013); Maghami, Shahabian and Hosseini (2018)]. 
The represented algorithms are used to analyze the shallow spherical structure. The load-
displacement curve obtained from the numerical methods is compared to the experimental 
results in Fig. 12. The maximum relative displacement difference between the numerical 
results and the experimental results at the same load in Fig. 12 is 2.49%. As it is clear in 
this figure, the numerical results show a good agreement with the experimental results. The 
stress contour plots of deformed shape of spherical shell is represented in Fig. 13. Fig. 14 
shows the contour plots of deformation in deformed configuration of the spherical shell. 
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Figure 11: The shallow spherical shell structure 

       
Figure 12: The nonlinear load-displacement curve of shallow spherical shell structure 
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Figure 13: The contour plots of stress in shallow spherical shell structure after deformation 

 
Figure 14: The contour plots of displacements in shallow spherical shell structure after 
deformation 

To compare the computational costs and the sensitivity of the higher order methods to the 
variation of load increment size, the numerical results related to the higher order methods in 
5 cases are provided in Tab. 3. In these five load increment size cases, all the higher order 
methods require a lower number of iterations to show convergence. It is quite clear that the 
improvement of fidelity (increase in the number of load increment) leads to an increase in 
the number of iterations in all the numerical methods. As can be seen in the numerical results 
of cubic convergence methods, HM requires lower number of iterations and computational 
cost than the WFM in all the five loading cases. Although in some cases, the required number 
of iterations of the JM is more than the DBM, the computational cost of JM to perform as a 
fourth order method is lower than the DBM in all the five situations shown in Tab. 3. By 
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comparing the two fifth order methods, it can be seen that the SGM requires a lower 
computational costs than the CTM in the five cases (Tab. 3). It should also be emphasize that 
due to the convergence speed of the fifth order methods, the required number of iterations to 
show convergence in these techniques is lower than the other methods. 

Table 3: comparison of different methods in various number of load increments for 
analysis of shallow spherical shell structure 

 Methods 
NR HM WFM JM DBM CTM SGM 

T
he

 m
ax

im
um

 n
um

be
r 

of
 in

cr
em

en
ts

 (n
in

c)
 

5 

NIT 61 34 35 33 37 39 39 
NUE 61 34 35 33 74 78 78 
NSE 61 68 70 66 111 78 78 
NMI 61 68 70 66 74 117 78 

RPR% --- 44.26 42.62 45.90 39.34 36.06 36.06 

25
 

NIT 173 119 125 115 114 115 116 
NUE 173 119 125 115 228 230 232 
NSE 173 238 250 230 342 230 232 
NMI 173 238 250 230 228 345 232 

RPR% --- 31.21 27.74 33.52 34.10 33.52 32.94 

50
 

NIT 301 214 235 207 208 208 208 
NUE 301 214 235 207 416 416 416 
NSE 301 428 470 414 624 416 416 
NMI 301 428 470 414 416 624 416 

RPR% --- 28.90 21.93 31.23 30.90 30.90 30.90 

75
 

NIT 423 301 336 297 298 294 298 
NUE 423 301 336 297 596 588 596 
NSE 423 602 672 594 894 588 596 
NMI 423 602 672 594 596 882 596 

RPR% --- 28.84 20.57 29.79 29.55 30.50 29.55 

10
0 

NIT 543 390 429 388 388 345 353 
NUE 543 390 429 388 776 690 706 
NSE 543 780 858 776 1164 690 706 
NMI 543 780 858 776 776 1035 706 

RPR% --- 28.18 20.99 28.54 28.54 36.46 34.99 
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Figure 15: Convergence characteristics of different methods in nonlinear analysis of 
shallow spherical shell structure 
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The variation of the average residual along the iterations are shown in Fig. 15. This figure 
shows the performance of the higher order methods to reduce the residual in a lower 
number of iterations when it is compared to the Newton-Raphson method. In fact, the 
convergence path of numerical methods in Fig. 15 shows the reason that they perform 
differently to achieve convergence.  WFM and HM reduce the average residual in a similar 
way in the three cases. As mentioned earlier, WFM and HM have the same convergence 
rate, and their similar behavior is expected. As can be seen in Figure 15, the fourth and the 
fifth order methods have similar convergence characteristics in the analysis of the shallow 
shell. It worth recalling that at the third shown case with ninc equal to 100 that represent a 
high level of fidelity in this example, the convergence path of the fifth order methods (SGM 
and CTM) is better than that of the fourth order methods (JM and DBM). 
Fig. 16 shows the variation of the number of iterations with respect to the variation of ninc. 
This figure could help to figure out the relation between the fidelity level and the required 
number of iterations in different methods. Also, Fig. 16 can be utilized to compare the 
sensitivity of the Newton-Raphson method and the higher order methods. At the lower 
amount of ninc, the NR method shows sudden variations in the number of iterations that is 
due to the sensitivity of this method to the size of load increments. As could be seen in Fig. 
16, the Newton-Raphson method requires more number of iterations to converge in all the 
loading cases. As a matter of fact, the other methods have a higher convergence rate that 
leads to a lower number of iterations comparing to the Newton-Raphson method. The HM 
has the best performance among the cubic methods and the fifth order techniques (CTM 
and SGM) show a better performance in a high amount of ninc (Fig. 16). Therefore, in 
small increment sizes that the applicant require high fidelity level, the fifth order methods 
have the best efficient performance comparing to the other higher order methods. It must 
be stressed that the pleasant result of the employed methods in term of the number of 
iterations is due to the convergence speed. 
The variation of RPR for different higher order methods are plotted in Fig. 17. This figure 
indicate the relation between the fidelity level and RPR for higher order methods. As could 
be seen in Fig. 17, the numerical results of the higher order methods are obtained in a 
different values of ninc. In fact, this figure can be used to compare the characteristics of 
higher order methods in different load increment sizes and fidelity levels. The two third 
order methods (WFM and HM) have lower convergence speed than the other higher order 
methods, as a consequence WFM has the least amount of RPR in all the load increment 
sizes (fidelity levels). The two fourth order methods (JM and DBM) have nearly the same 
performance in the nonlinear analysis of the shallow spherical shell (Fig. 17). Because of 
the convergence rate, their performance is better than the third order methods. As the fifth 
order methods has the best convergence speed among the solution techniques, it has the 
most RPR in all cases in Fig. 17. 
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Figure 16: number of iterations vs. ninc curve in nonlinear analysis of shallow spherical 
shell structure 

 
Figure 17: relative percentage reduction (RPR%) of iterations vs. ninc graph in nonlinear 
analysis of shallow spherical shell structure for different higher order methods 
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6 Conclusions 
A comparative study on the application of higher order methods in geometrical nonlinear 
analysis of structures is presented. The convergence characteristics and efficiency of the 
employed methods are investigated. Six step by step algorithms are presented which are 
appropriate for the nonlinear analysis using the higher order methods. The higher order 
methods consist of two cubic (HM and WFM), two fourth order (JM and DBM) and two 
fifth order (CTM and SGM) techniques. For the comparison of the performance of these 
algorithms two different structures are analyzed. To show the ability of the six methods, 
both continuum and discrete problems are chosen as the numerical examples. The first 
example is a dome truss and the second one is a shell structure. In the second example, the 
numerical results are compared with the experimental results and the Newton-Raphson’s 
results as well.  
The numerical analysis is done by a various load increment size cases to investigate the 
proficiency of the higher order methods in different fidelity levels. The main results can be 
outlined as: 
• The higher order methods require a lower number of iterations to show convergence 

than the classical Newton-Raphson method in all load increment size cases (fidelity 
levels) of the examples.  

• As the fifth order methods have the best convergence rate among the other 
investigated techniques, these methods (CTM and SGM) require the least number of 
iterations among all the other methods to converge. These techniques have their best 
performance in small step sizes (high levels of fidelity).   

• The convergence characteristics of the presented algorithms reveal that these 
techniques accelerate the reduction of the residual during the analysis in all step size 
cases. Indeed, the convergence path of the methods shows that the higher order 
methods are able to trace a better path to achieve the convergence that is due to their 
convergence rate. 

• As the performance of the cubic methods show, HM has a better performance than 
WF in both the truss and the shell examples. As a matter of fact, these two techniques 
has the same order of convergence, but HM is able to converge in lower number of 
iterations in almost every analysis. 

• The performance of JM shows that it requires lower computational cost than the DBM 
for the analysis of both truss and shell structures in almost every increment load size 
cases. It is also worth noting that JM has two steps, while DBM works in three steps 
to achieve fourth order convergence. This is the main reason that the two methods 
work in different way. 

• Among the fifth order methods, SGM requires the least computational cost in all the 
analysis cases. Actually, this method has the lowest number of iterations among all 
the solution methods in all fidelity levels. 
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