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Abstract: In a cyber-physical micro-grid system, wherein the control functions are 
executed through open communication channel, stability is an important issue owing to 
the factors related to the time-delay encountered in the data transfer. Transfer of feedback 
variable as discrete data packets in communication network invariably introduces 
inevitable time-delays in closed loop control systems. This delay, depending upon the 
network traffic condition, inherits a time-varying characteristic; nevertheless, it adversely 
impacts the system performance and stability. The load perturbations in a micro-grid 
system are considerably influenced by the presence of fluctuating power generators like 
wind and solar power. Since these non-conventional energy sources are integrated into 
the power grid through power electronic interface circuits that usually works at high 
switching frequency, noise signals are introduced into the micro-grid system and these 
signals gets super-imposed to the load variations. Based on this back ground, in this paper, 
the delay-dependent stability issue of networked micro-grid system combined with time-
varying feedback loop delay and uncertain load perturbations is investigated, and a 
deeper insight has been presented to infer the impact of time-delay on the variations in 
the system frequency. The classical Lyapunov-Krasovskii method is employed to address 
the problem, and using a standard benchmark micro-grid system, and the proposed 
stability criterion is validated. 
 
Keywords: Delay-dependent stability, time-varying delay, open communication network, 
nonlinear perturbations, Lyapunov-Krasovskii functional, linear Matrix Inequality (LMI). 
 
1 Introduction 
In recent times, the micro-grid system has become an essential add-on feature of the 
conventional large scale power system. The micro-grid system is an independent power 
entity that encompasses small pockets of distributed generating units and loads as shown 
in Fig. 1. The distributed generation usually involves a low capacity micro-turbine unit 
catering to the base load, and fluctuating power generators like wind and solar power, 
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fuel cell with electrolyzer system, super-conducting capacitor banks and plug-in electric 
vehicles are also common in micro-grid system catering to the peak load of the power 
system [Gündüz, Sönmez and Ayasun (2017)]. The loads connected to the micro-grid 
system include domestic, small and medium scale industry loads. The storage units like 
battery banks, flywheels, super conducting magnetic storage elements are optional but 
desirable add-ons in a micro-grid system. The micro-grid substantially improves the 
operational performance of the conventional power grids; nevertheless, it enhances the 
system security and creditability paving the way to low cost power generation at a better 
power quality. The units connected to the micro-grid system have varied roles to play in 
enhancing the performance of a conventional grid connected system. The environment 
dependent non-conventional energy sources like wind and solar are basically fluctuating 
power generators. The power generated by these sources is intermittent in nature. To 
compensate for the system uncertainties which these fluctuating power generators offer, a 
gas based micro turbine is added to cater the base load. In the event of any unexpected 
real power imbalance, to maintain the frequency of the system at desired value, a fuel cell 
with electrolyser unit is appropriately incorporated into the micro-grid system, since 
frequency regulation is not possible by the micro turbine itself [Khalil, Rajab, Alfergani 
et al. (2017); Mahmoud, Hussain and Abido (2014)]. To achieve efficient load frequency 
control (LFC), local and master controllers are used in tandem in a typical micro-grid 
system. Under cyber physical framework, the information exchange among them is 
exercised through an open communication network as discrete data packets [Richard 
(2003)]. As a result, a time-delay is encountered in the feedback control system, and 
depending upon the network traffic condition, this network induced delay is time varying 
in nature. This time delay adversely affects the overall performance and stability of the 
closed loop system. If this delay exceeds a critical magnitude called stable delay margin, 
the closed loop system is driven to unstable operating conditions. Hence under delayed 
data interchange, for effective operation of a micro-grid load frequency regulation, the 
stability margin of the micro-grid closed loop system needs to be assessed. In this 
research paper this open problem is addressed pertaining to networked micro-grid system. 

 
Figure 1: Micro-grid system with communication delay 
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2 Micro-grid with communication delays 
In a power system, load is an uncertain entity. As the real power fed into the grid in 
response to the load variations, the system frequency deviates from the desired value. To 
regulate the frequency to the desired value, load frequency control strategy is employed 
[Kundur, Balu and Lauby (1994)]. In a conventional load frequency control, the 
incremental frequency variable  ∆𝑓𝑓(𝑡𝑡) , that gives a measure of imbalance between 
generation and demand is the error variable. The micro-grid central controller (MGCC), 
located in the master control facility in the micro-grid system, acts based on the error 
variable and sends suitable command to local control so that the distributed generation in 
the micro-grid is operated and co-ordinated simultaneously to achieve a stabilised 
operation with appropriate frequency and voltage profile. The centralised controller 
continuously monitors the error variable, ∆𝑓𝑓(𝑡𝑡)  and decides the control effort for 
regulating the system frequency at desired value. This, in turn, ensures that the generation 
always matches the demand in the system. While accomplishing this task in a networked 
system environment, two time-varying delays are introduced in the feedback path. The 
delays are sensor to controller delay 𝜏𝜏1(𝑡𝑡)and controller to plant delay 𝜏𝜏2(𝑡𝑡). Depending 
upon the network traffic conditions, these delays may have dissimilar characteristics. 
Invariably, the delays pose a serious threat to the desirable performance of the closed 
loop system [Jiang, Yao, Wu et al. (2012)]. If these time delays are allowed to exceed a 
critical margin, the overall system loses stability. In this unstable condition, loss of 
synchronism of a generating unit from grid takes place paving way to high amplitude low 
frequency oscillations to be induced in the process [Mary and Rangarajan (2016)]. The 
power swing may eventually lead to catastrophic tripping of various generator units 
connected to the power system grid paving way to overall blackout unless islanding 
scheme takes over to minimise the system outage. 

 
Figure 2: Block diagram of micro grid with communication delays 
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Delay-dependent criteria are basically sufficient conditions that would calculate the upper 
bound of the time-varying delays inside which the closed-loop system is asymptotically 
stable in the sense of Lyapunov. These stability criteria are usually derived using classical 
Lyapunov-Krasovskii (LK) energy functional approach wherein a positive-definite 
energy functional (quantifying the energy acquired by the dynamic system on a 
perturbation) is constructed and time derivative of the functional is bounded using 
appropriate bounding techniques [Zamora and Srivastava (2010); Elgerd (1971)].  The 
negative definiteness of the time-derivative of the LK functional guarantees the 
asymptotical stability of the closed loop control system [Wu, He and She (2010)]. 
Subsequently, the criterion evolves in the form of a convex optimization problem with 
Linear Matrix Inequality (LMI) constraints. 
In this paper, the time-delayed micro-grid system is modelled in state space approach as a 
retarded delay differential equation. The feedback loop delays are assumed to have 
similar characteristics. Hence, they are aggregated into single time varying delay 𝜏𝜏(𝑡𝑡). 
The LK functional based stability analysis computes the stable margin of the time delay 
for various subsets of PI controller parameters [Sönmez and Ayasun (2018)]. Finally, a 
standard benchmark micro-grid system is considered to validate the effectiveness of 
presented criterion. 
In this paper, an appropriate positive definite LK functional is constructed, and its time 
derivative is bounded using Reciprocal Complex Combination (RCC) lemma. Another 
novelty of the paper is that the time varying load perturbations are also considered in 
proposed delay dependent stability analysis. The perturbations are assumed to be norm-
bounded and scaling factors are introduced to quantify the magnitude of load perturbations. 
To the best of author knowledge, delay dependent stability problem of network controlled 
(cyber-physical) micro grid system with time varying network delay and load perturbations 
have not been addressed so far. This has motivated us to address the problem. 

3 Mathematical model of the proposed system 
The mathematical model of various components of the micro-grid control system shown 
in Fig. 2 [Ramakrishnan, Vijeswaran and Manikandan (2019)] are detailed in this section. 

3.1 Gas-based micro turbine 
The transfer function model of the micro-turbine is developed taking into account the 
linear speed drop characteristics between the power and frequency. This transfer function 
is given as follows: 

GMT(s) = ∆PMT
∆f

= −1
KMT

               (1) 

where f, PMT and KMT represent frequency deviation, change in output power and 
drop characteristics of the micro-turbine, respectively. 

3.2 Fuel cell and electrolyzer 
A fuel cell with an electrolyser system is utilized to compensate for real power imbalance 
when the local controller of the micro turbine becomes less effective for substantial 
variations in load. A part of the wind power is utilized by the aqua electrolyser to produce 
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hydrogen for fuel cell. The transfer function model of fuel cell and electrolyser are given 
as follows: 

GFC(s) = ∆PFC
∆f

= KFC
1+sTFC

                (2) 

GES(s) = ∆PES
∆f

= KES
1+sTES

                (3) 

where PFC , KFC and TFC represent the change in output power, the gain, time constant of 
the fuel cell, respectively, while PES, KES and TES denote similar variables of the 
electrolyser. 

3.3 Extended load 
The extended load demand ∆𝑃𝑃𝐿𝐿 

′ consists of housing load, wind power and PV generation; 
it is expressed as follows: 
∆𝑃𝑃𝐿𝐿′=∆𝑃𝑃𝐿𝐿 − ∆𝑃𝑃𝑃𝑃𝑃𝑃 − ∆𝑃𝑃𝑊𝑊               (4) 
The dynamics of PV and wind power are considered as nonlinear perturbations in the 
test system employed for study. These uncertainties do substantially affect delay 
margins results. 

3.4 Local and central controller 
The local and micro-grid central controller (GLC (s) and GCC (s) respectively) are 
configured with PI control law. The controller transfer functions are given below: 

𝐺𝐺𝐿𝐿𝐿𝐿(𝑠𝑠) = 𝐾𝐾𝑃𝑃𝐿𝐿 + 𝐾𝐾𝐼𝐼𝐼𝐼
𝑠𝑠

                 (5) 

𝐺𝐺𝐿𝐿𝐿𝐿(𝑠𝑠) = 𝐾𝐾𝑃𝑃𝐿𝐿 + 𝐾𝐾𝐼𝐼𝐼𝐼
𝑠𝑠

                            (6) 

where KPX and KIX represent proportional and integral gains of the controllers. 

3.5 Power system 
The power system with its connected conventional (high inertia) generators is modeled as 
a first order transferfunction given by 

𝐺𝐺𝑝𝑝(𝑠𝑠) = 1
𝑠𝑠𝑠𝑠+𝐷𝐷

                              (7) 

where M and D is moment of inertia and damping constant respectively. 

3.6 State-space model 
The total system including central and local controller including network-induced delay 
is shown in Fig. 2 [Ramakrishnan, Vijeswaran and Manikandan (2019)]. The state-space 
model of the closed-loop system shown in Fig. 2 can be derived in the following 
autonomous framework: 
ẋ(t)=Ax(t)+Adx�t-τ(t)�+ω(∙)                      (8) 
x(t)=∅(t),t∈[- max(τ) ,0],               (9) 
where the system matrices A∈  ℝ 5*5 and Ad∈ ℝ5*5 are as follows: 
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A =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 KIC
a21 a22 a23 a24 a25

0 0 - 1
TFC

0 KFC
TFC

0 0 0 - 1
TES

KES
TES

0 1
M

1
M

- 1
M

D
M ⎦
⎥
⎥
⎥
⎥
⎥
⎤

      (10) 

 

Ad=

⎣
⎢
⎢
⎢
⎡

0 0 0 0 0
𝑑𝑑21 𝑑𝑑22 𝑑𝑑23 𝑑𝑑24 𝑑𝑑25

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 ⎦

⎥
⎥
⎥
⎤

      (11) 

With state vector x(t)  ∈ 𝑅𝑅5∗1  being 
x(t)=[KIC∫∆𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡 ∆𝑃𝑃𝑠𝑠𝑀𝑀(𝑡𝑡) ∆𝑃𝑃𝐹𝐹𝐿𝐿(𝑡𝑡) ∆𝑃𝑃𝐸𝐸𝐸𝐸(𝑡𝑡) ∆𝑓𝑓(𝑡𝑡)]𝑀𝑀 .  The elements of matrices (in 
terms of system parameters) are given below: 
a21 = 0, 

a22 = 1
1+KPL

�-KIL- 1
MKMT

�, 

a2 3=
1

1+KPL
�KPL

TFC
-KIL- 1

MKMT
�, 

a24 =
1

1+KPL
�- KPL

TES
+KIL+ 1

MKMT
�, 

a25 =
1

1+KPL
�- KPL.KFC

TFC
+ KPL.KES

TES
+ D

MKMT
�, 

d21 = −
KIL

1+KPL
 

d22 = −
KPL.KPC
M(1+KPL) 

d23= −
KPL.KPC
M(1+KPL) 

d24= 
KPL.KPC
M(1+KPL) 

d25=  
1

(1+𝐾𝐾𝑃𝑃𝐼𝐼)
�−𝐾𝐾𝐼𝐼𝐿𝐿𝐾𝐾𝑃𝑃𝐿𝐿 + 𝐾𝐾𝑃𝑃𝐼𝐼𝐾𝐾𝑃𝑃𝐼𝐼 𝐷𝐷

𝑠𝑠
− 𝐾𝐾𝑃𝑃𝐿𝐿𝐾𝐾𝑃𝑃𝐿𝐿� 

The time-varying delay satisfies the following condition: 
0≤ 𝜏𝜏(𝑡𝑡) ≤ 𝜏𝜏; �̇�𝜏(t)≤ 𝜇𝜇 < 1,              (12) 
where 𝜏𝜏 upper bound of the time-varying is is delay and 𝜇𝜇 is upper boundofits derivative. 

4 Results and discussion 
The proposed result of this paper is derived by modeling unknown external power system 
load disturbance as a nonlinear time-varying perturbation for existing and delayed state 
vector. The term 𝜔𝜔 ( ) represents the uncertainties caused due to the intermittent 
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penetration of solar and wind power to the micro-grid; it is a function of time and state-
variables as described below: 
𝜔𝜔( )=𝜔𝜔(t,x(t),x(t-𝜏𝜏(𝑡𝑡)))               (13) 
It is assumed to satisfy the following condition:  
‖𝜔𝜔(∙)‖ ≤∝ ‖𝑥𝑥(𝑡𝑡)‖+𝛽𝛽‖𝑥𝑥(𝑡𝑡 − 𝜏𝜏(𝑡𝑡))‖                                                                              (14) 
where∝≥ 0 and 𝛽𝛽 ≥ 0are known scalars. A more generalized version of the condition 
(14), which is used in this paper, is given by 
𝜔𝜔𝑀𝑀(∙)𝜔𝜔(∙) ≤ 𝛼𝛼2𝑥𝑥𝑀𝑀(t)GT Gx(t)+𝛽𝛽2𝑥𝑥𝑀𝑀(t-𝜏𝜏(𝑡𝑡))𝐹𝐹𝑀𝑀𝐹𝐹𝑥𝑥(𝑡𝑡 − 𝜏𝜏(𝑡𝑡))                     (15) 
where G and F are known constant matrices of appropriate dimensions. The problem 
addressed in this paper is stated below: 
Problem: To develop a less conservative robust stability criterion in LMI framework to 
ascertain delay-dependent stability [Yang, He and Wang (2019)] of the networked micro-
grid system described by the state-space model (8) with the load disturbance satisfying 
the condition (14), and network-induced time-delay (12) using Lyapunov-Krasovskii 
functional approach [Park, Ko and Jeong (2011)]. 
The stability criterion with delay for the cyber physical micro-grid system (8) with time-
varying delay (12) and external load perturbations (14) is given in the following theorem 
Theorem 1. The cyber physical micro-grid system (8) satisfying (12) and (14) is 
asymptotically stable in the view of Lyapunov, if there exist real symmetric matrices P, 
Q1, Q2 and R; scalar ∈≥0; free matrix S of appropriate dimensions such that the 
following LMIs hold: 

� 𝑅𝑅 𝑆𝑆
𝑆𝑆𝑀𝑀 𝑅𝑅� ≥ 0; 

P>0;Qi>0,i=1,2;R>0, 
П<0. 
where 
 П = e1P𝑒𝑒5𝑀𝑀 + e5P𝑒𝑒1𝑀𝑀+e1(Q1+Q2+∈ 𝛼𝛼2GT G)𝑒𝑒1𝑀𝑀-e2(- (1-𝜇𝜇)Q1+ ∈β2FTF) e2

T-e3Q2e3
T 

-e4(∈ 𝐼𝐼)e4
T+e5(τ2R)e5

T-�
e3

T -e2
T

e1
T -e2

T�
T

� R S
ST R� �

e3
T -e2

T

e1
T -e2

T�            (16) 

With   
e1=[𝐼𝐼 0 0 0 ]𝑀𝑀, 
e2=[0 𝐼𝐼 0 0 ]𝑀𝑀, 
e3=[0 0 𝐼𝐼 0 ]𝑀𝑀, 
e4=[0 0 0 𝐼𝐼 ]𝑀𝑀, 
e5=(A𝑒𝑒1𝑀𝑀 + 𝐴𝐴𝑑𝑑𝑒𝑒2𝑀𝑀 + 𝑒𝑒4𝑀𝑀)𝑀𝑀. 
Proof: Consider the Lyapunov-Krasovskii functional V(t)=∑𝑖𝑖=1  

3 Vi(t) with: 
V1(t) = xT(t)Px(t),                          (17) 

V2(t)=∫ 𝑥𝑥𝑀𝑀(𝑠𝑠)𝑄𝑄1𝑥𝑥(𝑠𝑠)𝑑𝑑𝑠𝑠 + ∫ 𝑥𝑥𝑀𝑀(𝑠𝑠)𝑄𝑄2𝑥𝑥(𝑠𝑠)𝑑𝑑𝑠𝑠,𝑡𝑡
𝑡𝑡−𝜏𝜏

𝑡𝑡
𝑡𝑡−𝜏𝜏(𝑡𝑡)                       (18) 
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V3(t)=τ∫ ∫ �̇�𝑥𝑀𝑀(𝑠𝑠) 𝑅𝑅𝑡𝑡
𝑡𝑡+𝜃𝜃

0
−𝜏𝜏 𝑥𝑥(̇𝑠𝑠) 𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑,            (19) 

where P, Qi, i= 1, 2 and R are real symmetric positive definite matrices. Define 𝛿𝛿(𝑡𝑡) =
[𝑥𝑥𝑀𝑀(𝑡𝑡) 𝑥𝑥𝑀𝑀(𝑡𝑡 − 𝜏𝜏(𝑡𝑡)) 𝑥𝑥𝑀𝑀(𝑡𝑡 − 𝜏𝜏)𝑓𝑓𝑀𝑀(∙)]𝑀𝑀. In LK functional time derivative Vi(t), i=1 to 3 
through the path of (8) is as follows: 
V̇1(t)=ẋT(t)Px(t)+xT(t)Pẋ(t)=δT(t)(e5Pe1

T+e1Pe5
T)δ(t)          (20) 

The time derivative of V2(t) is given by 
 𝑉𝑉2̇(𝑡𝑡) = 𝑥𝑥𝑀𝑀(𝑡𝑡)(𝑄𝑄1 + 𝑄𝑄2)𝑥𝑥(𝑡𝑡)-(1-�̇�𝜏 (𝑡𝑡))𝑥𝑥𝑀𝑀(𝑡𝑡 − 𝜏𝜏(𝑡𝑡))̇ )𝑄𝑄1𝑥𝑥(𝑡𝑡 − 𝜏𝜏 (𝑡𝑡))         (21) 
Since 𝜏𝜏 ̇(t)≤ 𝜇𝜇 < 1,  𝑉𝑉2̇(𝑡𝑡)of (21) is expressed as an inequality as follows: 
 𝑉𝑉2̇(𝑡𝑡) ≤ 𝑥𝑥𝑀𝑀(𝑡𝑡)(𝑄𝑄1 + 𝑄𝑄2)𝑥𝑥(𝑡𝑡)

− (1 − 𝜇𝜇)𝑥𝑥𝑀𝑀�𝑡𝑡 − 𝜏𝜏(𝑡𝑡)�𝑄𝑄1𝑥𝑥�𝑡𝑡 − 𝜏𝜏(𝑡𝑡)� − 𝑥𝑥𝑀𝑀�𝑡𝑡 − 𝜏𝜏)𝑄𝑄2𝑥𝑥(𝑡𝑡 − 𝜏𝜏)�       
                                                                             (22) 
which in other words is expressed as  
 𝑉𝑉2̇(𝑡𝑡) ≤ 𝛿𝛿𝑀𝑀(𝑡𝑡)(𝑒𝑒1(𝑄𝑄1 + 𝑄𝑄2)𝑒𝑒1𝑀𝑀)𝛿𝛿(𝑡𝑡) − 𝛿𝛿𝑀𝑀(𝑡𝑡)(𝑒𝑒2(1− 𝜇𝜇)𝑄𝑄1𝑒𝑒2𝑀𝑀 + 𝑒𝑒3𝑄𝑄2𝑒𝑒3𝑀𝑀)𝛿𝛿(𝑡𝑡)       (23) 
The time derivative of V3(t) is given by 

�̇�𝑉3(𝑡𝑡) = �̇�𝑥𝑀𝑀(𝑡𝑡)(𝜏𝜏2𝑅𝑅)�̇�𝑥𝑀𝑀(𝑡𝑡)  − 𝜏𝜏 ∫ �̇�𝑥𝑀𝑀(𝑠𝑠)𝑅𝑅�̇�𝑥(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡
𝑡𝑡−𝜏𝜏           (24) 

On application of reciprocal convex combination lemma [10], (24) is presented as an 
inequality as below: 

�̇�𝑉3(𝑡𝑡) ≤ 𝛿𝛿𝑀𝑀(𝑡𝑡)� (𝑒𝑒4(𝜏𝜏2𝑅𝑅)𝑒𝑒4𝑀𝑀)− �𝑒𝑒2
𝑀𝑀 −𝑒𝑒3𝑀𝑀

𝑒𝑒1𝑀𝑀 −𝑒𝑒2𝑀𝑀
�
𝑀𝑀

� 𝑅𝑅 𝑆𝑆
𝑆𝑆𝑀𝑀 𝑅𝑅� �

𝑒𝑒2𝑀𝑀 −𝑒𝑒3𝑀𝑀

𝑒𝑒1𝑀𝑀 −𝑒𝑒2𝑀𝑀
��𝛿𝛿𝑀𝑀         (25) 

With following condition holding good 

� 𝑅𝑅 𝑆𝑆
𝑆𝑆𝑀𝑀 𝑅𝑅� ≥ 0.                                        (26) 

Now for any ∈≥ 0, from (15), following condition holds good: 
−∈ 𝑓𝑓(∙)𝑀𝑀𝑓𝑓(∙)+∈ (𝛼𝛼2𝑥𝑥𝑀𝑀(𝑡𝑡)𝐺𝐺𝑀𝑀𝐺𝐺𝑥𝑥(𝑡𝑡) + 𝛽𝛽2𝑥𝑥𝑀𝑀(𝑡𝑡 − 𝜏𝜏(𝑡𝑡))𝐹𝐹𝑀𝑀𝐹𝐹𝑥𝑥(𝑡𝑡 − 𝜏𝜏(𝑡𝑡)) ≥ 0, 

Which is expressed using augmented state vector 𝛿𝛿(𝑡𝑡) as follows: 
𝛿𝛿𝑀𝑀(𝑡𝑡)(−𝑒𝑒4(∈ 𝐼𝐼)𝑒𝑒4𝑀𝑀 + 𝑒𝑒1(𝛼𝛼2𝐺𝐺𝑀𝑀𝐺𝐺)𝑒𝑒1𝑀𝑀 + 𝑒𝑒2(𝛽𝛽2𝐹𝐹𝑀𝑀𝐹𝐹) 𝑒𝑒2𝑀𝑀)𝛿𝛿(𝑡𝑡)  ≥ 0                                 (27) 
On combining (20), (23) and (25) together with positive quantity (27). The following 
condition is obtained  
�̇�𝑉 (𝑡𝑡) ≤ ∑ �̇�𝑉𝑖𝑖(𝑡𝑡) + 𝛿𝛿𝑀𝑀(𝑡𝑡)(−𝑒𝑒4(∈ 𝐼𝐼)3

𝑖𝑖=1 𝑒𝑒4𝑀𝑀 + 𝑒𝑒1(𝛼𝛼2𝐺𝐺𝑀𝑀𝐺𝐺)𝑒𝑒1𝑀𝑀 +  𝑒𝑒2(𝛽𝛽2𝐹𝐹𝑀𝑀𝐹𝐹)𝑒𝑒2 
𝑀𝑀)𝛿𝛿(𝑡𝑡)    (28) 

This condition (28) is quadratically expressed as follows:  
�̇�𝑉(𝑡𝑡) ≤ 𝛿𝛿𝑀𝑀(𝑡𝑡)П𝛿𝛿(𝑡𝑡)                                                   (29) 
Now, if the condition  <0 and (26) held collectively, then for a small scalar 𝜎𝜎>0 such 
that �̇�𝑉(𝑡𝑡) ≤  −𝜎𝜎‖𝑥𝑥(𝑡𝑡)‖2, that denotes that the uncertain system in (8) satisfying (12) is 
asymptotically stable in the view of Lyapunov. Thus Theorem 1 is proved. 
Remark 1. For cyber physical micro-grid LFC systems with load perturbations the delay-
dependent stability criterion for determining the stability of the system can be derived 
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from the result by using   𝛼𝛼 = 𝛽𝛽 = 0  [Ramakrishnan and Ray (2015); Zamora and 
Srivastava (2010)]. The above condition is presented in the corollary as follows: 
Corollary. The cyber physical micro-grid system (8) fulfilling (12) and f( )=0 is 
asymptotically stable in the view of Lyapunov, with a condition if there exist real 
symmetric matrices P, Q1, Q2 and R; scalar ∈≥0; free matrix S of appropriate dimensions 
such that the following LMIs hold 

� 𝑅𝑅 𝑆𝑆
𝑆𝑆𝑀𝑀 𝑅𝑅� ≥ 0. 

P> 0; 𝑄𝑄𝑖𝑖 > 0, 𝑖𝑖 = 1,2;𝑅𝑅 > 0,П� < 0 
where  
П� = 𝑒𝑒1� 𝑃𝑃�̅�𝑒4𝑀𝑀 + 𝑒𝑒4� 𝑃𝑃�̅�𝑒1𝑀𝑀 + 𝑒𝑒1� (𝑄𝑄1 + 𝑄𝑄2)�̅�𝑒1𝑀𝑀 − �̅�𝑒2 (−(1 − 𝜇𝜇)𝑄𝑄1)�̅�𝑒2𝑀𝑀 − �̅�𝑒3 𝑄𝑄2�̅�𝑒3𝑀𝑀 + �̅�𝑒4(𝜏𝜏2𝑅𝑅)�̅�𝑒4𝑀𝑀 

−��̅�𝑒3
𝑀𝑀 −�̅�𝑒2𝑀𝑀

�̅�𝑒1𝑀𝑀 −�̅�𝑒2𝑀𝑀
�
𝑀𝑀

� 𝑅𝑅 𝑆𝑆
𝑆𝑆𝑀𝑀 𝑅𝑅� �

�̅�𝑒3𝑀𝑀 −�̅�𝑒2𝑀𝑀

�̅�𝑒1𝑀𝑀 −�̅�𝑒2𝑀𝑀
�,         (30) 

With  
�̅�𝑒1=[𝐼𝐼 0 0 ]𝑀𝑀 , 
�̅�𝑒2=[0 𝐼𝐼 0 ]𝑀𝑀, 
�̅�𝑒3=[0 0 𝐼𝐼 ]𝑀𝑀, 
�̅�𝑒4=(A�̅�𝑒1𝑀𝑀 + 𝐴𝐴𝑑𝑑�̅�𝑒2𝑀𝑀)𝑀𝑀. 
Remark 2. If no restriction is applied on the upper bound of the delay-derivative, then 
the delay-dependent stability can be determined by setting Q1=0 in Theorem 1 and 
Corollary. 

5 Simulation results 
The standard benchmark system [3] is referred and parameter values are selected as, 
M=10, D=1, KMT=0.04, KFC=1, TFC=4, KES=1, TES=1, KPL=1, KIL=1. The maximum delay 
bound �̅�𝜏for this system for various set of centralized controller parameters (KIC and KPC) 
is ascertained by the criterion as stated in Theorem 1 is presented in Tab. 1. From the 
table, it is clear that as the magnitude of nonlinear perturbation increase (depicted by 
increase in α and β), maximum delay bound that the closed-loop system can withstand 
without losing stability decreases. This clearly indicates that delay-dependent stability of 
the system is susceptible to the magnitude of perturbations in load. The analytical results 
are validated using simulation based study. The intermittent power from renewable 
sources such as wind and solar is represented as white noise model in the simulation 
based study. 

With KPC=1 and KIC=0.8, and the 𝑃𝑃𝐿𝐿′ set to mean value of 0.5 for the entire study. With 
zero time-delay, the system is assumed to be at the equilibrium state with f(t)=0. In the 
presence of time-delay, with the factors quantifying the magnitude of load perturbations 
viz., α and β are both set at 0.05, in accordance to Tab. 1, the closed-loop system is stable 
up to τ=0.896 secs.  
The closed-loop system is introduced with a time-varying delay at t=200 secs and 
performance of the system (evolution of the incremental variable f(t) vs. t) is analyzed. 
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The evolution of the variable f(t) vs. t for τ=0.8 secs (stable operation), τ=0.896 secs 
(marginally stable operation) and τ=1 secs (unstable operation) presented in Fig. 3, Fig. 4 
and Fig. 5 respectively validates the analytical result. 

Table 1: Maximum upper delay bound for F=G=0.1 I5*5 

 𝛼𝛼 = 0 ; 
𝛽𝛽 = 0 

𝛼𝛼 = 0; 
𝛽𝛽 = 0.05 

𝛼𝛼 = 0.05 ; 
𝛽𝛽 = 0.05 

Kpc KIC𝜏𝜏∗ KIC             𝜏𝜏∗ KIC             𝜏𝜏∗ 
1.0 0.2     9.718 

0.4     5.198 
0.6     3.630 
0.8     2.835 
1.0     2.355 

0.2     6.398 
0.4     3.063 
0.6     1.961 
0.8     1.427 
1.0     1.117 

0.2     5.196 
0.4     2.283 
0.6     1.341 
0.8     0.896 
1.0    0.646 

2.0 0.2    12.105 
0.4     6.959 
0.6     4.944 
0.8     3.876 
1.0     3.215 

0.2     9.329 
0.4     4.881 
0.6     3.263 
0.8     2.438 
1.0     1.942 

0.2     8.372 
0.4     4.194 
0.6     2.695 
0.8     1.942 
1.0     1.496 

 
Figure 3: Stable operating condition for 𝜏𝜏 = 0.8 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 
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Figure 4: Marginally stable operating conditions for 𝜏𝜏 = 0.896 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 

 
Figure 5: Unstable operating condition for 𝜏𝜏 = 1.0 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 

6 Conclusions 
In this paper, by employing the classical Lyapunov-Krasovskii functional approach 
combined with reciprocal convex combination lemma, a new criterion is presented to 
ascertain delay-dependent stability of cyber physical micro-grid system with time-
varying network delays and nonlinear load perturbation. The presented stability criterion 
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is expressed in LMI framework. The effectiveness of the proposed analysis is validated 
on a standard benchmark micro-grid system for various sub-sets of controller parameters. 
By varying scaling factor of perturbation term, magnitude of load perturbation is varied. 
Simulation results are presented to corroborate the effectiveness of the stability criterion 
derived in this paper. The possibility of extending proposed work for time varying system 
parameters will be explored as future work.  
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