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A Non-probabilistic Reliability-based Optimization of
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Abstract:  This paper aims to propose a non-probabilistic reliability-based multi-
objective optimization method for structures with uncertain-but-bounded parame-
ters. A combination of the interval and ellipsoid convex models is used to account
for the different groups of uncertain parameters, in which the interval model ac-
counts for uncorrelated parameters, while the ellipsoid model is applied to corre-
lated parameters. The design is then formulated as a nested double-loop optimiza-
tion problem. A multi-objective genetic algorithm is used in the out loop optimiza-
tion to optimize the design vector for evaluating the objectives, and the Sequential
Quadratic Programming (SQP) algorithm is applied in the inner loop to evaluate the
uncertain vector and non-probabilistic reliability index. Since the double-loop pro-
cess for most engineering problems is computationally prohibitive, the polynomial
response surface method (RSM) is applied to construct a surrogate model for the
approximation of the objective functions and constraints, in order to improve the
computational efficiency. In this way, a new reliability-based optimization method
is established as a nature combination of the non-probabilistic multi-objective opti-
mization method using convex models with the surrogate model. Typical numerical
examples and a practical engineering application are used to demonstrate the effec-
tiveness of the proposed optimization method.
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1 Introduction

Multi-objective optimization addresses one of the key problems in the area of engi-
neering optimization [Marler and Arora (2004)]. Most conventional multi-objective
optimization methods [Chen, Sahai, Messac, and Sundararaj (2000); Lin, Luo, and
Tong (2010); Luo, Chen, Yang, Zhang, and Abdel-Malek (2005)] are under the as-
sumption that the parameters and variables involved are deterministic. However,
many real-world problems are too complex to be defined deterministically, because
it is impossible to obtain complete information. As a matter of fact, the design op-
timization of engineering structures involves a variety of uncertainties [Schuéller
and Jensen (2008); Valdebenito and Schuéller (2010)], which are inherent in loads,
structural parameters, material properties, tolerance, boundary conditions, and ge-
ometric dimensions. Hence, the deterministic assumption may lead to unexpected
or even unfeasible designs, as in special circumstances the uncertainties may result
in significant changes of structural performance [Ben-Haim (1994); Ben-Haim and
Elishakoff (1990)]. The optimization of engineering structures under uncertainties
offer challenges in many aspects. As a result, uncertainties should be addressed
in the process of design optimization, so as to ensure structural safety and avoid
breakage and even collapse of structures in extreme working conditions.

Over the past, the design optimization of structures incorporating various uncertain-
ties has experienced considerable development with a range of applications [Olyaie,
Razfar, and Kansa (2011); Santos, Matioli, and Beck (2012); Wang, Gao, Yang,
and Song (2011)]. Amongst these methods, the reliability-based design optimiza-
tion (RBDO) provides an effective way to find the best design against the failure
of structures subject to uncertainty. For real-world engineering structures, a major-
ity of RBDO problems are in association with multi-objective design requirements.
As a result, recently, the reliability-based multi-objective optimization (RBMOO)
has much drawn attention for more advanced design problems. Basically, both the
probabilistic and non-probabilistic methods can be applied to RBMOO problems
in the design of structures.

In the probabilistic methods, uncertain parameters are often treated as random vari-
ables with predefined probability distribution functions. For instance, Barakat,
Bani-Hani, and Taha (2004) presented a general approach for conducting multi-
objective reliability-based design optimization of prestressed concrete beams, using
e-constraint method. Taboada, Baheranwala, Coit, and Wattanapongsakorn (2007)
proposed two different schemes, namely the pseudo-ranking and data mining clus-
tering for grouping the data, to reduce the size of the Pareto optimal set in the design
of system reliability. Sinha (2007) presented a method for large-scale engineering
RBMOO systems, and the uncertainty was quantified using the approximate mo-
ment and reliability index methods. Deb, Padmanabhan, Gupta, and Mall (2007)
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combined traditional reliability ptimization techniques with evolutionary multiob-
jective optimization (EMO) for better handling uncertainties of variables and pa-
rameters. Khakhal, Nariman-zadeh, Darvizeh, Masoumi, and Notghi (2010) con-
ducted reliability-based robust multiobjective optimization for S-shaped box beams
to maximize the energy-absorbing capacity with uncertainties. Fang, Gao, Sun, and
Li (2013) proposed multi-objective reliability-based design optimization procedure
based on the response surface method and Monte Carlo simulation. From the above
studies, it can be found that the probabilistic-based reliability assessment requires
sufficient information for constructing precise probability distribution functions.
However, it is practically difficult to obtain complete information to determine
probability density functions. Furthermore, Ben-Haim and Elishakoff (1990) have
shown that even small variations deviating from the real values may cause relatively
large errors of the probability distributions in the feasible region. As a result, the
probabilistic methods may experience difficulty for complex engineering problems
without knowing complete information.

Amongst many methods for non-probabilistic uncertain optimization, the convex
models [Ben-Haim (1994); Ben-Haim and Elishakoff (1990); Moller and Beer
(2008)] have been widely studied as beneficial supplements to probabilistic meth-
ods. The interval and ellipsoid convex models are especially useful for those prob-
lems with uncertain-but-bounded parameters, without having to know their precise
probability distributions besides the lower and upper bounds. Interval methods are
characterized with conceptual simplicity and other merits [Kang and Luo (2009)],
in which all possible values of an uncertain parameter are bounded within a one-
dimensional convex set, which makes it convenient to measure the uncertainties
for the bounded parameters without detailed information. The determination of
lower and upper limits for uncertain parameters is much easier than the identifica-
tion of probability distributions for random variables. As a special case of ellipsoid
models, the interval model is more suitable for independent and uncorrelated pa-
rameters. However, the overestimation due to the wrapping effect of interval com-
putation will be carefully handled [Wu, Luo, Zhang, Zhang, and Chen (2013); Wu,
Zhang, Chen, and Luo (2013)]. Unlike interval models, the ellipsoid model, as a
continuously differentiable quantity, more suits correlated parameters with multiple
dependencies for a better control of the overestimation.

Ben-Haim (1994) and Elishakoff (1995) may be the first a few researchers, who
proposed the concept of non-probabilistic reliability based on convex models. Since
then, the RBDO using convex models has been developed and applied to a num-
ber of applications [Valdebenito and Schuéller (2010)]. For instance, Elishakoff,
Haftka, and Fang (1994) proposed a design approach for structural optimization
with uncertain but bounded loads. Lombardi (1998) developed a two-step method
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that alternates between optimization and anti-optimization for non-probabilistic op-
timization of truss structures. Du, Sudjianto, and Huang (2005) studied a RBDO
method to deal with the uncertain variables characterized via the mixture of random
and interval-valued parameters. Qiu, Yang, and Elishakoff (2008) introduced the
interval approach into the RBDO problems, which considered the system failure
probability from the statistical parameter intervals. Au, Cheng, Tham, and Zeng
(2003) proposed a nested optimization technique for robust-reliability using the
convex model, in which the unsatisfactory degrees of the uncertain parameters were
used to measure the robust-reliability. Jiang, Han, and Liu (2007) presented an op-
timization method for structures with uncertain constraints based on a satisfaction
degree of interval to accommodate practical problems. Gao (2007) investigated a
methodology for the natural frequency and mode shape analysis of truss-type struc-
tures involving interval parameters. Lagaros, Garavelas, and Papadrakakis (2008)
proposed a seismic optimization method for reliability constrained designs of struc-
tures. Luo, Kang, Luo, and Li (2009) studied a non-probabilistic reliability-based
topology optimization with ellipsoid models, in which the reliability constraints
were re-formulated as equivalent constraints, and it was then extended to such op-
timization problems with geometrical nonlinearity [Kang and Luo (2009)].

From the literature, it can be found that most existing RBDO optimizations are
focused on single objective problems. Relatively, a small number of studies fo-
cus on non-probabilistic models and multiple design criteria. However, as men-
tioned above, a large number of real-world engineering structures are characterized
with uncertain-but-bounded parameters and multi-objective design requirements
[Ben-Haim and Elishakoff (1990)]. Such design problems are more sophisticated
compared to conventional reliability-based optimization problems [ Valdebenito and
Schuéller (2010)]. More efficient optimization approaches to handle advanced non-
probabilistic RBMOO problems are still in demand. Therefore, this paper aims to
develop a more efficient method for RBMOO problems by using a combination of
interval and ellipsoid convex models.

2 Non-probabilistic reliability index based on convex models

2.1 Convex modeling of uncertainties

As aforementioned, the convex model bounds all possible values of the uncertain-
ties within a convex set without necessarily knowing an inner probabilistic distri-
bution. As aforementioned, the basic convex models typically include the interval
model, the ellipsoid model and the multi-ellipsoid model, and etc.

The interval model defines the variation range of the uncertain parameters within
an interval, which is bounded by its lower bounded and upper bound. The interval
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uncertainty can be expressed as follows:

acl"={alg €ar,af],i=1,2,....,n} )

1™

The I C R" is interval set, which consisting of n parameters. The superscripts L
and R denote lower and upper bounds of an interval. In interval models, the nominal
(or mean) value and the radius of the interval are expressed as follows:

1

ai = E(a,-L—i—af)
1
a = 3 (ai —aj) e)
i=1,2,...,n

where a; and a}” represent the nominal (or mean) value and radius of an interval,
respectively.

The interval model [Gao, Song, and Tin-Loi (2010); Gao, Song, and F. Tin-Loi
(2009); Jiang, Han, Liu, and Liu (2008); Li, Luo, and Sun (2011); Li and Azarm
(2008)] is known as a hyper-box model for bounded uncertainties, under the as-
sumption that all the uncertain parameters are internally uncorrelated and mutual
independently. In practical engineering designs, it is unlikely that all the bounds
of uncertain parameters can be reached simultaneously, due to the correlation of
the uncertain parameters. In such cases, the interval model may lead to an over-
conservative design as a result of the wrapping effect [Wu, Luo, Zhang, Zhang, and
Chen (2013)]. For the ellipsoid model [Kang and Luo (2009); Luo, Kang, Luo,
and Li (2009)], all the possible values of parameters will be included in a multi-
dimensional ellipsoid to represent the uncertainties. It is easy to understand that
the interval model is actually a special case of ellipsoid model, and sometimes vice
versa. One advantage of the ellipsoid model is that it can incarnate not only the
correlations among the uncertain parameters but also the extreme parameter com-
binations.

In ellipsoid models, unlike the single-ellipsoid model, the multi-ellipsoid model
[Kang, Luo, and Li (2011); Luo, Kang, Luo, and Li (2009)] can provide a more
flexible and realistic description for the bounded uncertainties. Hence, this study
also employs the multi-ellipsoid model to describe some of the uncertain parame-
ters. If a is assumed as the uncertain vector comprising all uncertain parameters in
a multi-dimensional (hyper-) ellipsoid, a can then be given as follows [Kang, Luo,
and Li (2011); Luo, Kang, Luo, and Li (2009)]:

acC(Wy,e)={a:(a—a) W,(a—2a) <&’} 3)
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where a is the nominal value vector of a, W, is a real symmetric positive-definite
matrix of the convex model, and € is a real number defining the magnitude of
the parameter variability. The vector a can be change into a dimensionless vector
6 € R", and the components of the vector 8 and a are related by

ai—di

5= (i=1,2,....n) (4)

ai

where a; denotes the nominal value of the i-th uncertain parameter.

Thus, using the dimensionless vector &;, the ellipsoid set can be expressed as
8cC(W,e)={6:8"Wé<¢e?} (5)

where W represents the dimensionless characteristic matrix.

In most cases, the uncertainties caused by different parameters can be grouped
into different types, such as the independent and uncorrected group, as well as the
dependent and corrected group. It is therefore more reasonable to classify entire
set of uncertain parameters according to different sources of uncertainties. If we
suppose the uncertain variables can be divided into k groups, then we have

aT:{alT,ag,...,a,{} (6)

With the multi-ellipsoid convex model, each grouped uncertain parameters a; €
R'(i=1,2,...,k) can be represented with an individual ellipsoid set as follows:

8ieC,-:{8:6iTWi8,~§el~2(i:1,2,...,k)} @)

where 8; is the dimensionless vector of a;, W; denotes the ith characteristic matrix,
& is used to define the size of the ith ellipsoid set, k is the number of bounded
uncertainties, and 7; is the number of bounded uncertainties in the ith group and
YX_ | n; = n. Itis noted that the sub-vectors included in a may have different dimen-
sions. In special cases, if each grouped uncertainty consists of only one parameter,
a will degenerate into a multi-dimensional interval set.

The failure status of a structure is represented by the performance function G(a),
which indicates failure for a given realization of a when it is less than or equal to
zero. In other words, the performance function is characterized by the limit-state
G(a) =0, which defines a unique surface called the limit state surface. The variable
space into a safe region is G(a) > 0 and a failure region is G(a) < 0 by the limit
state surface.
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2.2 Normalization of the uncertainties

With the convex set for RBO designs, it is more convenient to define an index
to quantity the reliability in a normalized parametric space. For this purpose, the
following eigenvalue problem is required to be solved via a linear transformation of
uncertain parameters [Kang, Luo, and Li (2011); Luo, Kang, Luo, and Li (2009)]:

QW Qi =A,Q/Qi=1(i=1,2,....,k) (8)

In the above equation, Q; represents the orthogonal matrix of the normalized eigen-
vectors, A; is used to denote the diagonal matrix of the eigenvalues of W;, and I is
an identity matrix. If we define the following vector

1

Then the original convex model in Equation (7) becomes
C={u:ulw; <1(i=1,2,...,k)} (10)

Here u; is used to indicate the normalized vector of the i-th grouped uncertain
variables a;. In doing so, the ellipsoids are transformed into spheres of unit radius
in the normalized u space.

u3 A

iE A7y,

PSPPI
c
=

|
T

(® (b) (©)
Figure 1: Convex models (e.g. 3 uncertain parameters): (a) 3D interval model; (b)
3D single-ellipsoid model; (c) Muti-ellipsoid model involving an ellipsoid (x; and
uy) and an interval (u3)

For the case of a hyper box model, the standard form in (10) degenerates to
C={u:w?<1(i=1,2,....k)} (11

where the normalized variables u; = (a; — ;) /a)’. The interval model and the ellip-
soid model can be treated as the specific case of the multi-ellipsoid, so this paper
focuses on the multi-ellipsoid model, which is schematically shown as Fig.la-c.
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Following the above transformation, the performance function G(a) in the original
space changes to the function g(u). The normalized space (u-space) is thus divided
into two different regions, namely a safe region (g(u) > 0) and a failure region
(g(u) <0).

2.3 Definition of the non-probability reliability index
2.3.1 Interval model

Here only a simple case with two uncertain parameters is considered to show a
quantified measure, in which each uncertain parameter is modeled with an interval
set, respectively. Since the structural variations can be measured by the side-length
of the corresponding box in the u-space, it can be seen from Fig. 2 that the convex
set is denoted by {u = {u,u2} : |u;| < 1,|uz| < 1}. Here, the infinity norm (or
maximum norm) ||u||. = max(|u;|, |uz|) is defined as the length of a vector u in the
u-space. In terms of the infinity norm, the bounds of uncertainties can be defined as
||g||- = 1. Based on the normalization, the reliability index can then be described
as follows [Kang, Luo, and Li (2011); Luo, Kang, Luo, and Li (2009)]:

n = sgn(g(0) - min(max |u |, |uz], ..., |uk|),s.t.g(u) =0 (12)

where sgn(+) is the function that is applied to define a negative reliability index,
when the limit-state function is negative at the origin in the u-space [Luo, Kang,
Luo, and Li (2009)], which is given as

1 ifx>0
sgn(x) =< 0 ifx=0 (13)
—1 ifx<0

2.3.2  Single ellipsoid convex model

As given in Fig 3, this section is considering the case that the uncertainties are
modeled via a single-ellipsoid with two uncertain parameters in a 2D u-space. This
figure shows that the maximum allowable variability of the uncertainties is actually
determined by the distance from the origin point to the limit-state curve in the u-
space. The Euclidean norm is used to measure the length. Thus, the reliability
index for a structure design with the single-ellipsoid model can be express as

1 = sgn(g(0)) - min(vVu'u),s.t. g(u) =0 (14)
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Figure 2: Non-probabilistic reliability index in case of two interval variables for
uncertainty description
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Figure 3: Non-probability reliability index for a case of a single two dimensional
ellipsoid

2.3.3  Extension to multi-ellipsoid convex model

In practical designs, in some cases, the uncertainties generated from different sources
(e.g. the geometry, material property and external loads) may form different groups,
which will be characterized with correlation inside each group but exhibit indepen-
dence among different groups. Therefore, it is required to consider the grouped
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uncertainties for more general and complicated engineering designs under various
uncertainties.

Fig. 4 shows the three dimensional u-space of multi-ellipsoid model. For the
multi-ellipsoid model to measure the k groups of uncertainties, the infinity norm
of the vector consisting of the Euclidean norms of the k standard uncertainty vector
[Kang, Luo, and Li (2011); Luo, Kang, Luo, and Li (2009)] can be defined in the
u-space as

[lu|] = H\/ulTul,\/uguz,...,\/u,zukHw =max(y/ulu;,\/ulw, ... \/ulu)

15)

The bounds of the normalized multi-ellipsoid convex set can thus be expressed as
|lu|| = 1. From Fig. 4,the green point has the minimal distance in the sense of the
length measure defined in Eq. (15).

A

safe domain failure domain
g(u)>0 g(u)<o0

_____ " limit-state surface
g(u)=0

S il At

Figure 4: Non-probability reliability index for a case of a multi-ellipsoid model

It is more reasonable to define the non-probabilistic reliability index 1 as follows
[Kang, Luo, and Li (2011); Kang and Luo (2009)]:

1 =sgn(g(0)) - min <max (@, \/@7...’““]{“1()) (16)

Here, Eq. (16) represents a min-max problem, which will make the evaluation of
the reliability index inefficient. According to the research [Kang and Luo (2009);
Kang, Luo, and Li (2011)], the above problem can be transformed into the follow-
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ing optimization by introducing an augmented variable A

n = sgn(g(0)) -minA
stgw)=0 17

Vuhy =42 <0,i=1,....k

Obviously, a larger 1) implies that the design allows for a larger parameter variation.
For 1 = 1, the limit-state surface intersects the boundary of the convex model used
for modeling the reference variability of the uncertainty, which indicates that the
structure is critical for the reference parameter uncertainties. If ) > 1, the actual
fluctuations of structural performance cannot reach failure surface, which means
that the structure is reliable.

3 Non-probabilistic reliability-based multi-objective optimization
3.1 Formulation of optimization problem

Generally, the non-probabilistic reliability-based multi-objective optimization (NRMO)
problem can be defined in the following form:

mxin{fl(xua)uf2(x7a)7'-'7fm(X7a)}
S.t. T]j[gj(X,ll) > 0] > T]tj,j: 1,2,...,p

x; <x <X, (18)
where
nj =sgn(g;(0)) -mini
u,A
s.t. g 0

() =
Vulw—A <0,i=1,....k

where f;(x,a)(i = 1,2,...,m) is the objective function to be minimized. X is a de-
sign vector, and x; and x, denote the upper and lower bounds of x, respectively.
It should be noted that the design vector x can also be the mean nominal value of
geometrical dimensions and material properties, when their variation are modeled
as bounded uncertainties. a is an uncertain vector described by bounded uncer-
tainties. u is the normalized vector of uncertain vector a. g;(x,u) is the jth struc-
tural behavior function. 1;[g;(x,u) > 0] is the reliability index associated with the
performance constraint g;(x,u) > 0 and 7),; is the corresponding specified target
reliability index and p is the number of constraints.
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In the aforementioned design problem, the evaluation of the reliability index for the
Jjth limit-state function is a ‘min-max’ type optimization. The problem in (18) is
therefore a nested double-loop optimization, in which the outer loop is to minimize
the objective functions, while the inner loop is for reliability analysis.

3.2 Implementation of the approximation optimization

To avoiding the expensive computational cost, the surrogate model (or metamodel)
[Chau, Han, Bai, and Jiang (2012); Li, Luo, and Sun (2011); Myers and Mont-
gomery (1995); Simpson, Poplinski, Koch, and Allen (2001)], rather than the ac-
tual simulation model, will be applied to evaluate the uncertain functions. Eq. (18)
can be further formulated as:

Inxin{fl(xua)ufZ(X)a))'"7f~m(X7a)}>S't' nj[gj(x)u) 20] 2 ntn]z lazvapu (19)

where fi(i = 1,2,...,m) and §;(j = 1,2,...,p) are the surrogate models of the
original objectives and constraints, respectively.

In this study, the polynomial response surface method (RSM) technique [Draper
and Smith (1998); Myers and Montgomery (1995)] is adopted to construct the sur-
rogate model for the objective functions f(x,a) and constraints (x,a) in the design
space and uncertainty space, respectively. The RSM is a statistical and mathemat-
ical method that gives an effective practical means for design optimization. The
behavior of RSM is expressed by the approximation as a polynomial on the basis
of observation data. That is, the RSM is developed to represent the relationship
between the input and output of a physical experiment by a simple mathematical
expression, based on the statistical techniques of regression analysis and the analy-
sis of variance to create the approximation models.

The surrogate modeling technique involves two important steps: namely, sampling
and constructing approximation model. So, in the aforementioned RSM approach,
one of the important steps for successfully constructing the surrogate model is to
obtain proper sample points from the design and uncertainty spaces. Usually, the
design of experiment (DOE) can be used for this purpose. In this paper, the Latin
Hypercube Design (LHD) [Morris and Mitchell (1995)] is employed to generate
the sampling points. LHD in general can ensure a well-representative distribution
of points over the design and uncertain spaces of variables. In this paper, the LHD
algorithm in the ISight software is used to create LHD design matrix for training
all sets of sample points. After obtaining the sampling points, the surrogate model
can be constructed based on the data.

The solution process of the approximation optimization problem is shown in Fig. 5.
In current design domain and uncertain space, X and a are both used as the input
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variables, and one set of sample points can be obtained by the LHD technique.
The surrogate models of objective functions and constraints can be subsequently
constructed. After that, the optimization can be performed based on these surrogate
models. In Fig. 5, the optimization comprises a double-loop procedure. In this
paper, through the Matlab Optimization Toolbox ™, the outer layer optimization is
solved by the Non-dominated Sorting Genetic Algorithm II (NSGA-II) developed
by [Deb (2001); Deb, Pratap, Agarwal, and Meyarivan (2002)], and the inner layer
optimization is solved by Sequential Quadratic Programming (SQP) [Boggs and
Tolle (1995)].

Outer loop
multi-objective GA
(NSGA-1I)

v

Design vector of the kth
iterative step b

A 4 .

Call
Inner loop SQP Inner loop SQP RSA model of the
objective functions
Call and constraints A+

, , '

Computations of Evaluation of reliability
objectives functions index

Actual
LHD simulation
model

Current design
space and
uncertainty field

<
«

Y

criterion

Pareto optimal set
with prescribe reliability
index

Figure 5: Flow chart for non-probabilistic RBMOO problems

In the outer layer, the NSGA-II [Deb (2001); Deb, Pratap, Agarwal, and Meyari-
van (2002)] is first used to generate an amount of individuals, and each individual
chromosome denotes a candidate decision vector X. NSGA-II is a computationally
fast elitist multi-objective algorithm based on a non-dominated sorting scheme, in-
cluding the non-dominated sorting for fitness assignments, the fast non-dominated
sorting technique, and a crowding distance to rank and select the population fronts.
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Then, the algorithm applies the crossover and mutation operators to combine the
current population with its offspring generated as next generation. Finally, the best
individuals in terms of non-dominance and diversity are selected as the solutions.

In the inner layer optimization, the SQP [Boggs and Tolle (1995)] is used as op-
timization operator. For each x, the non-probabilistic reliability index for each
individual is evaluated based on Eq. (17). The SQP is a nonlinear programming
method which starts from a single searching point and finds a solution with the gra-
dient information. It outperforms every nonlinear programming method in terms
of efficiency, accuracy, and percentage of successful solutions, over a large num-
ber of test problems. The outer NSGA-II will call the SQP in the inner layer to
approximate the objective functions and constraints, based on the RSM model for
each individual. SQP is applied to evaluate the non-probabilistic reliability index
for each individual. Finally, the Pareto set can be obtained with the prescribed
reliability index based on Eq. (19).

4 Numerical examples
4.1 Numerical test example

The following numerical example is analyzed firstly as a benchmark example to
test the effectiveness of the proposed uncertain optimization methodology. The
optimization problem is defined as

minf (x,a) =a (x1 +Xxp — 7.5)2 —I—a%(XQ —X] —|—3)2/4
X

fr(x,a) :a%(x1—1)2/4+a§(x2—4)2/2
s.t. njlgj(x,a) > 0] > nyj,j = 1,2,
0<x#50<x»p <3 20)

where the performance constraints, g;, j = 1,2, are defined as follows:

g1(x,a) =2.5—a3(x; —2)%/2 —arxy
g (x,a) = —ajxy — adx; +3.85 + 843 (x, — x; +0.65)? (20a)

where the design variables x = {x;,x,} are regarded as interval parameters with a
3% variation about their nominal values to indicate the level of the uncertainty. The
uncertain parameter vector a = {a;,a,}” are bounded by C = {8 : 8’ W& < 0.12},
where their nominal values are a = {@;,a}’ = {1.0,1.0}7 and the characteristic
matrix is W, = [1 0;0 4]. The parameters for NSGA-i; Y2i; 2 algorithm are given in
Table 1.
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Table 1: NSGA-II parameters

GA parameter name Value
Population size 50
Number of generation 200
Probability of crossover 0.9
Distribution index for crossover | 20
Distribution index for mutation | 20

Table 2: Summary of results for the numerical example 1

Pareto points

n1:n2:1.0

m=m=15

Design vector x

(2.9532, 1.7321)

(0.8016, 3.000)

(2.9196, 1.6217)

(0.7067,3.000)

Minimum fi

8.7137

9.4784

Minimum f 0.5098 0.5215
Reliability index g, 1.0 15012 15001
N1 (constraint 1)

Reliability index 9, 10.7148 1.5253 11.1987
N2 (constraint 2)

Pareto points m=n=20 Deterministic Results

Design vector x

(2.8839, 1.5127)

(0.6118, 3.000)

(3.0117, 1.9817)

(0.9999, 3.000)

Minimum fi 10.2943 72534

Minimum f, 0.5377 0.5
Reliability index ) (59, 2.0003 0.0017 0.00056
N1 (constraint 1)

Reliability index ., ¢, 11.6794 0.0079 9.6991

M2 (constraint 2)

The optimal result under different reliability indices 1.0, 1.5 and 2.0 is listed in
Table 2. It can be found that the minimum f; and minimum f; increase with in-
crease in the reliability index. This is because that a larger reliability index will
generate a smaller feasible zone of the constraints, which leads to a worse value
of the objective function. The nominal value-based deterministic optimization re-
sult, which is unreliable in presence of uncertainties, is also listed in the Table. It
can be seen from the result that the NRMO presents more reliable designs than the
deterministic approach.

Fig. 6 plots the Pareto optimal fronts for different reliability indices. The ranges
and shapes of the Pareto optimal font vary with the different target reliability in-
dices. When different reliability-based optimizations are conducted, the Pareto
front shifts, which depends on the target reliability indices prescribed. It can be
seen that the deterministic optimization results are given in the Fig. 6.
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Figure 6: Comparison of Pareto optimal fronts in the deterministic optimization,
and the proposed reliability-based optimizations with different reliability index

4.2 Example of cantilever beam

The second example is a structural optimization problem of cantilever beam [Jiang,
Han, and Liu (2007); Jiang, Han, Liu, and Liu (2008)] as shown in Fig. 7. This
problem aims to minimize both the vertical deflection f; of an I-beam sectional
structure for a given loads and the cross-sectional area f>, while satisfying the stress
constraint. The design vector is X = [x,x2,X3 ,x4]T, in which x; and x; are bounded
by an ellipsoid (C') and the x3 and x4 are bounded by another ellipsoid (o)

} { gj: } < 0.052} (21a)

0

1

07/ &, 5

X } { 5 }go.oz } (21b)

where their nominal values are X = {¥; ,XZ,X3,X4}T. The given parameters include
Young’s Modulus of Elasticity E = 2.1 x 10*kN/cm?, highest transverse forces
P =600kN, Q = 50kN and L = 200cm.

1
C'= {5x1a6x2 :{6y,6} [ 0
1
0

Cc? = {5xl,5xZ :{0xs,0x, } [
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Figure 7: Design problem of cantilever beam

The NRMO problem can be written as below:

3 x1—x4\2
i { fi(x) = % = 500/ (5x3(x1 — 2x4)% 4 003 + 200004 (252) )
x F2(X) = 2x0x4 +x3(x1 — 2x4)

(21¢)
s.t. 1;]g;(x) < 6kN/em?] > 1,5, j =1

where 10.0cm < x1 < 80.0cm, 10.0cm < x5 < 50.0cm, 0.9cm < x3 < S5cm and
0.9cm < x4 < 5cm are the lateral constraints of design variables, respectively. The
constraint g;(j = 1) is defined as

180000x 15000x;

_ 21d
X3 (x1 — 2)64)3 + 2x0X4 [4)6% +3x; (x1 — 2)64)] (x1 — 2x4)x§ + 2x4x% ( )

g1(x)

Similarly, the specific parameters for NSGA-II can refer to that given in Table 1.

The Pareto sets with several different target reliability indices are plotted in Fig. 8§,
respectively. It can be found that the ‘span’ of the reliability-based Pareto optimal
fronts with a larger reliability index is smaller than that of a smaller reliability
index in this example. It can also be found that the ‘span’ of NRMO Pareto set is
larger than the deterministic optimization. The results with the different reliability
index 1,1 = 1.0, n;; = 3.0, 1,1 = 4.0 as summarized in Table 3, which show that
the minimum objective f, increases when the reliability index increases. This is
understandable because the increase of the target reliability will often lead to a safer
design, but f; does not show such a definitive pattern. This might be the reason
that the constraint dominates the optimization process of this objective function, as
reported in the work of [Sinha (2007)]. From the Table 3, the deterministic optimal
design results in a violation of the reliability constraint.

4.3 Thin-wall column crashworthiness design

Thin-walled structure often plays a key role in absorbing crushing energy of a vehi-
cle while frontal and rear collisions occur [Liao, Li, Yang, Zhang, and Li (2008)].
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Figure 8: Pareto optimal front for different reliability index

Table 3: Summary of results for the cantilever beam example

Fareto points  1m;1 = 1.0 N1 =3.0

. (80, 50, (80, 50, (80, 50, (80,50,
5.0, 5.0) 0.90,2.23)  5.0,5.0) 0.9,2.7)

Min: fi 5.90% 1073 5.90% 103

Min: f> 290.47 336.87

m 8.5247 1.0018 8.5247 3.001

Pareto points 1, =4.0 Deterministic

. (80, 50, (80, 49.45, (80, 50, (79.99, 49.72,
5.0, 5.0) 0.90,3.03) 5.05.0) 0.90, 2.0)

Min: f 5.90 x 1073 5.90x 103

Min: > 366.33 271.4293

m 8.5247 4.001 8.5247 0.0015

It is thus important to optimize these thin-walled structures for required crashwor-
thiness multi-criteria [e.g. Li, Luo, Rong, and Zhang (2013); Sun, Li, Hou, Zhou,
Li, and Li (2010); Xiang, Wang, Fan, and Fang (2006)]. This example is concerned
with a thin-walled column in the design context of the proposed reliability-based

multi-objective optimization.

The thin-walled column is considered to impact onto a rigid wall with the initial
velocity of 13.8m/s and 40ms time duration (Fig. 9). As denoted in the research
[Li, Luo, Rong, and Zhang (2013); Sun, Li, Hou, Zhou, Li, and Li (2010); Xiang,
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Rigid wall Spot-welding points

Figure 9: A thin-walled column impacting into the rigid wall and design variable
and geometric parameters

Wang, Fan, and Fang (2006)], typically the concerned responses in crashworthiness
designs are deformations, velocities, accelerations, intrusions, section forces, rigid
wall forces, absorbed energy and etc.

In this study, the maximum internal energy E; and the mass/weight W of the thin-
walled column are used as the objective functions. The average rigid wall force
gm 1s treated as a constraint. The thicknesses #; and #, are chosen as the design
variables. It is assumed that the material properties, geometrical dimensions are
uncertain-but-bounded parameters. The thicknesses #; and #, are treated as interval
parameters. The level of uncertainty is 2% variation about their nominal values due
to the manufacturing tolerance specification. The nominal values of Young’s mod-
ulus E, Poisson’s ration v and the yield stress oy are 207GPa, 0.30 and 487.7MPa,
respectively. Due to the manufacturing and measurement errors, E, v and oy are
treated as bounded uncertain parameters using the ellipsoid model.

The uncertain level of their variations are described by

1 00 Sk
C=1 8:,8,05: {0,80,065,} | O 1 0 & <017 (22a)
00 1 S,

and the NRMO problem is specified as follows:

.| filti,,04,E,v) = —Ey
(. { hHt,n) =W

s.t. Mi[gm(t1,12,05,E,0) <95kN] > 1y (22b)
0.5mm <ty,tp <2.5mm

The finite element simulation is carried out using the explicit non-linear finite el-
ement code LS-DYNA. This FE model is modeled using a number of Belytschko-
Tsay four-node shell elements (5760). A 300kg lumped mass is attached to the
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free end of the column during the crash analysis for the sake of supplying suffi-
cient crushing energy. The deformation pattern is given in Fig. 10. In the process
of optimization, the NSGA-II parameters are the same as those given in Table 1.
Initially 40 sampling points are selected through LHD to construct the RSM surro-
gate models for the objectives and constraints within the given design domain and
uncertainty space. The approximation model is a linear function of design vari-
able x, while surrogate models of E; and g, are nonlinear functions in terms of
t and material parameters o;, £ and v. According to the RSM model, the larger
the measurement values of R and RZ «j» the higher the modeling precision [Fang,
Rais-Rohani, Liu, and Horstemeyer (2005)]. The regression analysis results are
displayed in Table 4. It can be seen that the modeling precisions of the weight,
maximum internal energy and average rigid wall force are all satisfied.

Figure 10: The finite element crushing model of the thin-walled column

The results under different reliability indices 1.0, 1.5 and 2.0 are summarized in Ta-
ble 5. In Table 5, it shows that the energy absorption value is from —1.253 x 10*J
to —2.67 x 10*J and the weight value is from 1.171kg to 3.748kg under 1, =
1.0. When n,; = 1.5, it can be found that the energy absorption value is from
—1.253 x 10*J to —2.54 x 10*J and the weight W function value is from 1.171kg
to 3.444kg. When 1,1 = 2.0, the energy absorption value will be from —1.45 x 10*J
to —2.35 x 10*J and the weight W is from 1.439kg to 3.041kg. Fig. 11 plots the
Pareto fronts with different reliability indices. Obviously, the ranges of the Pareto
fronts also change with the different target reliability indices. Different reliability
indices lead to different optimization results. When increasing the reliability index
from 1.0 to 2.0, the minimum values of f; and f, increase from —2.67 x 10*J to
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Figure 11: Pareto optimal front points for different reliability indices

—2.35 x 10*J, and 1.17kg to 1.435kg, respectively. This is because a larger relia-
bility index produces a smaller feasible zone. If the target value of the reliability
index is increased further, the optimal result will have a further change, which leads
to more reasonable and reliable designs than the deterministic design optimization.

Table 4: Results of regression analysis

R? Rﬁdj Multiple R
fi 09875 09743 0.9937
f> 1.0000 1.0000 1.0000

gm 0.9793 09574 0.9896

4.4 Vehicle crashworthiness design application

In car crashing, it is expected that most of impact energy can be absorbed by the ve-
hicle structure to reduce risk to occupants. Also the car is expected to be lightweight
in its structure for energy efficiency. The energy absorption and lightweight actu-
ally conflict with each other and we have to find the Pareto solutions. The de-
celeration history was typically used as an indicator of impact severity, where the
deceleration peak is required to be restricted to a certain level for crashworthiness
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Table 5: Summary of results for the thin-walled column example

Pareto points 1,1 = 1.0 N =15

. (1.3412, (0.3, (1.0426, 0.5,
1.776) 0.5) 1.7086) 0.5)

Min: fi(J) —2.67 x 107 —2.54x10%

Min: f>(kg) 1.171 1.171

m 1.0009 1.8812  1.5003 1.8812

FPareto points 1,1 =2.0 Deterministic

. (0.8661, (0.9060, (1.8320, (0.5,
1.5281) 0.5) 1.9127) 0.5)

Min: f1(J) —2.35 x 107 —2.805 x 10%

Min: f>(kg) 1.4395 1.171

m 2.0003 29737 0 1.8812

design. Hence, the crashworthiness design is naturally characterized with multiple
design requirements with structural uncertainty.

In this study, the maximum absorbing energy E, by car parts and weight W of ve-
hicle are chosen as two objectives, while the peak acceleration of B pillar is treated
as constraint in this application. The vehicle front and end structures are impor-
tant components for their roles on the energy absorption [Sun, Li, Hou, Zhou, Li,
and Li (2010); Sun, Li, Stone, and Li (2010)]. As shown in Fig. 12, the thickness
of three reinforced members around the frontal structure is chosen as the design
variables (f1,t,t3) which could significantly affect the crash safety. The mate-
rial properties and geometrical dimensions are assumed as uncertain-but-bounded
parameters. The yield stress o1, 05 and Oy are assumed to be bounded by an
ellipsoid model as

86, = {86,,06,,0,} €C= {84, : 85 W5, 85, <0.1%} (23a)

where the nominal values are 65, = 343MPa, 6,5 = 286 M Pa and 6,3 = 462M Pa,
and the characteristic matrix is W5 = [100;100;1 0 0]. Due to manufacturing tol-
erance specifications, the thicknesses of the three reinforced members are regarded
as interval parameters with 3% variation about their nominal values. Therefore,
there are a total number of 6 uncertain parameters to be modeled using the ellip-
soid and interval methods, respectively.
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As a result, the optimization problem can be formulated by

ln}illl fi(t1,12,13,041,05,03) = —E,4
150253

fltih,n)=W (23b)
s.t. Ni[ga(t1,12,13, 0451, 052, 03) < 40g] > 1y
0.5mm < ty,1,t3 < 3.0mm

The FEM simulation is carried out using the software LS-DYNA. The FEA model
of a Dodge Grand Caravan was developed by NCAC (National Crash Analysis Cen-
ter). The FE model of the vehicle was obtained from: www.ncac.gwu.edu/archives/
model/index.html. It has 344724 nodes and 339969 (mostly shell) elements. The
initial velocity is 56.66km/h. This model is used for full-frontal impact (FFI) sim-
ulations and the results were found to be consistent with physical crash test data by
NCAC. In this study, we used the FEA model (Fig. 13) in simulations of FFI. The
deformation of the full frontal impact is given in Fig. 14. A simulation of 120ms
FFI takes approximately 3 hours with 4 processors Intel Core™i7-2600 3.40 GHz.

Here, 50 sampling points of crash simulations are obtain via LHD, thus the ap-
proximation models are created with the material parameters 0 and current design
variables t. The approximation model of mass is a linear function of design vari-
ables t. The approximation models for the maximum internal energy and acceler-
ation are nonlinear function with respect to t and 6. Hence, the NSGA-II will be
used to generate the design variable x in the outer layer, and the evaluations of the
non-probabilistic reliability index will be treated in the inner layer. Thus the Pareto
optimal points of the weight and the maximum internal energy can be achieved un-
der the reliability constraints. For the NSGA-II specific parameters, the reader can
refer to Table 1.

Although the Pareto set can provide designers with a number of inferior design
solutions to assist the decision-make in the initial stage of the design circle, the de-
cision must be made with respect to the most satisfactory solution (termed as “knee
point”) from Pareto-set finally [Sun, Li, Hou, Zhou, Li, and Li (2010); Sun, Li,
Stone, and Li (2010)]. The deterministic knee point and reliability knee point are
obtained from the Pareto sets, respectively. The results are summarized in Table 6
to compare with the baseline model. The optimal results obtained by the proposed
reliability-based optimization with the reliability index 1,; = 1.0 (Fig. 15), as well
as the deterministic design are given in Table 6. Without considering uncertainties,
the reliability indices corresponding to the initial and the deterministic designs are
negative and 0.1629, respectively. This means both designs fail to satisfy the reli-
ability requirements and thus are unreliable. In other word, both the initial and the
deterministic optimal designs show a certain violation of the reliability constraints.
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In the design obtained by the present method, the reliability index is 1.0821. The
results listed in Table 6 shows that the NRMO method can produce a more reliable
design than the deterministic approach. Again, the results of this case show the
effectiveness of the proposed method.

Figure 13: Finite element model of vehicle

Figure 14: The deformation of the full frontal impact

5 Conclusions

This paper proposes a new design optimization method for NRMO problems in
the presence of uncertainty, which can be regarded as a useful supplement to the
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Figure 15: Comparison of Pareto fronts of deterministic, and reliability optimiza-
tions when 1,1 = 1.0

Table 6: Optimization for the crashworthiness of vehicle

Design parameter Optimal component thickness (mm)

Initial design Non-deterministic | Deterministic
4 2.0 2.9963 2.9808
1 2.0 1.5371 1.0039
13 2.0 1.7544 2.2751
—E4(J) —2.2019 x 10° | —2.2634 x 10° —2.2684 x 10°
W(kg) 2012.2 2027.71 2026.96
Reliability index 1y | -0.1439 1.0821 0.1629

RBO approaches. The convex models are applied to count the uncertainties of
uncertain-but-bounded parameters, in which only bounds of parameters are needed,
without necessarily knowing their precise probability distributions. Based on non-
probabilistic reliability index method, the NRMO problem is transformed into an
equivalent deterministic optimization problem. Thus efficient NRMO algorithm is
formulated as a nested double-loop optimization problem. The NSGA-II algorithm
is applied to the outer loop to evaluate the approximations of the objective functions
and constraints, based on the RSM surrogate model. The SQP is applied to the inner
loop to evaluate the non-probabilistic reliability index. Then the Pareto set can be
obtained with the prescribed reliability index.
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Several numerical examples have been applied to demonstrate the feasibility and
the validity of the proposed method. From Pareto sets with different target re-
liabilities, it can be found that the "reliable" Pareto optimal front with different
target reliabilities leads to a combination of “translational” and “rotational” shifts.
When taking uncertainty into account, the "optimal" Pareto font will shift towards
a "safer" region where parameter uncertainties no longer impact the feasibility of
the optimal solutions. The engineering application in crashworthiness design also
shows the ability of the present method to some engineering design problems.
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