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Single-point and Filtered Relative Position Estimation for
Visual Docking

Dylan Conway1 and Daniele Mortari2

Abstract: This paper presents a new method to estimate position from line-of-
sight measurements to known targets when attitude is known. The algorithm has t-
wo stages. The first produces a closed-form unbiased estimate for position that does
not account for the measurement error covariance. The second stage is iterative and
produces an estimate of position that explicitly accounts for the measurement er-
ror covariance and the coupling between measurement error and sensor-to-target
distance. The algorithm gives an accurate estimate of both position and the corre-
sponding position error covariance and has a low computational cost. The compu-
tational complexity is O(n) for n point-targets and only a 3×3 linear system must
be solved. The algorithm is demonstrated for single-point position estimation to
verify the accuracy of the resulting position and covariance. Significant improve-
ments over current methods are shown through statistical tests. The algorithm is
then demonstrated in the context of sequential filtering for space vehicle docking.

1 Introduction

The determination of camera pose (i.e. position and attitude) from image measure-
ments of surveyed points (i.e. 2D-to-3D correspondences) is a classical problem
in photogrammetry [Hartley and Zisserman (2003)]. The solution to this problem
is critical in many applications from aerial surveying to robot localization. Often
times the application has a strict demand on the ability of the algorithm to provide
an accurate solution despite noisy measurements and a limited amount of computa-
tion time. Improvements to existing methods can enhance performance in current
applications and enable new ones.

There are two inherent difficulties in the problem. The first is due to the nonlin-
earity in the image projection equations. The second is due to either the nonlinear
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constraints in the attitude parameters (for any non-minimal representation) or due
to the nonlinear mapping between the attitude parameters and the rotation matrix
(for any minimal representation). In certain applications, the attitude may be known
a priori. This occurs in many navigation tasks where accurate attitude estimation
can be provided by attitude sensors (e.g., star trackers, IMU, etc.). As an example,
consider two vehicles, both equipped with star trackers, docking in space. Since the
inertial attitude of each vehicle is known, the relative attitude is easily determined
assuming the information can be shared between the vehicles. If the target vehicle
is fitted with fiducial markers that can be detected by a camera on the approach-
ing vehicle, then the camera measurements can be used to determine the position.
A second example is a spacecraft attempting a landing on a well-surveyed small
body with known inertial rotation parameters. In both these cases, using the known
attitude can significantly reduce the problem complexity and improve accuracy.

There has been very little literature to date on estimating position when attitude is
known. Instead, the literature has focused on the full pose solution. The existing
methods can be divided into two classes: iterative and direct. The iterative meth-
ods typically minimize a cost function containing residual re-projection errors and
require a starting guess for pose [Weng, Ahuja, and Huang (1993); McReynolds
(1988)]. A poor initial guess can lead to slow convergence or no convergence at
all. On the other hand, direct methods have the major drawback that they are not
statistically optimal in any sense: they are often extremely sensitive to noise in the
image measurements. Furthermore, many direct methods are designed for a specif-
ic number of input points which limits their flexibility [Gao, Hou, Tang, and Cheng
(2003); Lepetit, Moreno-Noguer, and Fua (2009)]. A computationally efficient and
statistically optimal method for position estimation with known attitude is needed.
The method proposed in this paper meets the desired criteria.

One important line of research that relates to this work was introduced by Lu,
Hager, and Mjolsness (2000). They propose an alternative cost function for iter-
ative optimization that is based on object-space error (i.e. in 3D) as opposed to the
image-space error (i.e. in 2D). Their algorithm is iterative and globally convergen-
t. For an assumed attitude, the position that minimizes the square of object-space
error is computed. Attitude is then corrected using Horn’s method conditioned on
the estimated position [Horn (1987)]. This process begins with an initial guess and
is applied iteratively until convergence which can be slow if the initial guess is far
from the truth.

In this work, a position estimator is derived that minimizes a cost function contain-
ing object-space error like in the work by Lu. The estimator has two steps. The first
is a closed-form linear solution for the position with no a priori knowledge. This is
mathematically equivalent to the estimator given by Lu if a known attitude had been
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assumed. The second step uses the position estimate from the first step to compute
the object-to-camera distance. This distance is used along with an estimate of the
image-space error covariance to obtain a weighted least-squares solution. The pro-
cess can be repeated in an iterative fashion but in practice the algorithm converges
in one iteration of the second step. For very-distant targets (e.g., visible planets
observed by star trackers in interplanetary missions), the proposed algorithm can
also account for the light time correction. The details of this modification are given
in Mortari and Conway (2015).

The weighted least-squares solution is the key contribution of this work and has
three important properties. First, it gives a major improvement to the position es-
timate accuracy with little extra computational cost. Second, it is an unbiased esti-
mate. Third, an explicit position error covariance is provided. The third property is
important for sequential filtering applications like navigation.

The remainder of this paper proceeds as follows. First, the linear position estimator
is derived. Next, the modification to obtain a weighted least-squares solution is
shown that is statistically optimal. An estimate error covariance expression for this
solution is then derived. Statistical tests on simulated data are presented. These
tests demonstrate the advantage of the proposed algorithm over other algorithms.
They also demonstrate the statistical consistency of the derived covariance expres-
sions. Because the authors expect this algorithm to be used in a sequential filtering
framework for navigation, an example filter for space vehicle docking is derived
and demonstrated.

2 Least-squares single-point position estimation

Figure 1: Problem geometry
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With reference to Fig. 1, let ppp and rrrk be the position vectors of the observer and
the k-th point-target (i.e. beacon, landmark, etc.) respectively. These vectors are
defined with respect to a reference frame fixed to the target object. Also, let b̃bbk
be the unit-vector measurement of the k-th beacon in camera coordinates and let C
be the attitude matrix that rotates coordinates from the target frame to the camera
frame. Now define dddk as the vector from the camera to the nearest point on the
line directed along b̃bbk and passing through rrrk. This represents an object-space error
vector and can be expressed as

dddk = (rrrk− ppp)−
[
(rrrk− ppp)T CT b̃bbk

]
CT b̃bbk = Bk(rrrk− ppp) (1)

where

Bk =
[
I3×3−CT b̃bbkb̃bb

T

kC
]
. (2)

The optimal position is defined as the position that minimizes

L =
n

∑
k=1

dddT
kdddk. (3)

Using the equation for dddk leads to

L =
n

∑
k=1

{
(rrrk− ppp)

T
B

T

kBk(rrrk− ppp)
}
. (4)

The stationarity condition implies

dL
d ppp

=−2
n

∑
k=1

{
B

T

kBk(rrrk− ppp)
}
= 0. (5)

Because the matrix Bk is symmetric and idempotent, this condition is equivalent to

dL
d ppp

=−2
n

∑
k=1
{Bk(rrrk− ppp)}= 0. (6)

The least-squares solution is then

ppp =

(
n

∑
k=1

Bk

)−1 n

∑
k=1

(Bkrrrk). (7)

For the solution to be a minimum, the second derivative of the cost function with
respect to the position must be positive definite. This is true when two or more
non-collinear measurements are made.
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3 Weighted least-squares single-point position estimation

The previous least-squares solution was optimal in the sense of an arbitrary cost
function. This solution can be modified to obtain a statistically optimal estimate in
the maximum likelihood sense. The steps for this derivation are as follows. First an
error model for the measurements is given. Next, it is shown that dddk is a zero-mean
Gaussian vector with specified covariance when conditioned on the true position ppp.
Finally a solution for the position that maximizes the joint likelihood of all the dddk
is shown.

An approximate model for the measurement error is

b̃bbk ≈ (I3×3− [δθθθ k×])bbbk (8)

where [δθθθ k×] is the cross product matrix formed by δθθθ k [Crassidis and Junkins
(2012)]. This error model states that the measured unit vector is a small rotation
away from the true unit vector. This is only an approximation because the matrix
is not truly orthogonal which means that the unit-norm constraint is not preserved.
Nevertheless it is sufficient for modeling for small errors. The measurement error
δθθθ k is assumed to be a three-dimensional zero-mean Gaussian vector with covari-
ance Pθk . Note that any form for Pθk can be used here such as the wide field-of-view
error model suggested in Cheng, Crassidis, and Markley (2006). Also note that b̃bbk
is the true quantity and bbbk is the measured quantity.

In addition to the measurement error, there may also be an attitude estimate error
δψψψ which is assumed to be a zero-mean Gaussian vector with covariance Pψ . This
error relates the true attitude, C, and estimated attitude, Ĉ, through the approxima-
tion Ĉ≈ (I3×3− [δψψψ×])C. Because only the estimated attitude is known, Ĉ is used
in place of C in Eq. (2). Substituting this expression and the error model of Eq. (8)
into Eq. (1) and neglecting terms higher than first order in the errors yields

dddk = Mk (δθθθ k +δψψψ) (9)

Mk ≡−|rrrk− ppp|CT
[bbbk×] (10)

where |vvv| represents the Euclidean norm of any vector vvv. Also the fact that bbbkbbb
T

k [bbbk×] =
0 and bbb

T

kC (rrrk− ppp) = |rrrk− ppp| is used. Eq. (10) shows that dddk is approximately a
zero-mean Gaussian vector with covariance Mk

(
Pψ +Pθk

)
M

T

k .

This enables a convenient Maximum Likelihood Estimate (MLE) to be derived.
The MLE minimizes the following cost function which is proportional to the nega-
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tive log-likelihood (neglecting constants).

L =
n

∑
k=1

{
ddd

T

k

(
Mk
(
Pθk +Pψ

)
M

T

k

)+
dddk

}
(11)

=
n

∑
k=1

{
(rrrk− ppp)

T
B

T

k

(
Mk
(
Pθk +Pψ

)
M

T

k

)+
Bk (rrrk− ppp)

}
(12)

where (A)+ represents the pseudo-inverse of any matrix A. As is pointed out in
Cheng, Crassidis, and Markley (2006), a rank-one update can be applied to the
singular-covariance matrix to make it invertible with a near-zero impact on the
cost function. The intuitive rational for this update is as follows. Because the
covariance matrix for dddk is rank-two, it implies that the component of the vector
dddk in the direction of the null space of the covariance is zero. This null space is
directed along the vector C

T
bbbk. Therefore, adding βkC

T
bbbkbbb

T

kC for any scalar βk
to the covariance in the cost function will not change the cost since there is no
component of dddk along this direction anyway. To make the inverse of the updated
covariance most stable, the eigenvalue of the updated covariance associated with
the eigenvector C

T
bbbk can easily be set to the average of the other two eigenvalues

which means that

βk =
1
2

trace
(

Mk
(
Pθk +Pψ

)
M

T

k

)
. (13)

Then let

Pk ≡Mk
(
Pθk +Pψ

)
M

T

k +βkC
T
bbbkbbb

T

kC. (14)

Taking the derivative of this cost function with respect to ppp while holding Mk con-
stant gives the stationarity condition

n

∑
k=1

{
B

T

kP−1
k Bk (rrrk− ppp)

}
= 000. (15)

The weighted least-squares solution is then

p̂pp =

(
n

∑
k=1

{
B

T

kP−1
k Bk

})−1( n

∑
k=1

{
B

T

kP−1
k Bkrrrk

})
. (16)

This is inherently an iterative solution. We must first use the unweighted least
squares estimate to get an initial estimate p̂pp0 which can then be used to get an
initial estimate of the Mk matrices. This in turn is used to estimate a new p̂pp1 and
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the process is repeated. Numerical tests demonstrate that at most two iterations of
the weighted least squares are needed in all test cases.

A clear connection between this solution and the unweighted least squares solution
can be seen as follows. Consider the case when Pθk + Pψ = σ2

k I3×3. Then the

covariance of dddk is σ2
k

(
I3×3 |rrrk− ppp|2− (rrrk− ppp)(rrrk− ppp)

T
)

(which is positive semi-
definite). Looking at the equation for dddk suggests that it should be nearly orthogonal
to (rrrk− ppp) when the measurement errors are small. Then, for the purposes of the
cost function, the covariance can be effectively replaced by w2

kI3×3 where w2
k ≡

σ2
k |rrrk− ppp|2 which is similar to the results in Shuster (1990). The new cost function

is then

L =
n

∑
k=1

w2
kddd

T

kdddk (17)

which leads to the iterative solution

p̂pp` =

(
n

∑
k=1

w−2
k` Bk

)−1 n

∑
k=1

(w−2
k` Bk rrrk). (18)

Because the true position is unknown, the weights must be determined iteratively.
The unweighted solution is used to obtain an initial guess for position which is used
to compute the initial weights. The is repeated iteratively, updating the weights with
each new position estimate so that the weights on iteration ` used to compute the
estimate p̂pp` are

w2
k` =

∣∣rrrk− p̂pp`−1
∣∣2 σ

2
k . (19)

In the numerical tests below, the measurement and attitude errors are assumed to
be isotropic. Therefore we use Eq. (18) to generate the estimates. However, Eq.
(16) could be used in the case of non-isotropic errors.

3.1 Error Covariance

Once the position estimate converges (typically after 1-2 iterations), a first order
approximation to the error covariance can be computed. The first step in deriving
the covariance equation is to decompose the Bk matrix defined in Eq. (7) into two
components: one with and one without error.

Bk = B̄k +δBk (20)

where

B̄k = I3×3−CT bbbkbbbT
kC (21)
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and

δBk =CT ([(δθθθ k +δψψψ)×]bbbkbbbT
k−bbbkbbbT

k [(δθθθ k +δψψψ)×])C (22)

Substituting Eq. (20) into Eq. (18) and approximating to first order gives the posi-
tion estimate in terms of the true B̄ matrix and its error δB.

p̂pp = ppp+

(
n

∑
k=1

w−2
k` B̄k

)−1 n

∑
k=1

w−2
k` δBk (rrrk− ppp) (23)

Defining the estimate error eee ≡ p̂pp− ppp, rearranging Eq. (23)) and using Eq. (22)
gives

eee =

(
n

∑
k=1

w−2
k` B̄k

)−1 n

∑
k=1

[Ak (δθθθ k +δΨΨΨ)] (24)

Ak ≡ w−2
k` CT (bkbT

k [(C(rrrk− ppp))×]− [(bkbT
kC(rrrk− ppp))×]) (25)

=−w−2
k` C

T
[bbbk×] |rrrk− ppp| (26)

Taking the expected value of this equation shows that the estimate is unbiased if
the measurement errors are all zero-mean. In addition, the error covariance matrix
can be found using Eq. (24).

P =

(
n

∑
k=1

w−2
k` B̄k

)−1( n

∑
k=1

[Ak Pθk AT
k]+

n

∑
k=1

[Ak]Pψ

n

∑
k=1

[Ak]
T

)(
n

∑
k=1

w−2
k` B̄k

)−T

.

(27)

The equation can be evaluated using the measured Bk instead of the (unknown) true
B̄k. This equation is verified in the next section.

4 Numerical Examples

The companion paper to this one, Mortari and Conway (2015), demonstrates sever-
al properties of the weighted least squares algorithm. It is shown that one iteration
of weighted least squares can reduce the position estimate error by a factor of 2 to
3 compared to the unweighted algorithm. In addition, it is shown that the weighted
least squares method converges in only 1 to 2 iterations. Lastly, it is shown that
the weighted version is much more robust to large variations in the sensor-to-target
distances.

This paper presents analysis demonstrating clear advantages of the proposed algo-
rithm over existing methods. The following numerical tests answer the following
important questions about the proposed algorithm’s performance:
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1. Is the proposed algorithm better than the typical image-space MLE approach?

2. Is the covariance expression statistically consistent with numerical results?

3. In the context of space-vehicle navigation, is it better to compute a coupled
position and attitude estimate when star measurements are available or to de-
couple the solution (proposed algorithm for position and image-space MLE
for attitude)?

4.1 Comparison to Image-Space Error Minimization

The traditional approach to position estimation from image measurements is to
perform a minimization of the image-space reprojection errors. If the pixel mea-
surements contain additive zero-mean Gaussian noise, then this algorithm gives the
MLE [Hartley and Zisserman (2003)]. This will be referred to as the image-space
approach since it is the MLE when the assumed noise model is defined in image-
space as opposed to the proposed method which is the MLE when the assumed
noise model is in object-space. The following example will compare the image-
space approach to the proposed approach over a test matrix of measurement error
variances and number of landmarks. To obtain a fair comparison, the example is
repeated twice: once for a simulation with the small rotation error model (used
to derive the proposed method) and once for a simulation with the image-space
additive noise model (used to derive the image-space method).

For each entry in the test matrix (i.e. for some image-space error covariance and
landmark count), Ntrials are performed. For each trial, the landmarks are generated
uniformly random over a plane (sized to fit a 40◦ FOV) in front of the camera
and normal to the camera optical axis. The image-space and proposed method are
applied to simulated measurements and the norm of the error for each algorithm is
recorded.

Using the resulting Ntrials error norms for both algorithms at a particular grid point,
a Wilcoxon Signed-Rank Test (WSRT) is performed to test the null hypothesis that
the mean error norm is the same for both methods [Boslaugh (2012)]. The WSRT
is a nonparametric hypothesis test for paired samples [Wilcoxon (1945); Siegel
(1956)]. A nonparametric method is needed for this test because the distribution
of error norms is highly non-Gaussian. In addition, a paired samples test is desired
to obtain a higher statistical power (lower risk of a false-negative). The data is
paired in the sense that both position estimation algorithms are applied to the same
simulated measurement (and underlying measurement error sample). The WSRT
satisfies both of these criteria.

As with any hypothesis testing, it is critical to select Ntrials large enough to obtain
sufficient statistical power. A simple Monte Carlo simulation is performed to find
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a suitable choice of Ntrials. In this test, two sets of Ntrials zero-mean Gaussian
3×1 vectors are generated with covariance σ2

AI3×3 and σ2
BI3×3. It is found that the

WSRT rejects the null hypothesis 99.9 % of the time at a 0.05 significance level
when 1

2 (σA−σB)/(σA +σB) ≥ 0.05. In other words, if there is a difference in
error distributions that is large enough to be of concern (more than 5 %), then it is
very likely (99.9 %) that the hypothesis will be rejected for the chosen significance
level (0.05).

The WSRT statistic for large Ntrials is well-approximated by a Gaussian distribu-
tion. The variance of this distribution is a simple function of Ntrials. Therefore
the Cumulative Probability Distribution (CDF) value for the test statistic can be
obtained. Tab. 1 displays the CDF value, mean error norm difference, and the
sample standard deviation of the error norm difference. Using a significance value
of 0.05, if the CDF value is less than 0.025 then we reject the null hypothesis for
the alternative hypothesis that the proposed algorithm is better than image-space
method (i.e. lower error norms). If on the other hand, the CDF value is greater
than 0.975 then we reject the null hypothesis for the alternative hypothesis that the
image-space method is better than the proposed algorithm. Note that this signifi-
cance level is arbitrary but commonly used [Craparo (2007)]. Tab. 1 suggests one
clear trend: the proposed method outperforms the image-space method for accu-
rate sensors (σ < 0.3◦) while the image-space method outperforms the proposed
method for less accurate sensors (σ ≥ 0.5◦). This is true for both error models.
This trend is likely a natural result of the different cost functions used to derive the
methods. The proposed method minimizes the weighted sum of squares of object-
space errors which is directly related to our true objective: the best object-space
position estimate. However, because the object-space errors are not additive Gaus-
sian (higher order terms were dropped), the proposed method is not an exact MLE.
This effect becomes more pronounced for larger measurement errors because the
neglection of higher order terms in Eq. (9) becomes less and less appropriate. On
the other hand, for smaller measurement errors, the linearization does hold and
the direct relationship between the object-space errors and position estimate error
makes the proposed method more attractive.

4.2 Covariance Consistency

The covariance expression in Eq. (27) is validated through a statistical analysis as
follows. One Monte Carlo test with Ntrials = 10,000 trials is performed for the case
of no attitude error (Pψ = 0). For each trial, the number of observed point-targets
is uniformly random between n = 5 and n = 10. The measurement error standard
deviation is set to σ = 0.1◦ for all measurements. The point-target locations are
generated uniformly random in the 3D unit-cube centered at a point three distance
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Table 1: Test results for the hypothesis that the image-space and object-space ap-
proaches have the same mean position error norm. The test statistic CDF value, the
mean error norm difference (proposed method minus image-space method), and
the standard deviation of error norm differences, for various noise variances and
target-landmark numbers, Nt . A near-zero (near-unity) CDF value indicates either
an outlier test statistic was found or that the proposed method has a lower (higher)
error norm mean than the image-space method.

Rotation Error Additive Error
Nt = 5 Nt = 10

σ(deg.) CDF Mean Std. Dev. CDF Mean Std. Dev.
0.01 0.007 -8.98e-007 2.06e-005 0.000 -8.77e-007 1.64e-005
0.10 0.000 -7.28e-006 2.22e-004 0.000 -7.73e-006 1.75e-004
0.20 0.003 -1.75e-005 5.12e-004 0.008 -1.36e-005 4.01e-004
0.30 0.517 3.39e-006 9.31e-004 0.586 -2.07e-006 7.18e-004
0.40 0.372 -3.18e-005 1.50e-003 0.577 -1.98e-005 1.13e-003
0.50 0.866 -1.42e-005 2.10e-003 0.998 2.06e-005 1.67e-003
0.60 0.999 2.71e-005 3.01e-003 1.000 1.00e-004 2.29e-003
0.70 0.997 1.90e-005 3.92e-003 1.000 1.20e-004 3.05e-003
1.00 1.000 1.25e-004 7.62e-003 1.000 5.40e-004 5.88e-003
2.00 1.000 1.39e-003 2.83e-002 1.000 4.33e-003 2.14e-002

Rotation Error Additive Error
Nt = 5 Nt = 10

0.01 0.002 -1.03e-006 2.08e-005 0.000 -7.60e-007 1.64e-005
0.10 0.000 -8.03e-006 2.20e-004 0.000 -7.89e-006 1.75e-004
0.20 0.000 -2.04e-005 5.08e-004 0.004 -1.21e-005 3.99e-004
0.30 0.005 -1.69e-005 9.20e-004 0.425 -3.51e-006 7.18e-004
0.40 0.052 -3.43e-005 1.46e-003 0.516 -1.40e-005 1.13e-003
0.50 0.974 -7.82e-006 2.11e-003 1.000 1.96e-005 1.67e-003
0.60 0.999 3.40e-005 3.06e-003 1.000 1.05e-004 2.29e-003
0.70 1.000 9.58e-006 3.92e-003 1.000 1.16e-004 3.04e-003
1.00 1.000 1.63e-004 7.59e-003 1.000 5.17e-004 5.87e-003
2.00 1.000 1.76e-003 2.83e-002 1.000 4.36e-003 2.14e-002

units in front of the sensor (along the positive z-axis). The simulated measurements
are used to estimate the position and corresponding error covariance: { p̂pp,P}. The
resulting error eee = p̂pp− ppp is then transformed to εεε ≡ D−1/2U

T
eee where D and U

are the eigenvalue and eigenvector matrices of P respectively. The transformed
error εεε should be a zero-mean normal random variable with identity covariance
if P is the correct covariance for eee. To test this hypothesis, an unbiased estimate

of the covariance S =
Ntrials

∑
k=0

(
εεεkεεε

T

k

) 1
Ntrials−1

is computed. The variance of the

components of S are computed and used to compute a p-value for each component
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of S [Seber (2009)]. Note that the p-value is the value of the inverse-CDF of the
test statistic under the assumption that the null-hypothesis is true. The results are
given in Tab. 2.

Table 2: Expected and resulting covariance results with their corresponding errors,
variances, and p-values for each element Si, j of the matrix S. Note a p-value ≤
0.025 or ≥ 0.975 would suggest an inconsistency in the covariance for a two-sided
test.

(i, j) E [Si, j] Si, j δSi, j = Si, j−E [Si, j] Var(δSi, j) p-value
(1,1) 1.0 0.9854 -0.0146 0.0137 0.289
(2,2) 1.0 1.0099 0.0099 0.0137 0.470
(3,3) 1.0 0.9749 -0.0251 0.0137 0.067
(1,2) 0.0 -0.0044 -0.0044 0.0137 0.750
(1,3) 0.0 -0.0094 -0.0094 0.0137 0.494
(2,3) 0.0 0.0193 0.0193 0.0137 0.159

Table 3: Expected and resulting covariance results with their corresponding errors,
variances, and p-values. A random attitude error is given to the camera on each
trial. Note a p-value ≤ 0.025 or ≥ 0.975 would suggest an inconsistency in the
covariance for a two-sided test.

(i, j) E [Si, j] Si, j δSi, j = Si, j−E [Si, j] Var(δSi, j) p-value
(1,1) 1.0 1.0121 0.0121 0.0142 0.3923
(2,2) 1.0 1.0294 0.0294 0.0142 0.0386
(3,3) 1.0 0.9904 -0.0096 0.0142 0.5002
(1,2) 0.0 0.0115 0.0115 0.0142 0.4185
(1,3) 0.0 -0.0012 -0.0012 0.0142 0.9334
(2,3) 0.0 0.0106 0.0106 0.0142 0.4537

Tab. 2 shows that the p-value for all six of the unique elements of S is greater
than 0.025 which does not provide strong evidence to reject the hypothesis. Fur-
thermore, because the large number of trials produced a low standard deviation of
0.0137, we can conclude that the power of this statistical test is high enough to
resolve a discrepancy in S that may be of practical concern.

The same test used to generate the results of Tab. 2 is repeated with the one differ-
ence being a simulated random attitude error with standard deviation σ = 0.025◦
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about each axis. This attitude error is independently generated for each trial of the
test. The results of the test using Eq. (27) are given in Tab. 3. The main conclusions
drawn from the numerical analysis in Tab. 2 are analogous to those of this analysis:
the covariance equation is numerically consistent with the numerical results The
added value of the analysis results of Tab. 3 is verification that the attitude error
covariance can be directly accounted for in computing the resulting position error
covariance.

4.3 Coupled vs. Decoupled Estimation

In theory, simultaneously estimating both position and attitude can give a better
result than estimating them independently (because the image measurements of
landmarks depend on both position and attitude). An MLE can be derived that uses
image measurements of both stars and landmarks (point-targets at infinity and not
at infinity). However, decoupling the solution has its advantages. The first advan-
tage is a lower computational cost. The second advantage is that it is easier to apply
robust estimation techniques to two small problems (decoupled estimation) as com-
pared to one large problem (coupled estimation). Robust techniques are important
in removing potential correspondence errors which may occur in visual navigation
tasks. If the accuracy gains associated with the coupled solution are relatively s-
mall, then the advantages listed above may justify decoupling the solution. The
following numerical example will demonstrate what type of accuracy gains can be
achieved with this result.

A Monte Carlo analysis of 10,000 trials is performed. For each trial, it is assumed
that a 30◦ FOV star camera measures 5 stars with σstar = 0.05◦ error and a second
40◦ FOV camera (oriented 90◦ from the first) measures 5 landmarks with σbeacon =
0.5◦ error. These error values are typical of practical sensors. Note that an image
of a star can be centroided with much greater accuracy than a landmark because
of the much larger contrast between a star and its black background compared to
the contrast between a beacon and the spacecraft it is mounted on for example.
In each trial, the landmarks are uniformly randomly generated on a planar region
located one distance unit in front of the camera and normal to the camera axis. The
planar region is sized to fill up the camera FOV. Similarly, the stars are uniformly
randomly generated over the star camera FOV.

The coupled solution is a MLE for position and attitude solved iteratively with a
Levenberg-Marquardt method. Both stars and landmarks are used in this estimator.
The decoupled solution first uses a Levenberg-Marquardt method to get a MLE for
attitude. Only the star measurements are used in estimating attitude. The decoupled
solution then uses this attitude estimate in the proposed method to compute the
position. The results of this are shown in the histogram of Fig. 2.
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Figure 2: Error histogram for position (as a percent of the camera-to-landmark
plane distance) and attitude estimates in the coupled (blue) and decoupled (red)
solutions.

The results of Fig. 2 show that there are no significant gains to be made from
using a coupled solution for the specified sensor parameters in this test case. The
primary reason for this is that star measurements can be made much more accu-
rately than landmark measurements. Therefore the landmark measurements pro-
vide almost no new information about the attitude when conditioned on the star
measurements. This effect is further exaggerated by the fact that position errors are
coupled into any attitude information that a landmark measurement can provide.

5 Relative Position Filter

This section will demonstrate the use of the weighted least-squares algorithm in
a sequential filtering framework to fuse inertial and visual measurements. The
traditional approach to filtering with visual measurements of surveyed points is to
use an Extended Kalman Filter (EKF). The EKF measurement update can treat
each landmark individually, similar to the attitude filter of Crassidis and Junkins
(2012). The alternative presented here is to use the proposed algorithm as a pre-
processing step on the individual landmark measurements. The position estimate
from the algorithm, along with the associated covariance, can then be treated as
the measurement input to the filter. The advantage of this approach is that the
measurement input to the filter is linear in the filter states. This overcomes the well-
known disadvantages of the EKF, namely corrections that are only accurate to first-
order and inconsistency of the covariance estimate with the actual error statistics.
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In the following, some notation is first introduced. Then the filter equations are
derived. Lastly, a numerical example is shown.

5.1 Notation and Reference Frames

The vector from the origin of frame a to the origin of frame b with components
along frame c is denoted by

[
rrrb/a

]
c (i.e. “b relative to a in c”). The rotation matrix

Cb/a transforms the coordinates of a vector in frame a to frame b: [rrr]b =Cb/a [rrr]a.
A single subscript is used to indicate the time dependence. For example, Pi is the
state covariance P at time ti.

The estimate and measurement of a true quantity x are represented by x̂ and x̃ re-
spectively. For rotation matrices, the true rotation matrix is represented in terms of
its estimate and some small error as Cb/a =

(
I3×3−

[
δθθθ b/a×

])
Ĉb/a.

The following reference frames will be used:

• n: Inertial frame

• m: IMU frame of Docking Vehicle

• c: Camera frame of Docking Vehicle

• t: IMU frame of Target Vehicle

Figure 3: Reference frames

The rigid transformation between the m and c frames is assumed to be known from
a prior calibration. The target vehicle is assumed to have its own Inertial Navigation
System (INS) that can send estimates of the t frame attitude relative to the n frame.
The target vehicle can also send it’s own IMU data to the docking vehicle.
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The filter state consists of the relative position and velocity between the docking
and target vehicle, and the docking vehicle accelerometer bias. In particular:

xxx =


[
rrrm/t

]
n[

vvvm/t
]

n
βββ m

 (28)

5.2 Kinematics

The state vector evolves according to the following differential equation

ẋxx =
d
dt


[
rrrm/t

]
n[

vvvm/t
]

n
βββ m

=


[
vvvm/t

]
n[

aaam/t
]

n
ηηηm

 . (29)

The accelerometer bias is a random walk process with covariance Wηm =E{ηηηmηηηT
m}.

The acceleration term
[
aaam/t

]
n can be computed using the accelerometer outputs.

The docking vehicle accelerometer output
[
ãaam/n

]
m is the sum of the inertial accel-

eration of the IMU center, a bias term, and a zero-mean noise term with components
in the IMU frame.[
ãaam/n

]
m =Cm/n

(
d2

dt2

([
rrrm/n

]
n

)
− [gggm]n

)
+[βββ a]m +[νννm]m . (30)

Note that [gggm]n is the local gravity. The noise has covariance Wνm =E{νννmνννT
m}. The

target vehicle accelerometer satisfies an analogous equation. We assume that the
target vehicle INS has already subtracted out its estimate of bias and the resulting
acceleration has error covariance Wat .

In order to propagate the state, the accelerometer outputs must be related to
[
aaam/t

]
n

using the current estimate of bias and local gravity as[
âaam/t

]
n = CT

m/n

([
ãaam/n

]
m− β̂ββ am

)
− [ĝggm]n−CT

t/n

([
ãaat/n
]

t

)
+[ĝggt ]n . (31)

The estimate is then propagated by integrating

ˆ̇xxx =


[
v̂vvm/t

]
n[

âaam/t
]

n
0003×1

 . (32)

5.3 Error Kinematics

The error state is the difference between the estimated and true state: δxxx = x̂xx− xxx.
The covariance of the state error is P = E {δxxxδxxxT}. In order to propagate the state
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error covariance matrix, the difference between the true and expected rates given in
Eq. (29) and Eq. (32) must be linearized in terms of the current state errors δxxx and
other sources of noise. The resulting continuous time error kinematics in matrix
form are

δ ẋxx = Fδxxx+Gwww (33)

where

δ ẋxx =


[δvvvm/t ]n
[δaaam/t ]n

δ ˙βββ m

 F =

03×3 I3×3 03×3
03×3 03×3 −CT

m/n
03×3 03×3 03×3

 www =


νννm

ηηηm
ννν t


and

G =

 03×3 03×3 03×3
−CT

m/n 03×3 I3×3

03×3 03×3 I3×3

 . (34)

This can be converted to discrete time with the approximation

δxxxi+1 = Φδxxxi +Γwww, Φ = I3×3 +F∆t, Γ = G∆t (35)

which is valid for a small time interval ∆t. Then the state error covariance can be
propagated as

Pi+1 = E{δxxxi+1δxxxT
i+1}= ΦPiΦ

T +GQGT (36)

where the process noise Q is defined as

Q =

Wνm 03×3 03×3
03×3 Wηm 03×3
03×3 03×3 Wat

 . (37)

5.4 Measurement Update

Images are processed to extract the pixel locations of surveyed landmarks on the
target vehicle. The camera calibration matrix, K, and the IMU-to-camera rotation,
Ĉc/m are used to convert the pixel locations into unit vectors in the m frame. Let[
rrri/t
]

t be the i-th surveyed landmark in the target vehicle frame. The corresponding
measured 2D pixel location is ũuui. The measured unit vector is

b̃bbi = K−1
{

ũuui

1

}
γ where γ =

∥∥∥∥K−1
{

ũuui

1

}∥∥∥∥−1

. (38)
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Note that γ is used to normalize the vector to unit length. Given some error covari-
ance on the pixel measurement, Rui , the error covariance on the unit vector is

Rbi = γ
2K−1

[
Rui 0002×1

000T
2×1 0

]
K−

T
. (39)

A set of N measurements, namely the known landmark position, measured unit

vector, and error covariance
{[

rrri/t
]

t , b̃bbi,Rbi

}N

i=1
, is passed to the weighted least-

squares algorithm. The output is ỹyy =
[
r̃rrc/t
]

t and a corresponding error covariance
Rỹ = E {δ ỹyyδ ỹyyT} (defined as ppp and P respectively in the previous sections). To
incorporate this into the filter, the measurement is expressed in terms of the filter
states as

ỹyy =
[
r̃rrc/t
]

t =Ct/n

([
rrrm/t

]
n +CT

m/n

[
rrrc/m

]
m

)
+δ ỹyy. (40)

The measurement Jacobian with respect to the state is

H =
[
Ct/n 03×3 03×3

]
(41)

5.5 State Update

A state update is performed each time a new measurement and its covariance
are computed using the standard Kalman Filter equations [Crassidis and Junkins
(2012)]. First the Kalman gain is computed.

K = PHT (HPHT +Rỹ)
−1 (42)

Then the state update is computed using the difference between the measured and
expected target-to-camera position.

δ x̂xx = K
{[

r̃rrc/t
]

t −Ĉt/n

([
r̂rrm/t

]
n +ĈT

m/n

[
rrrc/m

]
m

)}
(43)

This update is applied to the current state estimate and the posterior state covariance
is computed.

P+ = (I9×9−KH)P (44)

Note that the symmetry in the covariance can be explicitly enforced if necessary.
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5.6 Numerical Example

To demonstrate the use of the position estimator, the filter is applied to the problem
of space vehicle docking. Other authors have investigated and applied visual mea-
surements to the docking problem both in air [Valasek, Gunnam, Kimmett, Junkins,
Hughes, and Tandale (2005)] and in space [Ho and McClamroch (1993); Kim and
Rock (2009)]. Specific systems have been proposed for visual point-targets that can
be reliably detected in a space environment [Bondy, Krishnasamy, Crymble, and Ja-
siobedzki (2007)]. In the example below, two vehicles are in 8,000 km near-circular
orbits about Earth. The target vehicle (TV) initially leads the docking vehicle (DV)
by ≈ 100 m and reduces this distance to ≈ 15 m over 50 s. The DV propagates its
state at 10 Hz using its own IMU data and the accelerometer data from the TV.

The state update uses camera measurements at 2 Hz that are simulated for a 1024×
1024 pixel sensor with a 26◦×26◦ field-of-view. The TV has 20 beacons, some of
which may not be visible at all times. The 1σ pixel noise is set to 9 pixels which
corresponds to 1◦ error.

The resulting trajectory of the true and estimated states is shown in Fig. 4. To see
more detail, the filtered estimate errors over the first 10 seconds are shown on the
top of Fig. 5 and from a ten second segment in the middle of the run (which is rep-
resentative of the steady-state performance) is shown on the bottom of Fig. 5. Note
that the initial errors are on the order of 10 m and 1 m/s for position and velocity
respectively. The errors converge to around 0.05 m and 0.05 m/s respectively. The
solid lines represent the actual errors while the dashed lines represent the comput-
ed error bounds. Note that the diamonds indicate the actual position measurement
errors.

Figure 4: True (solid line) and estimated (dashed line) position and velocity. The
measured position is shown in the top plot (diamonds).
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Figure 5: Position and velocity errors and 3σ bounds in first 10 seconds (left) and
a 10 second segment in the middle of the test (right).

Figure 6: Measurement error and 3σ bounds (single-point estimates).

Fig. 6 shows the position measurement (i.e. single-point position estimate indepen-
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dent of filter) errors in more detail. The dashed lines in Fig. 6 show the computed
error bounds and the diamonds show the actual errors. Two important facts should
be noted. First, the errors in the beginning of the run are larger primarily due to the
fact that the camera-to-target distance is larger in the beginning of the run (i.e. the
position estimates become more accurate as the vehicles get closer: a very desir-
able property). Second, the computed bounds agree very well with the errors. This
is consistent with the results in Tab. 2.

6 Conclusions

This paper presents a novel solution to the problem of determining position from
2D-to-3D correspondences when the attitude is known. The case of known atti-
tude is common in applications like navigation where other sensors can provide
accurate attitude estimates. Compared to previously published solutions (when
modified for the case of known attitude), the proposed method has several unique
advantages. First, it can easily take into account different image-space error vari-
ances and camera-landmark distances. Second, because the cost function is defined
in terms of object-space error, the resulting position estimate can be better than
those of a image-space MLE as shown in the Numerical Analysis section. Third,
the proposed position estimator can give nearly the same accuracy as a coupled
attitude and position MLE for practical sensors but at a much lower computational
cost. The proposed method has a lower cost-per-iteration than a coupled MLE and
requires only two iterations while the coupled MLE requires 8-10 iterations. The
computational complexity is O(n) for n points and only a 3×3 linear system must
be solved. This also makes the algorithm very easy to implement.

The proposed method has an accurate covariance expression for the estimate error
(in terms of measurement and attitude error) which enables sequential filtering ap-
plications. The estimator can easily be incorporated into a filtering framework as
has been demonstrated. In a filter, the proposed solution can be treated as a direct
measurement of the position with known error covariance. This significantly re-
duces filter complexity compared to the case of using the individual pixel locations
as measurements. It can also improve robustness when used in conjunction with
robust estimation techniques like RANSAC. For example, two measured point-
targets can be randomly selected from the set of all measurements at a given time.
The proposed algorithm can be used to quickly compute a position estimate under
the hypothesis that the selected measurements are valid (i.e. not gross outliers).
The estimated position can then be used to check the residual of all other measure-
ments to find an inlier set. This process can be repeated many times to find the
largest inlier set (i.e. the largest consensus). The largest inlier set can then be used
to compute the final position estimate. The speed and accuracy of the proposed
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algorithm is especially useful in this context.

The weighting scheme proposed in this work can also be applied to other problems
in photogrammetry to improve robustness and accuracy in a statistical sense. This
will be a focus of future work.
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