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Synchronization of Robot Manipulators Actuated By Induction
Motors with Velocity Estimator
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Abstract: A complete modeling (including the actuator dynamics) of a robot manipulator
that uses three-phase induction motors is presented in this paper. A control scheme is
designed to synchronize robot manipulators actuated by induction motors under a master-
slave scheme in the case where the joint velocity of the slave robots is estimated. All
of the research on the synchronization of robot manipulators assumes the use of ideal
actuators to drive the joints; for that reason, in this work, a three-phase induction motor
is considered to be a direct-drive actuator for each joint. An entire model of the mated
system is obtained by a combination of the dynamics of the induction motor and robot
manipulator. Thus, the synchronization control algorithm for a master-slave scheme in
both the joint space and workspace of robot manipulators driven by induction motors is
developed. An observer based on the entire model is proposed to estimate the joint velocity
of the slave robot manipulators. Through the Lyapunov criterion, a stability analysis of
the synchronization control with a velocity estimator is detailed. The analytical results
show the synchronization and estimation errors are globally, uniformly, and ultimately
bounded. Simulations with multiple robots demonstrate the performance of the proposed
control algorithm.
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1 Introduction

The controlled synchronization of robot manipulators has become a subject of interest
within the scientific community during the last decade, mainly because of the efficiency
and quality requirements in the production processes, in addition to the flexibility and
maneuverability in the execution of tasks that a single robot cannot perform. This has led to
the demand that two or more robots complete the same activity in a synchronized manner.
This synchronization consists of matching two or more dynamic systems developing singly
on a common trajectory from a certain instant onward, one of them called the master and
the others the slaves.
In the literature, diverse algorithms of synchronization control have been stated, and all
of these works assume ideal actuators. Thus, Nijmeijer et al. [Nijmeijer and Rodriguez-
Angeles (2003)] applied a feedback control with access only to the robot’s position. Chung
et al. [Chung and Slotine (2009)], from contraction analysis, tracked a common trajectory
while maintaining a formation through a directed graph of interconnection. Chopra et al.
[Chopra and Spong (2008)] solved the previous features combined with constant delays
of communications by using a passivity analysis. Abdessameud et al. [Abdessameud,
Polushin and Tayebi (2014)] and Cicek et al. [Cicek and Dasdemir (2018)] used a passivity
theorem to consider varying delays. Nuno et al. [Nuño, Ortega, Jayawardhana et al. (2013)]
considered the interconnection in the synchronization scheme as a non-directed graph.
Regarding the synchronization problems, different control algorithms have been applied;
for instance, Zhang et al. [Zhang, Wang and Guo (2014)] required backstepping; Bouaziz
et al. [Bouaziz, Bouteraa and Medhaffar (2013)] made use of cross-coupling; Mei et al.
[Mei, Ren and Ma (2011)] used sliding mode controllers; and Chen et al. [Chen and
Lewis (2011)] and Cui et al. [Cui and Yan (2012)] achieved synchronization through neural
networks (NNs).
Moreover, synchronization approaches in the workspace have been reported. In the study
by Kyrkjebo et al. [Kyrkjebo and Pettersen (2007)], in which a virtual manipulator to
synchronize robot manipulators in a leader-follower scheme was used, the leader velocity
was unknown. Liu et al. [Liu and Chopra (2012)] obtained the synchronization of
heterogeneous robot manipulators with varying delays using the passivity property. Wang
[Wang (2013)] synchronized robot manipulators without a leader, but rather used directed
graphs strongly connected to develop an adaptable control law with attention to parametric
uncertainties. Aldana et al. [Aldana, Nuño, Basañez et al. (2014)] synchronized the
position and orientation of the robot manipulators: The position synchronization was
designed with the use of the Jacobian, while the orientation was synchronized by means of
the quaternions. Cicek et al. [Cicek, Dasdemir and Zergeroglu (2015)] synchronized the
end effectors of robot manipulators in both the joint space and workspace, considering the
parametric uncertainties.
In practice, a great number of industrial robot manipulators use electric motors as actuators,
where the DC-brushless permanent magnet (PMBLDC) servomotors are the most common.
The advantage of PMBLDC motors is given by their relative ease control of the position and
desired trajectory; however, their main disadvantage is cost, which is due to the use of rare
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earths (neodymium-iron-boron or samarium-cobalt) in the manufacturing process of the
permanent magnet and, furthermore, by the necessity of periodic mechanical maintenance.
For this reason, an alternative to the use of servomotors is set by employing induction
motors (IMs) as actuators. These devices generate a high-output torque and have a low
manufacturing cost; furthermore, they are robust and can operate in any environmental
conditions, while their disadvantage lies in their control difficulty, which is caused by their
high non-linearity. Owing to this fact, Guerrero et al. [Guerrero-Ramírez and Tang (2001)]
and Diniz et al. [de Diniz, Júnior, Honório et al. (2012)] researched robot manipulators
driven by IMs only to track the desired trajectory.
A synchronization approach that considers ideal conditions in the joint space was addressed
in Torres et al. [Torres, Guerrero, Garcia et al. (2016)], where robot manipulators are driven
by IMs, and, consequently, the IMs were synchronized in the task execution as well. In
this sense, Sun et al. [Sun, Gong, Yang et al. (2019)] synchronized multiple induction
motors for a tracking system. In this work, the definition of the tracking error in relation
to the angular velocity was considered. Therefore, it was necessary to avoid the chattering
phenomena that might be depicted by noise in the velocity and acceleration measurements,
leading to other problems in synchronization.
The objective of this work is to develop a master-slave synchronization control scheme
for both the joint space and workspace of robot manipulators directly driven by IMs
(designated as IM-Robot), considering the load torque for the IMs as the torque derived
from the synchronization controller. Hence, the angular positions qi(t) ∈ Rn, as well as
the position and orientation χi(t) ∈ Rm of the ith slave IM-Robot are synchronized with
respect to qj(t) ∈ Rn and χj(t) ∈ Rm of the master IM-Robot through the synchronization
control approaches based on velocity observer, for the case in which only the angular
position measurement of the joints of the slave IM-Robot is available.
The rest of this paper is organized as follows. Dynamic models of the robot manipulator and
induction motor are presented in Section 2. In Section 3, the combination of IM dynamics
and robot manipulator dynamics is depicted. In Section 4, the synchronization control
designs with a velocity estimator in both the joint space and workspace are developed, and
in Section 5, the results of the simulations are shown. Finally, conclusions are given in
Section 6.

2 Dynamic models
2.1 Dynamic model of a robot manipulator

Consider p robot manipulators fully actuated in which the friction losses are neglected, with
k = 1, 2, · · · , n joints. The vector of the angular position of the robot joints is qi(t) ∈ Rn,
i = 1, 2, · · · , p. Using the Euler-Lagrange formalism, the dynamic model of the ith robot
is given by Behal et al. [Behal, Dixon, Dawson et al. (2009)]:

M (qi) q̈i + C (qi, q̇i) q̇i + g (qi) = τi, (1)

where M (q) ∈ Rn×n is the inertia matrix, C (q, q̇) ∈ Rn×n the Coriolis and centrifugal
forces matrix, g (q) ∈ Rn the vector of gravitational forces, and τ (t) ∈ Rn the vector of
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input torques. This model comprises the following properties:

1. The inertia matrix M (q) ∈ Rn×n is symmetric and positive definite for all qi ∈ Rn.

2. The matrix
[
Ṁi (qi)− 2Ci (qi, q̇i)

]
is skew-symmetric for all x ∈ Rn,

xT
[
Ṁi(qi)− 2Ci(qi, q̇i)

]
x = 0.

The position and orientation in the workspace of the end-effector of the ith robot
manipulator are denoted by χi(t) ∈ Rm through Cartesian coordinates:

χi(t) =

 xi(t)
yi(t)
zi(t)

 = f(qi), (2)

where f(·) ∈ Rm is a nonlinear function of the direct kinematics.
The relationships between the joint velocities q̇i ∈ Rn and the time derivative of the end-
effector coordinates of the robot χ̇i ∈ Rm in the workspace are given by

χ̇i (t) = Jac (qi) q̇i, (3)

where Jac ∈ Rm×n represents the Jacobian of the manipulator, defined as

Jac (qi) =
∂f (qi)

∂qi
. (4)

The pseudo-inverse of Jac ∈ Rm×n, described by Jac+ ∈ Rn×m, is defined as

J+
ac = JTac

(
JacJ

T
ac

)−1
. (5)

2.2 Dynamic model of IM

The vectors of the currents iα − iβ and flows λα − λβ of the stationary reference frame
fixed to the stator α − β of the IM are used to express the equations in a field-oriented
frame d− q. In this sense, the model of the IM mechanical and electrical dynamics without
consideration of the effects of viscous friction is given by [Marino, Tomei and Verrelli
(2010)]:
dωm
dt

= µλdiq −
TL
J
,

dλd
dt

= −αλd + αLmid,

did
dt

= −γid + αβλd + npωmiq + αLm
i2q
λd

+
1

σLs
ud,

diq
dt

= −γiq − βnpωmλd − npωmid − αLm
iqid
λd

+
1

σLs
uq,

dρ

dt
= npωm + αLm

iq
λd
,

(6)
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where ρ = arctan λβ
λα

, µ = 3
2np

Lm
JLr

, α = Rr
Lr

, σ =
(

1− L2
m

LsLr

)
, β = Lm

σLsLr
, γ =

RsL2
r+RrL

2
m

σLsL2
r

. ωm is the rotor speed, id and iq are the currents on the d − q axes, and λd is
the rotor flux linkage on the d axis. TL and np are the load torque and number of pole pairs.
J is the moment of inertia, which is defined as constant. Lm is the mutual inductance, and
Ls and Lr are the self-inductances of the stator and rotor, respectively. f is the nominal
frequency in (Hz). Rs and Rr are the resistances of the stator and rotor, respectively, in Ω.
Finally, ud and uq are the non-linear state feedback control inputs, described by[
ud
uq

]
= σLs

[
−npωmiq − αLm

i2q
λd
− αβλd + vd

npβωmλd + npωmid + αLm
idiq
λd

+ vq

]
. (7)

Substitution of Eq. (7) into Eq. (6) results in the closed-loop system

dωm
dt

= µλdiq −
TL
J
,

dλd
dt

= −αλd + αLmid,

did
dt

= −γid + vd,

diq
dt

= −γiq + vq,

dρ

dt
= npωm + αLm

iq
λd
,

(8)

vd and vq are the new control inputs obtained by applying the next PI loops:

vd = Kd1 (λdref − λd) +Kd2

∫
(λdref − λd) dt, (9)

vq = Kq1 (Tref − Tem) +Kq2

∫
(Tref − Tem) dt, (10)

Tref = Kτ1 (ωref − ωm) +Kτ2

∫
(ωref − ωm) dt, (11)

where λdref , Tref and ωref are the references for rotor flux linkage, torque, and angular
speed, respectively. Kd1,Kd2,Kq1,Kq2,Kτ1 andKτ2 are the positive constant gains. Tem
is the electromagnetic torque, defined as Tem = µJλdiq.

3 Mated system: robot manipulator and induction motor
Consider that the kth joint, k = 1, 2, · · · , n, of each ith robot manipulator, i = 1, 2, · · · , p,
being directly driven by an IM. It is also assumed that the amplitude of the flux linkage
λd,ik is regulated to the reference constant value λdref,ik through the control loop Eq. (9);
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hence, the closed-loop system for each IM is reduced to

Jik
dωm,ik
dt

= µikJikλdref,ikiq,ik − TL,ik,

did,ik
dt

= −γikid,ik + vd,ik,

diq,ik
dt

= −γikiq,ik + vq,ik,

dρik
dt

= npωm + αLm
iq,ik

λdref,ik
.

(12)

Let vi =
[
vd,ik vq,ik

]T , Ii =
[
id,ik iq,ik

]T , Ωi = [ωm,i1, ωm,i2, · · ·, ωm,in]T ,
TL,i = [TL,i1, TL,i2, · · ·, TL,in]T , ℘i = [ρi1, ρi2, · · · , ρin]T , Ji = diag [Ji1, Ji2, · · ·, Jin],
Bi = diag [µi1Ji1, µi2Ji2, · · ·, µinJin], Λi = [λdref,i1iq,i1, λdref,i2iq,i2, · · ·, λdref,iniq,in],

ki =
[

iq,i1
λdref,i1

, iq,i2
λdref,i2

, · · · , iq,in
λdref,in

]
, [i = diag [αi1Lm,i1, αi2Lm,2, · · · , αinLm,in], where

Ωi, TL,i, Λi ∈ Rn; Ji, Bi ∈ Rn×n.
The closed-loop reduced model representing all the k induction motors for the ith robot
manipulator is expressed as

JiΩ̇i = BiΛi − TL,i,
İi = −γiIi + vi,

℘̇i = npiΩi + [iki,
(13)

where Ω̇i = dΩi
dt ∈ Rn.

The vector of the angular position θi ∈ Rn from all the k induction motors for the ith robot
manipulator is defined as

θi = [θm,i1, θm,i2, · · ·, θm,in]T .

To mate the robot manipulator dynamics and induction motor dynamics, we consider the
following assumptions.

N Assumption 1. There exists a direct mechanical coupling between the rotor of the IM
and the joint of the robot manipulator. This might reduce the periodical mechanical
maintenance with respect to the PMBLDC motors; therefore,

qi = θi, q̇i = θ̇i = Ωi, q̈i = θ̈i = Ω̇i. (14)

N Assumption 2. The synchronization control law causes the input torque or required
torque for each joint of the robot manipulator, which is considered as the load torque
applied to each induction motor; thus,

TL,i = τi = Mi (qi) q̈i + Ci (qi, q̇i) q̇i + gi (qi) . (15)

According to Assumption 2, it is possible to substitute Eq. (15) into Eq. (13); besides,
Eq. (14) enables the state variables of the motor to equal those of the robot manipulator.
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This gives

JiΩ̇i = BiΛi − [Mi (qi) q̈i + Ci (qi, q̇i) q̇i + gi (qi)] ,

BiΛi = Jiq̈i + [Mi (qi) q̈i + Ci (qi, q̇i) q̇i + gi (qi)] ,

BiΛi = [Ji +Mi (qi)] q̈i + Ci (qi, q̇i) q̇i + gi (qi) ,

Di (qi) q̈i + Ci (qi, q̇i) q̇i + gi (qi) = BiΛi, (16)

where Di (qi) = Ji +Mi (qi). The mated system is called IM-Robot.
This model has the same properties as listed in Section 2, because Ḋi (qi) = J̇i+Ṁi (qi) =
Ṁi (qi), remembering that Ji is a constant.

4 Synchronization control and velocity observer
4.1 Synchronization control in joint space

Synchronization errors si, ṡi ∈ Rn are defined as in [Rodriguez-Angeles and Nijmeijer
(2004)]:

si = qi − qri, ṡi = q̇i − q̇ri. (17)

The reference signals qri and q̇ri, q̈ri are established to consider the interactions between
robots and ensure the synchronous behavior, as

qri = qd −
p∑

j=1,j 6=i
Kcp_i,j (qi − qj) ,

q̇ri = q̇d −
p∑

j=1,j 6=i
Kcv_i,j (q̇i − q̇j) ,

q̈ri = q̈d −
p∑

j=1,j 6=i
Kca_i,j (q̈i − q̈j) ,

(18)

where qd (t) is the common desired trajectory that each IM-Robot will be forced to track;
Kcp_i,j ,Kcv_i,j , Kca_i,j ∈ Rn×n are diagonal positive semi-definite matrices, and, for
simplicity, it is assumed that they satisfy Kcp_i,j = Kcv_i,j = Kca_i,j = Ki,j . Thus, from
Eq. (14) and Eq. (18), the reference signals for the mated IM-Robot system are obtained:

θref,i = qri, ωref,i = q̇ri, ω̇ref,i = q̈ri. (19)

N Assumption 3. The torque necessary to achieve synchronization for each joint τi shall be
the reference torque Tref for the corresponding IM. This avoids the control loop PI Eq. (11)
in the control scheme of the IM.
Taken from Torres et al. [Torres, Guerrero, Garcia et al. (2016)], the control law to achieve
a master-slave synchronization of IM-Robot systems in the joint space is given by

BiΛi = Di (qi) q̈ri + Ci (qi, q̇i) q̇ri + gi (qi)−Kdiṡi −Kpisi, (20)

where Kdi and Kpi are positive-definite gain matrices.
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4.2 Synchronization control design in workspace

To attain synchronization of robot manipulators driven by IMs in the workspace, a
controller design is given below, more details of which appear in Appendix A.
The position error in the workspace ei (t) ∈ Rm is defined as

ei = χd − χi. (21)

The error dynamic equation is expressed as

ėi = χ̇d − χ̇i
= χ̇d − Jac (qi) q̇i

= χ̇d − Jac (qi) q̇i + αei − αei
= −αei + Jac

[
J+
ac (χ̇d + αei) +

(
In − J+

acJac
)
ϑi − q̇i

]
,

(22)

where αei has been added and subtracted to facilitate the formulation of the control, In ∈
Rn×n is the identity matrix, α ∈ Rm×m denotes a positive-definite gain matrix, and ϑi (t) ∈
Rn is a signal constructed in accordance with the required control objective.
Based on the structure of Eq. (22), the filtered tracking error ri (χ̇d, ei, q̇i) ∈ Rn is used to
reduce the order of the error dynamic equation, which is defined as

ri = J+
ac (χ̇d + αei) +

(
In − J+

acJac
)
ϑi − q̇i. (23)

Thus, the position error of the IM-Robot system in the workspace could be written using
ri (t) ∈ Rn as

ėi = −αei + Jacri. (24)

The dynamics of the filtered tracking error is obtained by applying the time derivative of
Eq. (23):

ṙi =
d

dt

[
J+
ac (χ̇d + αei) +

(
In − J+

acJac
)
ϑi
]
− q̈i. (25)

Thus, the dynamic equation of the IM-Robot system in an open loop is written as

Di (qi) ṙi = −Ci (qi, q̇i) ri + Yi∅i −BiΛi, (26)

where the regression matrix/parameters vector YiΦi is defined by

YiΦi = Di (qi)
d

dt

{
J+
ac (χ̇d + αei) +

(
In − J+

acJac
)
ϑi
}

+ Ci (qi, q̇i)

{
J+
ac (χ̇d + αei)

+ (In − J+
acJac)ϑi

}
+ gi (qi) ,

(27)

where Yi
(
χ̈d, χ̇d, χi, qi, q̇i, ϑi, ϑ̇i

)
∈ Rn×r is the regression matrix, and Φi ∈ Rr denotes

the constant parameters of the system.
A candidate Lyapunov function is proposed to design the synchronization control in the
workspace of IM-Robot systems:

V (ri, ei) =

p∑
i=1

{
1

2
rTi Di (qi) ri +

1

2
eTi ei

}
. (28)
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The function V (ri, ei) is positive-definite for all ri, ei and V (ri, ei) = 0 if and only if
ri = 0, ei = 0.
The time derivative of the proposed Lyapunov function V (ri, ei) is given by

V̇ (ri, ei) =

p∑
i=1

{
rTi Di (qi) ṙi +

1

2
rTi Ḋi (qi) ri + eTi ėi

}
. (29)

By the skew-symmetric property of the
[
Ḋi (qi)− 2Ci (qi, q̇i)

]
matrix

V̇ (ri, ei) =

p∑
i=1

{
−eTi αei + rTi

(
YiΦi −BiΛi + JTacei

)}
(30)

is obtained. An equality is established to achieve V̇ (ri, ei) < 0:

YiΦi −BiΛi + JTacei = −Kri, (31)

where K ∈ Rn×n is a constant positive-definite gain matrix.
Thus, V̇ (ri, ei) is expressed as

V̇ (ri, ei) = −
p∑
i=1

{
eTi αei + rTi Kri

}
< 0. (32)

In accordance with Behal et al. [Behal, Dixon, Dawson et al. (2009)], it is said the
synchronization error ei is global asymptotically stable.
A controller leading to master-slave synchronization of IM-Robot systems in the workspace
is developed via Eq. (31) as

BiΛi = YiΦi +Kri + JTacei. (33)

4.3 Joint variables estimator

Owing to the problems caused by the velocity measurements, an observer based on the
model is used to estimate qi and q̇i in the slave IM-Robot systems. Then, the stability
analysis is developed. For more details, see Appendix B. Thus, the proposed observer is

d

dt
q̂i = ˆ̇qi + ξ1q̃i,

d

dt
ˆ̇qi = −D−1

i (qi)
[
Ci

(
qi, ˆ̇qi

)
ˆ̇qi + gi (qi)−BiΛi +Kpisi +Kdi

ˆ̇si

]
+ ξ2q̃i,

(34)

where ξ1 and ξ2 are diagonal positive-definite matrices. The position estimation error q̃i ∈
Rn and velocity estimation error ˜̇qi ∈ Rn are given by

q̃i = qi − q̂i,
˜̇qi = q̇i − ˆ̇qi.

(35)
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The estimation errors’ dynamics is expressed as
d

dt
q̃i = q̇i −

(
ˆ̇qi + ξ1q̃i

)
= ˜̇qi − ξ1q̃i,

d

dt
˜̇qi = D−1

i (qi) [BiΛi − Ci (qi, q̇i) q̇i − gi (qi)]

+D−1
i (qi)

[
Ci

(
qi, ˆ̇qi

)
ˆ̇qi + gi (qi)−BiΛi +Kpisi +Kdi

ˆ̇si

]
− ξ2q̃i.

(36)

The candidate Lyapunov function for the stability analysis is proposed as

Vs
(
si, ṡi, q̃i, ˜̇qi

)
= V1 (si, ṡi) + V2

(
q̃i, ˜̇qi

)
, (37)

where

V1 (si, ṡi) =
1

2
ṡTi Di (qi) ṡi +

1

2
sTi Kpisi,

V2

(
q̃i, ˜̇qi

)
=

1

2
q̃Ti P1 q̃i +

1

2
˜̇qTi P2

˜̇qi.

(38)

P1 and P2 are diagonal positive-definite matrices. The time derivative of the proposed
Lyapunov function is given separately by

V̇1 (si, ṡi) = ṡTi Di (qi) s̈i +
1

2
ṡTi Ḋ i (qi) ṡi + sTi Kpiṡi, (39)

V̇2

(
q̃i, ˜̇qi

)
= q̃Ti P1

(
d

dt
q̃i

)
+ ˜̇q

T
i P2

(
d

dt
˜̇qi

)
. (40)

The closed-loop error dynamic equation of the IM-Robot system is expressed as

Di (qi) s̈i + Ci (qi, q̇i) ṡi +Kdiṡi +Kpisi = 0. (41)

The Lyapunov function derivative V̇s
(
si, ṡi, q̃i, ˜̇qi

)
manifests an inequality given by

V̇s
(
si, ṡi, q̃i, ˜̇qi

)
≤ −ṡTi Kdiṡi −

[
q̃i
˜̇qi

]T
∆

[
q̃i
˜̇qi

]
− ˜̇q

T
i εP2ξ2q̃i

+ ˜̇q
T
i P2D

−1
i (qi)

(
Kpisi +Kdi

ˆ̇si

)
,

(42)

where

∆ =

[
P1ξ1 −P1

(1− ε)P2ξ2 P2D
−1
i (qi)Ci

(
qi, ˜̇qi

) ], 0 < ε < 1.

As of Eq. (42), the analysis is centered on the expression

−˜̇q
T
i εP2ξ2q̃i + ˜̇q

T
i P2D

−1
i (qi)

(
Kpisi +Kdi

ˆ̇si

)
as the cause of the non-negative definition of the Lyapunov function derivative, thus
obtaining a factorization with respect to ˜̇q

T
i :

−˜̇q
T
i εP2ξ2q̃i + ˜̇q

T
i P2D

−1
i (qi)

(
Kpisi +Kdi

ˆ̇si

)
=

−˜̇q
T
i

[
εP2ξ2q̃i − P2D

−1
i (qi)

(
Kpisi +Kdi

ˆ̇si

)]
.

(43)
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This equation is ≤ 0 if and only if

|q̃i| ≥
D−1
i (qi)

(
Kpisi +Kdi

ˆ̇si

)
εξ2

. (44)

Therefore, the Lyapunov function derivative is rewritten as

V̇s
(
si, ṡi, q̃i, ˜̇qi

)
≤ −ṡTi Kdiṡi −

[
q̃i
˜̇qi

]T
∆

[
q̃i
˜̇qi

]
, (45)

∀ |q̃i| , |q̃i| ≥
D−1
i (qi)

(
Kpisi +Kdi

ˆ̇si

)
εξ2

= ϑ.

Another condition for the negative definition of the Lyapunov function derivative is for
the positive-definiteness of the matrix ∆ to remain, which is ensured in accordance with
Sylvesters criterion as[

P1ξ1 −P1

(1− ε)P2ξ2 P2D
−1
i (qi)Ci

(
qi, ˜̇qi

) ] > 0 (46)

if and only if

ξ1,mD
−1
i,mCi,m

(1− ε) ξ2,M
> 1, (47)

where the sub-indexes m and M indicate the minimum and maximum matrix eigenvalues,
respectively.

Definition 1. Letting wi =
[
si ṡi q̃i ˜̇qi

]T and the matrix

Hi =


1
2Kpi 1 1 1
−1 1

2Di (qi) 1 1
−1 −1 1

2P1 1
−1 −1 −1 1

2P2


the proposed Lyapunov function is rewritten as

Vs (wi) ≥ wTi Hiwi ≥ λmin (Hi)w
2
i → α1 (κ)

= λmin (Hi)κ
2 → α1 (κ) = λmin (Hi)κ2, (48)

V (wi) ≤ wTi Hiwi ≤ λmax (Hi)w
2
i → α2 (κ)

= λmax (Hi)κ
2 → α1 (κ) = λmax (Hi)κ2 (49)

In accordance with Khalil [Khalil (1996)], wi ≤ κ ⇒ V (wi) ≤ α2 (κ) = ε. This ensures
that

Bµ ⊂ Ωε = {wi : Vs (wi) ≤ ε} .

Thus, wi ∈ Ωε and the solutions are GUUB (globally uniformly ultimately bounded) by
the bound

wi ≤ b = α1
−1 (α2 (κ)) =

√
λmax (Hi)κ2

λmin (Hi)
. (50)
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Table 1: SCARA robot manipulator parameters (BOSH R© SR-8)

Parameter Value Parameter Value

l1 0.43 m m1 15 kg
l2 0.37 m m2 12 kg
lc1 0.215 m m3 3 kg
lc2 0.185 m m4 3 kg
I1 0.2313 kg ·m2 I2 0.1370 kg ·m2

I3 = I4 0.1007 kg ·m2 g 9.81 m
s2

4.4 Synchronization control with velocity estimator

The synchronization control law of IM-Robot systems in the joint space with a velocity
estimator of the slave IM-Robot is given by the expression

BiΛi = Di (qi) ˆ̈qri + Ci

(
qi, ˆ̇qi

)
ˆ̇qri + gi (qi)−Kdi

ˆ̇si −Kpisi. (51)

In contrast, the synchronization control law of IM-Robot systems in the workspace with a
velocity estimator of the slave IM-Robot is expressed as

BiΛi = ŶiΦi +Kr̂i + JTacei, (52)

where

r̂i = J+
ac (χ̇d + αei) +

(
In − J+

acJac
)
ϑi − ˆ̇qi, (53)

ŶiΦi = Di (qi)
d

dt

{
J+
ac (χ̇d + αei) +

(
In − J+

acJac
)
ϑi
}

+ Ci

(
qi, ˆ̇qi

){
J+
ac (χ̇d + αei) +

(In − J+
acJac)ϑi

}
+ gi (qi) . (54)

5 Simulation results
With the intention of proving the proposed synchronization approaches, robot manipulators
of type SCARA with k = 4 joints driven by IMs were simulated in a scheme shown in
Fig. (1) with one master IM-Robot system and three slave IM-Robot systems. The robot
parameters are shown in Tab. 1, taken from the BOSH R© SR-8 datasheet. The parameters for
each of the IMs appear in Tab. 2. Simulations were carried out on the Simulink R© platform
through the S-function level-2 with ode-45 solver, variable-step, and a simulation time of
10 s. The voltage sources can supply the required levels in the simulation settings.

5.1 IM-Robot synchronization in joint space

The desired trajectory in the joint space is described by the expression

qd (t) = qdin +

(
qdf − qdin

2

)[
1− cos

(
πt

tf

)]
, (55)
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Figure 1: Simulation scheme for synchronization of IM-Robots

Table 2: IM Parameters

Parameter Value Parameter Value

Power 200 W Poles 4
Speed 1732 rpm V oltage 220 V 3-phase
Rs 1.77 Ω Rr 1.34 Ω
Lls 0.024 H Lm 0.245 H
Llr 0.013 H J 0.025 kg ·m2

where tf is the final time, set as 4 s. qd in denotes the initial desired position for each joint
k = 1, 2, 3, 4. qd f is the final desired position. The values of these references are

qdkin =
[
−π

2 −π
5

π
5

π
4

]T
rad, qdkf =

[
−π π −π

4 −π
2

]T
rad. (56)

The initial conditions for the joint position of the master IM-Robot j and the three slave
IM-Robots i = 1, 2, 3 with k = 1, 2, 3, 4 joints are established as

qin j,k =
[
−π

4 −π
3

π
3 π

]
rad, qin i,k =

 −π 2π
3

π
6

π
2

π
5

π
2 −π

3 −π
π
2 −π π π

3

 rad. (57)
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The gain matrices for the synchronization controller in the joint space are set as

Kpj = diag [140] Kdj = diag [60] Kpi = diag [140]

Kdi = diag [110] Kd1 = diag [2000] Kd2 = diag [8000]

Kq1 = diag [180] Kq2 = diag [300]

It should be noted that the process for gain tuning in relation to the proposed controller
was guided based on our prior experience with these types of synchronization controllers,
attending to the positive-definite gain matrices.
The simulation results of the IM-Robot synchronization in the joint space for each slave
IM-Robot are shown in Figs. 2-4. A solid line denotes the master IM-Robot trajectory, and
a dashed line the slave IM-Robot system. In Fig. 5, all the trajectories are shown for each
joint, including the desired trajectory. Synchronization errors and tracking error for each
joint are displayed in Fig. 6, where ζj,k is the tracking error of the master IM-Robot with
respect to the desired trajectory.
Remark 1. In the joint space, all the trajectories of the slave IM-Robot systems synchronize
with the trajectory of the master IM-Robot system for each joint after an initial transient
of 1.5 s, depending on the initial conditions. Therefore, the synchronization errors and the
tracking error converge to zero in the case in which the velocity measurement is estimated.
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Figure 2: Synchronization in joint space of slave IM-Robot i1

5.2 IM-Robot synchronization in workspace

The desired trajectory in the workspace is described by

χd (t) =
[

0.55 + 0.1 sin (2t) 0.3 + 0.1 cos (2t) 0.08t
]T m. (58)

The initial position of the master IM-Robot end-effector is set as

χ(0)j =
[

0.37 0.43 0
]T m. (59)
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Figure 3: Synchronization in joint space of slave IM-Robot i2
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Figure 4: Synchronization in joint space of slave IM-Robot i3

For each slave IM-Robot, i = 1, 2, 3, and the initial position for the end-effector is
established as

χ(0)i =

 χ(0)1
χ(0)2
χ(0)3

 =

 0.2953 0.4235 0
0.4447 0.4235 −0.1
0.2730 0.55 −0.2

 m. (60)

The gain matrices used in the synchronization controller in the workspace are

α = diag [250] , K = diag [30] . (61)

The simulation results for IM-Robot synchronization in the workspace are presented as
follows: In Fig. 7, the synchronization is seen in the x− y plane; in Fig. 8, it is seen in the
x−z plane; finally, the workspace synchronization errors on the x and y axes are displayed
in Fig. 9.
Remark 2. In the workspace, every position and orientation of the slave IM-Robot end-
effectors synchronize with the position and orientation of the master IM-Robot end-effector
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Figure 5: Synchronization in joint space of all IM-Robot slaves, each joint shown
separately
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Figure 6: Synchronization error and tracking error in joint space of all IM-Robot slaves,
each joint shown separately

while tracking a common desired trajectory. Furthermore, the synchronization errors
converge to zero without velocity measurements.
The gain matrices for the velocity observer in both the joint space and workspace are
established as

ξ1 = diag [190] , ξ2 = diag [200] . (62)

Note that this choice of the gains satisfies the conditions given in Eq. (47) for each slave
IM-Robot system in the scheme.
The position estimation error is shown in Fig. 10, and the velocity estimation position is
presented in Fig. 11.
Remark 3. It is clear that the estimation errors converge to zero in both the joint space and
workspace.
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Figure 7: Synchronization in the workspace in the x− y plane
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Figure 8: Synchronization in the workspace in the x− z plane

6 Conclusions
The dynamics of the robot manipulator and IM have been combined to obtain the entire
dynamic model of the mated IM-Robot system. Thus, a novel synchronization scheme
including the actuator dynamics within the synchronization control with a velocity observer
based on the entire IM-Robot model has been satisfactorily achieved, in both the joint space
and workspace. Considering a direct mechanical coupling between the rotor of the IM and
the joint of the robot manipulator, the proposed approach realizes synchronization of both
the IM and robot manipulator.
The IM-Robot systems synchronize before tracking the desired trajectory, which is similar
to the case in prior works in the literature in which ideal actuators were considered, so
the use of an actuator with high nonlinear dynamics, like the IM, might allow reliable
performance while minimizing costs.
Based on the results of Lyapunov analysis, the proposed velocity observer exhibited
GUUB estimation closed-loop errors. The simulation results, assuming knowledge of the
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Figure 9: Synchronization errors in the workspace on the x and y axes
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Figure 10: Position estimation error for the synchronization in joint space
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Figure 11: Velocity estimation error for the synchronization in the workspace
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parameters and availability of the partial state and ideal sources in the simulations, show 
the feasibility of the proposed synchronization approach.
Future works will be directed at obtaining experimental results to compare the effects of 
chattering caused by the noise in the velocity measurements against the performance of the 
proposed observer. Moreover, future approaches will be undertaken that include time 
delays and parametric uncertainties.
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Appendix A.
In this appendix, the design of the synchronization controller in the workspace is presented 
in detail as follows. From the Eq. (25), it is multiplied by the inertia matrix Di (qi) of 
the matched IM-Robot system, then substitution of the IM-Robot dynamics results in the 
expression:

Di (qi) ṙi = Di (qi)

{
d

dt

[
J+
ac (χ̇d + αei)

+ (In − J+
acJac)ϑi

]}
−Di (qi) q̈i

= Di (qi)

{
d

dt

[
J+
ac (χ̇d + αei)

+ (In − J+
acJac)ϑi

]}
+ Ci (qi, q̇i) q̇i + gi (qi)−BiΛi.

(63)

To reconstruct the structure of Eq. (23), Ci (qi, q̇i) [J+
ac (χ̇d + αei) + (In − J+

acJac)ϑi] is
added and subtracted to Eq. (63), which gives

Di (qi) ṙi = Di (qi)

{
d

dt

[
J+
ac (χ̇d + αei)

+ (In − J+
acJac)ϑi

]}
+ Ci (qi, q̇i) q̇i + gi (qi)−BiΛi

+ Ci (qi, q̇i)

[
J+
ac (χ̇d + αei)

+ (In − J+
acJac)ϑi

]
− Ci (qi, q̇i)

[
J+
ac (χ̇d + αei)

+ (In − J+
acJac)ϑi

]
.

(64)

Substitution of Eq. (26) into Eq. (29) results as

V̇ (ri, ei) =

p∑
i=1

{
rTi (−Ci (qi, q̇i) ri + YiΦi −BiΛi)

+1
2r
T
i Ḋi (qi) ri + eTi (−αei + Jacri)

}

=

p∑
i=1

{
rTi

(
1
2Ḋi (qi)− Ci (qi, q̇i)

)
ri − eTi αei

+rTi
(
YiΦi −BiΛi + JTacei

) }
.

(65)

Appendix B.
This appendix shows details of the stability analysis of the proposed observer given in 
Eq. (34).
Substitution of Eq. (41) into Eq. (39) results as

V̇1 (si, ṡi) = ṡTi [−Ci (qi, q̇i) ṡi −Kdiṡi −Kpisi] +
1

2
ṡTi Ḋi (qi) ṡi + sTi Kpiṡi

= ṡTi

[
1

2
Ḋi (qi) ṡi − Ci (qi, q̇i) ṡi

]
− ṡTi Kdiṡi − ṡTi Kpisi + sTi Kpiṡi

= −ṡTi Kdiṡi.

(66)

Substitution of Eq. (36) into Eq. (40) gives

V̇2

(
q̃i, ˜̇qi

)
= q̃Ti P1

(
˜̇qi − ξ1q̃i

)
+ ˜̇q

T
i P2

{
D−1
i (qi)

[
−Ci

(
qi, ˜̇qi

)
˜̇qi

+Kpisi +Kdi
ˆ̇si

]
− ξ2q̃i

}
qi

= q̃Ti P1
˜̇qi − q̃Ti P1ξ1q̃i − ˜̇q

T
i P2D

−1
i (qi)Ci

(
qi, ˜̇qi

)
˜̇qi

+ ˜̇q
T
i P2D

−1
i (qi)Kpisi + ˜̇q

T
i P2D

−1
i (qi)Kdi

ˆ̇si − ˜̇q
T
i P2ξ2q̃i.

(67)
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Therefore,

V̇s
(
si, ṡi, q̃i, ˜̇qi

)
= −ṡTi Kdiṡi + q̃Ti P1

˜̇qi − q̃Ti P1ξ1q̃i − ˜̇q
T
i P2D

−1
i (qi)Ci

(
qi, ˜̇qi

)
˜̇qi

+ ˜̇q
T
i P2D

−1
i (qi)Kpisi + ˜̇q

T
i P2D

−1
i (qi)Kdi

ˆ̇si − ˜̇q
T
i P2ξ2q̃i.

(68)

Considering a matrix representation,

V̇s
(
si, ṡi, q̃i, ˜̇qi

)
= −ṡTKdiṡ−

[
q̃i
˜̇qi

]T
Z

[
q̃i
˜̇qi

]
+ ˜̇q

T
i P2D

−1
i (qi)Kpisi

+ ˜̇q
T
i P2D

−1
i (qi)Kdi

ˆ̇si,

(69)

where Z =

[
P1ξ1 −P1

P2ξ2 P2D
−1
i (qi)Ci

(
qi, ˜̇qi

) ].

The expression ˜̇qTi εP2ξ2q̃i is added and subtracted to Eq. (69), with 0 < ε < 1, where the
time derivative of the Lyapunov function V̇s

(
si, ṡi, q̃i, ˜̇qi

)
manifests an inequality given by

Eq. (42).




