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Abstract: In last few years, big data and deep learning technologies have been 
successfully applied in various fields of civil engineering with the great progress of 
machine learning techniques. However, until now, there has been no comprehensive 
review on its applications in civil engineering. To fill this gap, this paper reviews the 
application and development of artificial intelligence in civil engineering in recent years, 
including intelligent algorithms, big data and deep learning. Through the work of this 
paper, the research direction and difficulties of artificial intelligence in civil engineering 
for the past few years can be known. It is shown that the studies of artificial intelligence 
in civil engineering mainly focus on structural maintenance and management, and the 
design optimization.   
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1 Introduction 
The conference held at Dartmouth university in 1956 was regarded as the initial 
appearance of artificial intelligence (AI), which is a comprehensive discipline involving 
computer, control, linguistics, neuroscience, psychology and philosophy [Cao (2010)]. In 
the broadest sense, AI refers to the ability of a machine or artifact to perform the same 
functions as a human mind. According to Barr et al. [Barr and Feigenbaum (1981)], AI is 
the part of computer science involved in the design of intelligent computer systems, i.e., 
systems that exhibit the characteristics related to intelligence in human behavior, such as 
understanding, language, learning, reasoning, solving problems and so on [Kalogirou 
(2003)]. AI is widely accepted as a technology that offers an alternative way to solve 
complex and ill-defined problems. They can learn from examples, have strong fault 
tolerance which mean that they can deal with both noisy and incomplete data, as well as 
be able to handle non-linear problems [Kalogirou (2003)]. AI has been applied in 
engineering, economy, medicine, military, marine and other sectors. They have also been 
used for modeling, identification, optimization, prediction and control of complex 
systems [Mellit and Kalogirou (2008)]. 
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The development of AI techniques can be divided into the following five periods: the 
incubation period (before 1956), the formation period (1956-1970), the dark period 
(1966-1974), the knowledge application period (1970-1988), and the integrated 
development period (1986-present) [Lu, Chen and Zheng (2012)]. Especially since the 
late 1980s, with the in-depth development of machine learning, computational 
intelligence, artificial neural network and other researches, artificial intelligence 
technology has taken on increasingly wide utilization into other scientific fields. With the 
development of cloud computing and the Internet, data shows explosive growth. 
Different types of data are generated at different stages of the life cycle, and the 
application of big data technology can effectively manage these data [Motawa (2017)]. 
Recently, with significant advances in data acquisition and computing hardware, the field 
of artificial intelligence has proposed a novel machine learning technology called deep 
learning (DL). The key advantage of deep learning is that the multilevel features are not 
designed by human engineers, but by a common learning process [Huang, Li and Zhang 
(2018)]. This article will introduce the origins of various AI techniques and the latest 
developments and applications in various aspects of civil engineering. 

2 Artificial intelligent algorithms and its applications in civil engineering 
2.1 Genetic algorithm 
Genetic algorithm (GA) is one of the most famous evolutionary algorithms, which was 
proposed by Professor Holland of the University of Michigan in 1969 and summarized by 
Holland et al. [Holland (1975); Jong and Dejong (1975); Goldberg (1989)]. GA is a kind 
of random algorithm which simulates the natural process of biological evolution [Rich 
and Knight (1996)], inspired by Darwin’s theory of evolution. Problem states in GA are 
represented by chromosomes that are usually denoted by binary strings. Three operators 
(selection, crossover, and mutation) are used by GA to simulate the natural evolution 
processes [Goldberg (1989); Konar (1999)]. Therefore, GA is an optimum search 
technology based on natural selection and survival of the fittest. 
Since structural health monitoring (SHM) is becoming increasingly attractive owing to its 
potential ability to detect damage, Silva et al. [Silva, Santos, Figueiredo et al. (2016)] 
proposed an unsupervised and nonparametric genetic algorithm for decision boundary 
analysis (GADBA) to support the process of structural damage detection and applied the 
method to the Tamar Bridge in the United Kingdom (Fig. 1). 

   
                        (a)                         (b) 

Figure 1: The Tamar Bridge viewed from (a) River Tamar margins and (b) cantilever 
[Silva, Santos, Figueiredo et al. (2016)] 
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In view of the slow convergence rate of genetic algorithm (GA) in large-scale optimization, 
Mroginski et al. [Mroginski, Beneyto, Gutierrez et al. (2016)] proposed a selective genetic 
algorithm (SGA) for the optimization of cross-sections (solid tubes) of truss structures. 
SGA is based on a preliminary sensitivity analysis of each variable to reduce the search 
space of the evolutionary process. 
Considering the cross-sectional areas of beam, column members and the types of semi-
rigid connections as optimization variables, Truong et al. [Truong, Nguyen and Kim 
(2017)] adopted practical advanced analysis (PAA) and micro-genetic algorithm (GA) to 
optimize space steel frames with semi-rigid joints. Artar et al. [Artar and Daloglu (2018)] 
also employed genetic algorithm and harmony search algorithm to optimize the design of 
steel frames with semi-rigid connections. 
Tracking the change of cable tension over time is helpful to evaluate the health condition of 
cable-stayed bridges, so Zarbaf et al. [Zarbaf, Norouzi, Allemang et al. (2017)] developed a 
method for estimating stay cable tensions of cable-stayed bridges based on genetic 
algorithm (GA) and particle swarm optimization (PSO), taking into account the influence 
of bending stiffness and vertical elongation of the cable. 
Seismic base isolations are relatively perfect passive control systems, which are used to 
reduce the structural responses and prevent the damage of interior sensitive equipment 
and non-structural components. Mehrkian et al. [Mehrkian, Bahar and Chaibakhsh 
(2019)] proposed a multi-objective fuzzy-genetic control method for vibration 
reduction of structures in an irregular base-isolated benchmark building under different 
earthquake scenarios. 
Genetic algorithm provides a general framework for solving complex system optimization, 
which does not depend on the specific field of the problem, so it is widely used in various 
fields of civil engineering. Although genetic algorithm has achieved good results in 
practical engineering, there are still some problems in it. Due to this, scholars all over the 
world have been exploring the improvement and development of genetic algorithm. 

2.2 Swarm intelligence 
The concept of swarm intelligence (SI) was first proposed in 1992 by American scholars, 
Hackwood et al. [Hackwood and Beni (1992)], in the molecular automata system which 
realizes self-organization by the interaction between adjacent individuals in the grid 
space. SI initially referred to algorithms inspired by the collective behavior of social 
insects and other animals [Bonabeau, Dorigo and Theraulaz (1999)]. Nowadays, SI refers 
more broadly to the research about the collective behavior of multi-component systems 
which coordinated by decentralized controls and self-organization [Saleem, DiCaro and 
Farooq (2011)]. Meta-heuristics based on swarm intelligence simulate a group of simple 
individuals, evolve their solutions through interactions and interactions with the 
environment, which show good performance on many difficult problems, and thus have 
become a very active research field in recent years [Lu, Chen and Zheng (2012)]. 

2.2.1 Particle swarm optimization 
Particle swarm optimization (PSO) was jointly proposed by Kennedy et al. [Kennedy and 
Eberhart (1995)] by simulating the social behaviors of animals or insects (such as birds 
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and fish). Particle swarm optimization (PSO) is a population-based global optimization 
technique that enables many independent solutions known as particles to move through 
the hyper dimensional search space to find the optimal solution. Each particle has a 
position vector and a velocity vector, which are adjusted in the iteration by learning the 
optimal local vector of the particle itself and the optimal current global vector of the 
whole population. 
The evaluation of surrounding rock deformation in the process of underground 
excavation can reduce the potential damage and provide help for the reasonable selection 
of design parameters in the subsequent construction. However, there are many factors 
that affect the surrounding rock deformation of underground caverns, so it is hard to 
quantify their influence on the deformation of surrounding rocks. For solving this 
problem, Xue et al. [Xue and Xiao (2017)] presented a least squares support vector 
machine (LSSVM) method based on particle swarm optimization (PSO) algorithm to 
evaluate the deformation of surrounding rocks in underground caverns.  
The squat reinforced concrete (RC) shear wall with low aspect ratio plays an important 
role in resisting lateral seismic loading, so the prediction model of shear capacity of these 
walls is particularly essential to ensure the seismic safety of buildings. Chen et al. [Chen, 
Fu, Yao et al. (2018)] proposed a model to predict the shear strength of squat RC walls 
based on a hybrid algorithm including the artificial neural network and particle swarm 
optimization algorithm (ANN-PSO). 
To extract the higher modes and enhance computational efficiency during the dynamic 
model updating of bridge structures, Qin et al. [Qin, Zhang, Zhou et al. (2018)] applied 
the Kriging model and particle swarm optimization (PSO) to update the dynamic model 
of Jalón Viaduct in Spain (Fig. 2) using higher vibration modes under initial conditions of 
large vibration amplitude. As a surrogate model for a complicated finite element model, 
kriging model is utilized to predict analytical responses and the initial finite element 
model is updated by the PSO algorithm. 

 

Figure 2: The Jalón Viaduct [Qin, Zhang, Zhou et al. (2018)] 

Compared with genetic algorithm and ant colony algorithm, PSO algorithm has the 
characteristics of simple, less adjustment parameters, fast convergence, and good 
robustness, so it is widely used in structural design, function optimization, pattern 
classification, fuzzy system control and so on. 
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2.2.2 Ant colony algorithm  
Dorigo et al. [Dorigo, Maniezzo and Colorni (1991); Dorigo (1992); Colorni and Dorigo 
(1992)] proposed a new intelligent optimization algorithm, Ant System (AS), in the early 
1990s. After several years of development, Dorigo et al. improved the Ant System into a 
general optimization technology, Ant Colony Optimization (ACO) [Dorigo and Caro 
(1999); Dorigo, Caro and Gambardella (1999)]. Its core is indirect communication between 
ants through pheromones, enabling them to find the shortest path from nest to food source. 
ACO algorithm takes advantage of the characteristics from the ant colony by designing 
algorithms to solve optimization problems. 
Determining the noncircular critical slip surface is a key problem in slope stability analysis, 
which can be transformed into an optimization problem. Combined with the typical mature 
limit equilibrium analysis, Gao [Gao (2016)] adopted meeting ant colony optimization 
(MACO) to locate the critical slip surface of slopes. 
To solve the problem of low computational efficiency in the traditional scheduling tool 
critical path method (CPM), Wang et al. [Wang, Abdul-Rahman and Chow (2016)] 
established a schedule acceleration model based on ant colony optimization (ACO) and 
CPM to assist construction personnel in schedule acceleration and ensure reasonable 
allocation of resources on critical path. 

2.2.3 Bee colony algorithm 
The artificial bee colony algorithm was proposed by Karaboga [Karaboga (2005)] in 
2005. Its basic idea is that bees cooperate with each other to complete honey gathering 
tasks through individual division of labor and information exchange. Although individual 
bees have limited abilities, it is always easier for the whole colony to find high-quality 
honey sources without the same command. Compared with the classical optimization 
method, this algorithm has almost no requirements on objective function and constraint, 
and only takes fitness function as the basis of evolution. 
Inverse analysis is a significant tool for characterizing geomechanical parameters according 
to the behavior of rocks under certain boundary conditions. Zhao et al. [Zhao and Yin 
(2016)] presented a new method for inverse analysis by taking advantage of multi-output 
support vector machine (MSVM) and artificial bee colony (ABC) algorithm, which was 
applied to recognize the parameters of the permanent shiplock slope of the Three Gorges in 
China. MSVM was used to plot the relationship between geomechanical parameters and 
displacement, and ABC was applied to find the optimal geomechanical parameters in the 
inverse analysis. 
Due to the complexity of soil properties, it is difficult to establish effective response surface 
for traditional slope stability analysis. Kang et al. [Kang and Li (2016)] proposed an 
intelligent response surface method for system probabilistic stability evaluation of soil 
slopes, in which support vector regression (SVR) was optimized by artificial bee colony 
algorithm (ABC) to establish the response surface and approximate the limit state function.  
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2.2.4 Firefly algorithm 
Yang [Yang (2008)] proposed a heuristic algorithm, the Firefly Algorithm, which was 
inspired by the flickering behavior of fireflies, using points in search space to simulate 
firefly individuals in nature. The search process is simulated as the attraction and 
movement process of firefly individuals. The objective function of solving the problem is 
measured as the position of the individual. The individual survival of the fittest process is 
analogous to the iterative process in which the better feasible solution replaces the worse 
solution in the search and optimization process [Gamdomi, Yang, Talatahari et al. (2013)]. 
At present, the methods used to optimize the shape and size of multi-frequency constrained 
truss structures are time-consuming. To improve the convergence speed and accuracy of the 
algorithm, Lieu et al. [Lieu, Do and Lee (2018)] proposed an adaptive hybrid evolutionary 
firefly algorithm (AHEFA) based on the differential evolution (DE) algorithm and the 
firefly algorithm (FA). Adaptive parameters are used to select the appropriate mutation 
scheme for the trade-off between global and local search capability. 
Numerical model updating is a technique to update the experimental models of structures. 
However, these updating technologies still have some limitations and uncertainties, which 
will make the interpretation of the structures become difficult. Kubair et al. [Kubair and 
Mohan (2018)] established a numerical model based on firefly algorithm, which can 
effectively reduce the difference between experimental and analytical data in the case of 
frame and cantilever beam. 
Although FA has a short history of development, it has some advantages over other 
algorithms in terms of optimization speed and accuracy. However, there are still some 
problems to be solved in its application, such as parameter selection, premature 
convergence and weak theoretical foundation. 

2.2.5 Cuckoo search 
Cuckoo search (CS) is a novel nature-based heuristic algorithm proposed by British 
scholars Yang et al. in 2009 on the basis of swarm intelligence technology [Yang and Deb 
(2009, 2010, 2013)]. The idea of the algorithm is based on the nesting parasitic behavior of 
cuckoos and the Lévy flight behavior of birds. 
The problem of semi-active control of intelligent isolated structures under near-field 
and far-field earthquake excitations involves many contradictory design objectives. In 
order to achieve the control objective and reduce the deformation of the isolation 
system without significantly increasing the acceleration of the superstructure, Zamani 
et al. [Zamani, Tavakoli and Etedali (2017)] employed a multi-objective cuckoo search 
algorithm to optimize the parameters of the fractional order proportional-integral- 
derivative (FOPID) controller. 
Cuckoo search (CS) algorithm has great potential in engineering optimization because it 
is easy to realize and has few parameters. Rakhshani et al. [Rakhshani and Rahati (2017)] 
proposed an intelligent multiple search strategy algorithm (IMSS) coupled with CS and 
covariance matrix adaptation evolution strategy (CMAES), to effectively explore the 
search space and reduce the computational time to find the optimal solution.  
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2.2.6 Krill herd algorithm 
Krill herd algorithm (KH) is a new optimization algorithm proposed by Gandomi et al. 
[Gandomi and Alavi (2012)] in 2012. The KH algorithm is based on the simulation of the 
foraging behavior by krill individuals. The objective function of krill movement is 
correlated with the minimum distances of each individual krill from food and from the 
highest population density. The position of an individual krill is determined by three main 
factors: (i) movement caused by other krill individuals, (ii) foraging activities, and (iii) 
random diffusion [Gandomi and Alavi (2012)]. KH not only has good local and global 
optimization performance, but also can effectively balance global search and local 
development to avoid falling into local extreme values [Wang, Guo, Gandomi et al. 
(2014); Wang, Gandomi and Alavi (2014); Guo, Wang and Gandomi (2014)]. 
The engineering optimization problems are usually non-linear and it is difficult to obtain 
the optimal solutions. In order to evaluate the application of KH algorithm in engineering, 
Gandomi et al. [Gandomi and Alavi (2016)] applied it to solve four engineering problems, 
including tubular column design, three-bar truss design, speed reducer design, and helical 
compression spring design. 

2.3 Artificial neural networks 
Artificial neural networks (ANNs) may be defined as a structure of tightly interconnected 
adaptive simple processing elements (named artificial neurons or nodes) which are able to 
perform large-scale parallel computations for data processing and knowledge representation 
[Schalkoff (1997); Basheer and Hajmeer (2000)]. In 1943, McCulloh et al. [McCulloch and 
Pitts (1943)] proposed the first artificial neuron model (MP model), which adopted 
simplified signal propagation mechanism to imitate some basic functions of human brain 
neurons, thus laying the foundation for the development of early neural computing.  
Adeli et al. [Adeli and Yeh (1989)] published the first journal article on the civil/structural 
engineering applications of neural networks. Since then, neural network has been widely 
used in civil engineering. Artificial neural network (ANN) is a kind of technical 
reconstruction of biological neural network in a simplified sense. Its main task is to build a 
practical artificial neural network model according to the principle of biological neural 
network and the need of practical application, design corresponding learning algorithm, and 
simulate some intelligent activities of human brain. Finally, it is implemented technically to 
solve practical problems. A three-layer feedforward network [Hecht-Nielsen (1990); 
Basheer and Hajmeer (2000)] is shown in Fig. 3, which consists of input layers, hidden 
layers and output layers. The input layers contain the number of independent variables, and 
the output layers correspond to the solutions of the studied problems.  
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Figure 3: Three-layer feedforward network [Hecht-Nielsen (1990); Basheer and Hajmeer 
(2000)] 

The potential surface settlement is one of the most dangerous factors in infrastructure 
tunnel excavations, so accurate prediction of surface maximum settlement (MSS) is the 
key to reduce the risk of surface failure. Hasanipanah et al. [Hasanipanah, Noorian-
Bidgoli, Armaghani et al. (2016)] proposed an artificial neural network (ANN) hybrid 
model based on particle swarm optimization (PSO) to predict MSS caused by tunneling 
along the line 2 of Karaj subway.  
In order to minimize the total cost, bridges should be designed with safety and durability. 
Garcia-Segura et al. [Garcia-Segura, Yepes and Frangopol (2017)] presented an integrated 
multi-objective harmony search with artificial neural networks (ANNs) to reduce the 
computational time of finite element model used in deck analysis. The optimal design of 
the post-tensioned concrete box girder road bridge is carried out for the purpose of the cost, 
the overall safety factor and the initial corrosion time. 
Fiber Reinforced Polymers (FRP) are widely adopted in passive confinement to Reinforced 
Concrete (RC) for improving compressive strength and ductility. Casardi et al. [Cascardi, 
Micelli and Aiello (2017)] presented a model based on artificial neural network (ANN) for 
the prediction of FRP-constrained concrete compressive strength. Compared with the 
general models, the proposed one establishes an analytical relationship without considering 
traditional effectiveness parameter. 
Compared with reinforced concrete products, glass fiber-reinforced polymer (GFRP) bar 
reinforced concrete structures have higher durability. The evaluation of the bonding 
properties of GFRP bars to concrete is of great significance to the design and 
implementation of the polymer-matrix composites (PMCs). Yan et al. [Yan, Lin, Azarmi 
et al. (2017)] proposed a hybrid modeling to predict the bond strength of GFRP bars to 
concrete by using the strong nonlinear mapping ability of artificial neural network (ANN) 
with the global searching ability of genetic algorithm (GA). 
Improper structural design may lead to sudden collapse of multistory reinforced concrete 
buildings, which needs proper analysis of all factors that affects the structure. Because 
the traditional neural network model has poor convergence under the training of local 
search optimization algorithm, which cannot achieve the expected learning effect, 
Chatterjee et al. [Chatterjee, Sarkar, Hore et al. (2017)] proposed a model based on neural 
network-particle swarm optimization (NN-PSO) to predict the structural failure of a 
multistoried reinforced concrete building. 
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The promotion of recycled aggregate concrete (RAC) can effectively reduce construction 
waste, and different techniques have been used to predict and evaluate the properties of 
RAC in recent years. Naderpour et al. [Naderpour, Rafiean and Fakaharian (2018)] 
applied ANN model trained by 139 sets of existing data to predict the compressive 
strength of RAC. The proposed ANN model has 6 input features, such as water-cement 
ratio, water absorption rate, fine aggregate, natural coarse aggregate, recycled coarse 
aggregate, and water-total material ratio. 
The ANNs perform well on some tasks while poorly on others. Specifically, they are 
suitable for tasks involving incomplete data sets, fuzzy or incomplete information, and 
for highly complex and ill-defined problems where human decisions are often made 
intuitively [Kalogirou (2001)]. After decades of development, neural networks have been 
widely used in various fields of civil engineering, including structural optimization, 
structural condition assessment and health monitoring, structural control, structural 
material characterization and modeling, construction engineering, highway engineering, 
etc. [Adeli (2001)]. In recent years, deep learning has become a hot area of research in 
neural networks and made great breakthroughs in speech recognition, image recognition, 
natural language processing and other fields. In civil engineering, deep learning and big 
data have also attracted the attention of more and more researchers, which will be 
discussed in Section 3 and Section 4. 

3 Big data 
In the last few years, the rapid development of big data technique has become a hot topic 
in the scientific and technological fields, business area and even governments around the 
world [Walker (2014)]. Nature first launched the big data as a special issue in 2008. In 
February 2011, Science published a special journal Dealing with Data, mainly focusing 
on the theme of big data in scientific researches, demonstrating the importance of big 
data to academic studies. Big data [Zikopoulos and Eaton (2011); Meijer (2011)] has 
three defining attributes, namely (i) volume (TB, PB of data and beyond); (ii) variety 
(structured data and unstructured data); and (iii) velocity (continuous streams of the data). 
In engineering, we must adapt data from many new sources, such as GPS, wireless 
devices, sensors, and streaming communication generated by machine-to-machine 
interactions [Tran (2016)]. Data is continuous, unstructured and unconstrained by the 
rigid structure of rows and columns, which is difficult to deal with by traditional methods. 
Therefore, the application of big data is extremely urgent.  
Autonomous data sources with distributed and decentralized controls are the main 
characteristics of big data applications. Because it is autonomous, each data source can 
generate and collect information without requiring (or relying on) any centralized control 
[Wu, Zhu, Wu et al. (2014)]. This is similar to the World Wide Web (WWW) setup, 
where each Web server provides a certain amount of information and each server is fully 
operational without relying on other servers. On the other hand, if the entire system has to 
rely on any centralized control unit, the sheer volume of data can also leave applications 
vulnerable to attacks or failures. For major big-data-related applications, such as Google 
and Facebook, a number of server farms are deployed around the world to ensure 
uninterrupted service and fast response for local markets. This source of autonomy is not 
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only the solution of technological design, but also the result of different national/regional 
legislation and regulations. 

3.1 Structural maintenance 
For large scale bridges, monitoring of structural components is the main consideration for 
maintenance and operation. However, monitoring of mechanical and electrical 
components is also important for movable bridges. Catbas et al. [Catbas and Malekzadeh 
(2016)] proposed a machine learning algorithm for processing large amounts of data 
collected from mechanical parts of Sunrise Bridge in Florida. To monitor the condition of 
the mechanical parts (such as rack and pinion, Fig. 4), accelerometers were installed to 
monitor their vibrations. The proposed approach includes the training and monitoring 
phases. The training phase focused on extracting statistical characteristics, conducting 
cross correlation analysis (CCA) and robust regression analysis (RRA). The monitoring 
phase includes tracking for errors related to the derived models. 

Figure 4: Sample measurement from the Rack and Pinion during opening and closing 
phases of The Sunrise Bridge [Catbas and Malekzadeh (2016)] 

Although some work has been done on using data management infrastructure and machine 
learning technologies for structural monitoring, few platforms have been investigated to 
seamlessly integrate full spectrum input data. Liang et al. [Liang, Wu, Liu et al. (2016)] 
developed a multi-scale structural health monitoring (SHM) and measuring system based 
on the Hadoop Ecosystem (MS-SHM-Hadoop) for monitoring and evaluating the 
serviceability of bridges. 
Existing evaluation methods using National Bridge Inventory (NBI) data focus on 
individual bridge components, which may not be sufficient to make full use of the 
accumulated data. According to NBI, Kim et al. [Kim and Queiroz (2017)] constructed a 
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large data set containing 1,002,172 bridge decks and superstructures, which is used to 
explore the degradation trend of bridges and the corresponding model development.  
The existing models applied in damage detection require expensive computing, which 
results in necessity of the use of parallel computing based on Multi-processor System on 
Chip, MPSoC, architecture. To overcome this problem, Tran [Tran (2016)] developed a 
new distributed parallel processing model, which is based on single instruction and 
multiple data (SIMD) and adopts the “master-slave” structure. SIMD technology enables 
us to segment big data in data sets and process on different processors and CPUs at the 
same time, which saves a lot of time. The effect of new model for the local damage 
detection in real time of the plane steel truss structures was demonstrated through 
numerical examples. 
At present, researches on damage detection are mainly focused on the utilization of 
wireless sensor networks (WSN). However, the data collected from these networks have 
been unmanageable. To effectively manage and analyze the huge sensor data sets 
generated by existing WSN Settings, Rosales et al. [Rosales and Liyanapathirana (2017)] 
proposed a feature extraction technique which is an outlier detection technique based on 
time domain statistical analysis, Auto Regressive (AR) and external input method (ARX). 
The support vector machine (SVM) algorithms have been widely accepted as an effective 
tool for feature extraction and damage detection, while it is still a big challenge to choose 
proper parameters. Therefore, Gui et al. [Gui, Pan, Lin et al. (2017)] explored the 
feasibility of combining data-driven SVM with optimization technology to enhance 
feature extraction and parameter optimization in structural health monitoring (SHM) and 
damage detection. The effectiveness and sensitivity of enhanced SVM for damage 
detection are studied by three optimization techniques: grid search method, particle 
swarm optimization and genetic algorithm. 
Currently, building information modeling (BIM) systems have been developed to help 
store various structured data of buildings. However, these systems cannot make full use 
of the intelligent functions of BIM systems to capture the knowledge and unstructured 
data used in the operation of building systems in a usable format. Therefore, Moteva 
[Motawa (2017)] applied data capture technique (spoken dialogue systems, SDSs) to 
integrate the knowledge of building operations into the BIM system to acquire the 
operational knowledge, especially the maintenance and renovation of buildings. 
With the rapid development of traffic construction, highway engineering quality monitoring 
has a new challenge. The previous management mode of “artificial + paper recording” is 
basically unable to achieve scientific management of engineering quality. Xiao et al. [Xiao 
and Zhou (2017)] conducted deeply analysis of generation, storage, processing and 
characteristics of big data generated by quality monitoring of highway engineering, made a 
detailed description of key technologies for big data processing and discussed the 
application of big data in quality monitoring of highway engineering. 
Nowadays, highway authorities are under pressure to reduce congestion and improve 
environmental outcomes. Effective data management can improve the data flexibility of 
traffic management departments and enable them to meet the growing demands of road 
network. Aziz et al. [Aziz, Riaz and Arslan (2017)] proposed a platform integrating 
various technologies and systems of the highway management authority and its supply 
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chain, allowing data to flow continuously throughout the life cycle of an asset, thus 
achieving seamless, collaborative and efficient work. 
The dynamic characteristics of cable-stayed bridges are considered as valuable indicators to 
determine their performance in structural health monitoring (SHM). However, some factors, 
such as operational and environmental conditions, may cause high interference to the 
vibration response. Due to the robustness of data-intensive machine learning techniques for 
data classification, Pan et al. [Pan, Azimi, Yan et al. (2018)] developed a support vector 
machine (SVM) based data driven framework for structural diagnosis and damage 
detection, combined with enhanced feature extraction technology to rapidly evaluate the 
state of large cable-stayed Bridges (Fig. 5). 

 
Figure 5: Framework of data-driven data mining process for SHM and damage detection 
[Pan, Azimi, Yan et al. (2018)] 

Though smart-phone accelerometers are imperfect sensors, they can provide valuable 
information to SHM. Matarazzo et al. [Matarazzo, Santi, Pakzad et al. (2018)] developed 
an application for Harvard Bridge, showing that acceleration data collected using smart-
phones in mobile vehicles contained consistent and important indicators of the first three 
modal frequencies of the bridge. This result enables local governments to collect bridge 
vibration data at low cost, thus contributing to more effective management and informed 
decision-making. 
As the increasing amount of data generated over the project lifecycle, data modeling, 
visualization and simulation have become main aspects of the decision to support design, 
build, operate, and maintain build assets. Delgado et al. [Delgado, Butler, Brilakis et al. 
(2018)] proposed a method of building information modeling (BIM) using structural 
monitoring data dynamically, which can automatically generate the parameter BIM 
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models of the structural monitoring systems including time series sensor data, and realize 
data-driven and dynamic visualization in the interactive 3D environment. 
It is necessary to identify the sources of uncertainty and quantify their impact on 
diagnosis and prognosis, which is conducive to effective risk management. Cai et al. [Cai 
and Mahadevan (2018)] developed a framework to apply big data analytics to the 
calculation and uncertainty quantification of structural diagnosis and prognosis. In the 
study, image processing of acquired data and subsequent diagnosis using Bayesian 
updating were parallelized via MapReduce by converting the inputs and outputs into key-
value pairs. 
A large amount of pavement condition data has great potential to support data-driven 
pavement management decisions, such as the choice of materials and time in pavement 
maintenance. However, most agencies face a variety of technical and data integration 
problems that lead to inefficient use of the collected data. Abdelaty et al. [Abdelaty, 
Jeong and Smadi (2018)] analyzed the technical challenges and data integration obstacles 
of pavement maintenance, and a set of suggestion was put forward to help highway 
management agencies make full use of pavement condition data for the implementation 
of road asset management. 
At present, the main feature of the surface defect detection technologies applied to 
railway track is the identification of the defect presence, but the method to find more 
details of defects, including their boundaries, is rarely discussed. Zhuang et al. [Zhuang, 
Wang, Zhang et al. (2018)] proposed a double-layer data-driven framework for visual 
automatic inspection of rail surface cracks. Based on images of rails, the proposed 
framework can firstly detect the location of cracks, and then automatically obtain the 
boundary of cracks through feature-based linear iterative crack aggregation. 
In rail infrastructures, condition-based monitoring is used to assess the actual health 
conditions of assets for effective maintenance. Jamshidi et al. [Jamshidi, Hahizadeh, Su et 
al. (2018)] developed a decision support method based on expert systems for condition-
based maintenance of rails. The proposed approach makes use of axle box acceleration 
signals and rail video images of a track in the Dutch railway network, which provides a 
huge amount of data. 

3.2 Design optimization and energy management 
In practice, the combination of complex problem formulation and long simulation times 
means that optimization is rarely used in the design of buildings and civil structures. 
Using the surrogate models to quickly evaluate design performance can lead to more in-
depth exploration of design space and reduce the computational time of the optimization 
algorithms. Tseranidis et al. [Tseranidis, Brown and Mueller (2016)] explored the 
application of data-driven approximation algorithms commonly known as surrogate 
modeling in the early design of structures. 
Due to the situation that most problems of geotechnical engineering are highly nonlinear 
and multivariable, it takes a lot of calculation cost to carry out complex numerical analysis 
such as finite element simulations. In order to reduce costs, Zhang et al. [Zhang, Goh and 
Zhang (2016)] explored multivariate adaptive regression spline (MARS), a surrogate model 
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technique for analyzing multivariate problems, to approximate the relationship between 
input and output with big data. 
At present, lots of researchers have investigated the energy management systems from 
the macro perspective of utilities and power companies, and few studies have put forward 
dynamic operating strategies for effectively saving energy costs in household appliances. 
Therefore, Chou et al. [Chou and Ngo (2016)] presented a real-time smart grid data 
analysis framework for the high-efficiency energy saving system at appliance level for 
residential buildings, which integrates data analytics and dynamic multi-objective 
optimization models to generate energy consumption patterns and alternative energy 
saving solutions at the device level. 
Although physical methods aiming at calculating building energy consumption behavior 
are accurate, these methods are impractical in some applications due to the necessity of 
continuously inspecting and gathering data for all input parameters. Chokor et al. 
[Chokor and ELAsmar (2017)] proposed a new Leadership in Energy and Environmental 
Design (LEED) rating system performance evaluation method based on the study of 
customized prediction model driven by building energy consumption data. The research 
results show that the gradient propulsion regression model is superior to other regression 
models in predicting and studying building energy consumption, which is helpful for 
practitioners to make better choices throughout the project life cycle. 

3.3 Other applications 
For complex civil engineering systems, Gandomi et al. [Gandomi, Sajedi, Kiani et al. 
(2016)] presented a multi-objective genetic programming algorithm (MOGP) for Big 
Data mining. A big data processing scheme based on batch processing and parallel 
computing of distributed computers was established for modeling the total time-
dependent creep of concrete, which prove the proposed method is an effective tool for 
non-linear engineering problems. 
Construction waste analysis increasingly relies on high-performance computation and 
large-scale data storage. Using traditional techniques to store these data sets and process 
the data in real time for complex analysis is a challenging task. Bilal et al. [Bila, Oyedele, 
Akinade et al. (2016)] proposed a big data architecture for construction waste analysis 
(Fig. 6) to manage and analyze these unprecedented data. 
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Figure 6: Big Data architecture for construction waste analytics [Bila, Oyedele, Akinade 
et al. (2016)] 

Hundreds of images and video are taken during the construction process, but most of 
them quickly become obsolete without proper localization planning documents and time. 
Han et al. [Han and Golparva-Fard (2017)] discussed the potential of using big visual 
data together with BIM for construction performance monitoring to quickly annotate and 
report on the construction of various applications, including communication about the 
progress, quality and safety of problems. 
Although the structures always produce a huge amount of data in their whole life cycles 
in the field of civil engineering, the application of big data technique in the civil 
engineering field lags behind other fields. With the development of technologies needed 
for storing, computing, processing, analyzing and visualizing big data, more and more 
scholars have applied such technologies in civil engineering. By reviewing the 
application of big data technique in various aspects of civil engineering, it can be 
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concluded that the development of big data technologies in structural maintenance is 
relatively fast, while its developments in other aspects are slow. 

4 Deep learning 
Since the late 1980s, the development of machine learning has gone through two stages: 
shallow learning and deep learning. The difference between shallow and deep learners 
lies in the depth of their credit assignment paths, which are chains of possibly learnable, 
causal links between actions and effects [Schmidhuber (2015)]. In 2006, Hinton et al. 
[Hinton and Salakhutdinov (2006)] presented a paper in Science, which attracted the 
attention of deep learning in academia and industry. Deep learning is a class of machine 
learning algorithm that applies multiple layers to progressively extract higher-level 
features starting with the raw input [Deng and Yu (2014)]. In recent years, various deep 
learning algorithms, such as deep neural network, convolutional neural network and deep 
belief network, have been successfully applied in computer vision, speech recognition, 
natural language processing [LeCun and Bengio (2015)], and their applications in civil 
engineering are mainly in vision-based structural health monitoring. The outstanding 
advantage of deep learning is that it can model high-level abstractions in data by using 
architectures composed of multiple nonlinear learning layers. Each layer corresponds to 
different levels of nonlinear abstraction, so that the deep network has a higher 
characterization ability [Gan, Wang and Zhu (2016)]. 
With the development of deep models, the question of “why deep neural network is 
needed instead of shallow neural network method” is gradually studied. Traditional 
shallow neural networks are unable to extract high-level features, and even need further 
post-processing to explain the extracted high-dimensional features, while deep learning 
methods can use more training data and more complex network architecture to solve 
these problems [Xu, Wei, Bao et al. (2019)]. 

4.1 Structural health monitoring 
Pixel-level accuracy is crucial for automation of pavement crack detection, but the 
current Convolutional Neural Network (CNN)-based methods have limitations in respect 
of pixel-level accuracy. Zhang et al. [Zhang, Wang, Li et al. (2017)] proposed a CNN-
based architecture, named as CrackNet (Fig. 7), for automatic detection on cracks of 
three-dimensional asphalt pavement (Fig. 8). CrackNet composes of five layers and 
includes more than one million parameters trained in the learning process to ensure pixel-
level accuracy. In order to improve learning ability and performance, Zhang et al. [Zhang, 
Wang, Fei et al. (2018)] proposed an improved architecture of CrackNet, called CrackNet 
II, which has a deeper architecture with more hidden layers but fewer parameters.  
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Figure 7: Architecture of CrackNet [Zhang, Wang, Li et al. (2017)] 

 
Figure 8: Typical testing images correctly classified by CrackNet [Zhang, Wang, Li et al. 
(2017)] 

Crack and leakage defects are commonly observed on the surface of shield tunnel lining 
which affects the safety of tunnel structure, while the DL techniques of CNNs are unable to 
locate defect boundaries effectively. Based on deep learning using hierarchies of features 
extracted by the fully convolutional network (FCN), Huang et al. [Huang, Li and Zhang 
(2018)] presented an image recognition algorithm to conduct semantic segmentation of 
cracks and leakage defects of metro shield tunnel.  
Effective condition monitoring strategies can help engineers to carry out reasonable 
pavement maintenance, so as to reduce maintenance costs. However, existing crack 
detection methods still have limitations due to their inability to overcome the inherent 
challenges associated with these pavement images, such as inheterogeneity of cracks and 
diversity of surface textures. Gopalakrishnan et al. [Gopalakrishnan, Khaitan and 
Choudhary (2017)] developed a vision-based pavement crack detection system, which 
uses a pre-trained deep learning model to detect cracks in pavement images by means of 
transfer learning and regional adaptive methods. 
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The automatic pavement crack detection systems are faced with two challenging 
problems: (1) due to complicated pavement textures and intensity inhomogeneity, the 
noise cannot be effectively removed; (2) sealed cracks and cracks with similar intensity 
and width cannot be separated correctly. Zhang et al. [Zhang, Cheng and Zhang (2018)] 
proposed a unified crack and sealed crack detection method, which can simultaneously 
detect and separate cracks and sealed cracks under the same framework. The trained deep 
convolutional neural network is used to pre-classify the crack, sealed crack, and 
background regions of pavement images. 
The crack of steel box girders will reduce the reliability of the structure and shorten the 
service life of the bridge. Because the complicated background information of the actual 
bridge structure often appears in the image, which may lead to the error of the crack 
identification, an advanced algorithm is need to solve this problem. Xu et al. [Xu, Li, Zhang 
et al. (2018)] proposed an identification framework based on a restricted Boltzmann 
machine (RBM), a deep learning technique, for the identification and extraction of cracks 
from images with a complex background in a steel box girder of bridges. 
Nowadays, it is still a challenging problem to extract damage-sensitive and noise-robust 
features from structural response. To automatically extract features from low-level sensor 
data, Lin et al. [Lin, Nie and Ma (2017)] presented a method for structural damage 
detection based on a deep convolutional neural network (CNN) with customized 
architecture, which can locate accuracy on both noise-free and noisy data set. 
Due to the severe environment of civil structures, the measured data of the structural 
health monitoring systems are subject to multiple interference, which seriously affect the 
data analysis results. Existing data cleaning methods mainly focus on noise filtering, 
while the detection of incorrect data requires professional knowledge and is time-
consuming. In order to automatically detect multi-pattern anomalies of data, Bao et al. 
[Bao, Tang, Li et al. (2019)] proposed a data anomaly detection method based on 
computer vision and deep learning. The framework of this method includes two steps: 
data transformation through data visualization, and the construction and training of a 
deep neural network for anomaly classification. 
In structural health monitoring, image processing techniques (IPTs) are mainly used to 
process images to extract defect features, such as cracks on concrete and steel surfaces. 
However, the varying real-world situations (e.g., changes in light and shadow) can affect 
the use of IPTs. In order to overcome these challenges, Cha et al. [Cha, Choi and 
Buyukozturk (2017)] proposed a visual-based method using a deep architecture of 
convolutional neural networks (CNNs) (Fig. 9) to detect concrete cracks without 
calculating defect characteristics, which is less affected by the noise caused by lighting, 
shadow casting, blur, and so on. 
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Figure 9: Overall architecture: L#: layers corresponding to operations (L1, L3, L5, and L7: 
convolution layers; L2 and L4: pooling layers; L6: ReLU layer; L8: softmax layer); C#: 
convolution; P#: pooling; BN: batch normalization [Cha, Choi and Buyukozturk (2017)] 

Currently, deep learning-based cracks detection methods cannot automatically extract 
cracks rapidly and accurately at the pixel level. Ni et al. [Ni, Zhang and Chen (2019)] 
proposed a framework based on convolutional neural network, which realizes task 
automation through convolutional feature fusion and pixel-level classification. Based on 
the concrete crack image database, the fracture description network with an empirically 
optimal fusion strategy, termed the crack delineation network, is trained and tested. 
Most of researches on crack detection are based on image classification and/or object 
detection using boundary box, which cannot provide accurate information of crack path 
and density. To distinguish “cracked” and “non-cracked” pixels, Dung et al. [Dung and 
Anh (2019)] proposed a crack detection method based on the deep full convolutional 
network (FCN) for semantic segmentation of concrete crack images. The encoder-
decoder FCN is trained end-to-end to segment an image of concrete crack into “crack” 
and “non-crack” pixels, for the task of crack detection and crack density evaluation. 
Health monitoring of large and complex structures is considered as a significant 
technology in structural engineering research, where research has been reported mostly 
on vibration-based health monitoring. Based on integration of synchrosqueezed wavelet 
transform (SWT), an unsupervised Restricted Boltzmann Machine (RBM), and neural 
dynamics classification (NDC) algorithm, Rafiei et al. [Rafiei and Adeli (2018a)] 
proposed a new unsupervised learning model for the global and local condition 
assessment of structure by using the vibration response data.  
After construction is completed, inspectors are required to evaluate cracks and finishing 
defects in building components, but sampling methods may leave out some defective 
areas. Liu et al. [Liu and Yan (2017)] developed a new damage detection method, named 
as transfer learning on convolutional activation features (TLCAFs), for the detection of 
cracks, hollow and finishing defects. It is based on an active transfer learning network, 
where deep learning networks are used to detect and verify visual defects. 
Most computer vision-based approaches for structural damage detection require pre- and 
postprocessing techniques, which are time-consuming and can detect only one type of 
damage. To provide near-real-time simultaneous detection of multiple types of damage, 
Cha et al. [Cha, Choi, Suh et al. (2018)] developed a Faster Region-based Convolutional 
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Neural Network (Faster R-CNN)-based structural visual inspection method (Fig. 10) to 
detect five types of surface damages: concrete cracks, steel corrosion (medium and high 
levels), bolt corrosion, and steel delamination. 

 

Figure 10: Schematic architecture of the Faster R-CNN [Cha, Choi, Suh et al. (2018)] 

In some engineering areas, machine learning has been a great success in recent years, but 
it relies heavily on large amounts of data, especially labeled ones. Transfer learning is a 
very effective tool to reduce the dependence of machine learning precision on available 
data size and to maximize the use of existing data. Gao et al. [Gao and Mosalam (2018)] 
proposed the Structure ImageNet, inspired by deep learning, transfer learning and 
imageNet, for vision-based damage identification of structural components. 
Vibration-based methods are susceptible to uncertainties in the process of damage 
identification. Pathirage et al. [Pathirage, Li, Li et al. (2018)] proposed an autoencoder 
based deep learning framework for structural damage identification, which can be used to 
obtain optimal solutions for pattern recognition problems of highly non-linear nature, 
such as learning the mapping between vibration characteristics and structural damage. 
Vision-based autonomous detection of concrete surface defects is significant for efficient 
maintenance of infrastructures. However, most current vision-based inspection methods 
can only perform one specific task, which is either defects detection or localization. To 
address these limitations, Li et al. [Li, Yuan, Zhang et al. (2018)] proposed a unified and 
purely vision-based method for defects detection and localization network, which can 
detect and classify typical defect types under various conditions and simultaneously 
localize defects geographically without the need of external localization sensors. Ren et 
al. [Ren, Chen, Li et al. (2018)] developed a DL-based computational algorithm to 
identify the damage load condition through learning the residual plastic deformation of 
structure under the load, and the method is further applied in inversely predicting the  
the impact load on shell structures [Chen, Li, Chen et al. (2019)].  
Except the damage detection, the fatigue reliability assessment is also paid attention to 
for engineering structures. Lu et al. [Lu, Noori and Liu (2017)] proposed a machine 
learning method to evaluate the fatigue reliability of welded steel bridge decks under 
stochastic truck loads, where a learning machine integrating uniform design and support 
vector regression is established to replace the time-consuming finite-element model. Su et 
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al. [Su, Yu, Xiao et al. (2014)] presented a Gaussian process machine learning method for 
structural reliability analysis by combining the Gaussian process and importance 
sampling approach. 

4.2 Construction site management 
Because of the dynamic and complex work conditions on-site, it is a difficult task to 
ensure personal safety in construction. Currently, the computer vision techniques for 
target recognition that monitor the locations of workers may require longer computational 
cycles. Against this backdrop, Ding et al. [Ding, Fang, Luo et al. (2018)] developed a 
hybrid deep learning model that integrates convolutional neural network (CNN) and long 
short-term memory (LSTM) to automatically identify unsafe behaviors of employees on 
construction sites. The CNN model is applied to each frame to capture the spatial features 
obtained from video, and LSTM network is used to understand the temporal information 
from the continuous frames that are generated. 
In the data from ground penetrating radar (GPR) exploration of concrete bridge decks, it is 
a time-consuming and laborious work to manually pick rebars. Dinh et al. [Dinh, Gucunski 
and Duong (2018)] proposed an automated rebar localization and detection algorithm, 
which combined image processing technology with deep convolutional neural networks 
(CNNs). Firstly, the image processing methods are used to locate the pixels containing the 
potential rebar peak. Then, the windowed images around the potential pixel are extracted 
from the GPR scans. Finally, those are classified by a trained CNN. 
There are many visual monitoring methods for construction site, but current technology has 
not reached the accuracy required for robust identification of construction equipment in the 
actual construction site images. To solve this problem, Kim et al. [Kim, Hong and Byun 
(2018)] proposed a construction equipment detection model based on deep convolutional 
network (Fig. 11), which is helpful for construction site management. This model is trained 
with a small amount of construction equipment data through transfer learning. 

 
Figure 11: R-FCN-based construction equipment detection pipeline [Kim, Hong and 
Byun (2018)] 

The effective performance of the guardrail system can ensure the safety of construction 
officers on site, but not all the missing safety guardrail situation can be found in time due 
to the limited-number safety officers. Kolar et al. [Kolar, Chen and Luo (2018)] presented 
a safety guardrail detection model based on convolutional neural network (CNN). The 
background image was added to the three- dimensional model of guardrail, which 
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generated an augmented data set, used as the training set. Transfer learning is utilized and 
the basic features extraction for the neural network was constructed by using the Visual 
Geometry Group architecture with 16 layers (VGG-16) model. 

4.3 Other applications 
Much research has been carried out on the prediction of pavement friction using 
pavement texture information. However, the models based on the traditional pavement 
texture index are not enough to predict the friction performance of the assorted pavement 
surfaces under different influencing conditions. Yang et al. [Yang, Li, Zhan et al. (2018)] 
developed a convolutional neural network (CNN) based deep learning architecture, 
FrictionNet, which can directly predict the level of pavement friction by using the texture 
profiles. This architecture consists of six artificial neuron layers: two convolution layers, 
three fully connected layers and one output layer, with 606,409 tuned hyper-parameters. 
The fluctuation of economic variables and indicators such as liquidity, wholesale price 
index and construction service index will lead to variation in costs, which is usually 
ignored in the traditional cost estimation calculation. To solve this problem, considering 
economic variables and indicators, Rafiei et al. [Rafiei and Adeli (2018b)] developed an 
innovative construction cost estimation model, which includes an unsupervised deep 
Boltzmann machine (DBM) learning method along with a softmax layer, as well as a 
three-layer back-propagation neural network (BPNN). 
At present, most studies use convolutional neural networks (CNNs) as feature extractor 
for classification/recognition, but less to perform regression or function approximation 
problems. As the first attempt, Wu et al. [Wu and Jahanshahi (2019)] tried to use deep 
CNN for response estimation in structural dynamic problems. The vibration responses of 
a linear single-degree- of-freedom (SDOF) system, a nonlinear SDOF system, and a full-
scale 3-story multidegree of freedom (MDOF) steel frame are estimated by a deep CNN-
based approach. 
Moreover, since determining the shear strength of soil is very important for construction 
project, Bui et al. [Bui, Hoang and Nhu (2019)] proposed a swarm intelligence-based 
machine learning approach for predicting soil shear strength for road construction, which 
is a hybrid AI model that integrates the least squares support vector machine (LSSVM) 
and the cuckoo search optimization. Pham et al. [Pham, Son, Hoang et al. (2018)] also 
predict the shear strength of soft soil using four machine learning methods: particle 
swarm optimization-adaptive network based fuzzy inference system (PANFIS), genetic 
algorithm-ANFIS, support vector regression, and ANN. 
In the context of big data, only relatively complex models, or models with strong 
expressive ability, can fully explore the abundant information contained in large-scale 
data. The deep learning method can make use of a large amount of data, which means it 
can constantly improve itself with more data [Lin, Nie and Ma (2017)]. As a result, they 
have become key approaches to the concept of “big data”. With more powerful depth 
models, we may be able to extract more valuable information and knowledge from big 
data. So, in the next few years, we will see more and more examples of depth models 
applied to big data in engineering. 
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5 Conclusion 
This paper reviews the application and development of artificial intelligence in civil 
engineering over the years. Artificial intelligence algorithm and neural network have 
been applied in the field of civil engineering for decades, widely used in structural 
optimization, structural state assessment and health monitoring, construction engineering, 
bridge engineering, geotechnical engineering, highway engineering and so on.  
In recent years, Big Data technologies and deep learning have been successfully applied 
in various aspects of civil engineering, among which the Big Data technologies have 
developed fastest in structural maintenance. With the rapid development of computer 
vision based on deep learning, the structure health monitoring based on computer vision 
has been greatly improved. However, deep learning has made few breakthroughs in other 
aspects of civil engineering. In the era of big data, deep learning becomes an efficient 
tool, which can fully tap into the rich information contained in big data. Therefore, the 
combination of big data and deep learning will become a new research direction of 
artificial intelligence in civil engineering. 
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