
 
 
 
Computer Modeling in Engineering & Sciences                    CMES, vol.121, no.2, pp.501-522, 2019 

CMES. doi:10.32604/cmes.2019.06798                                                                        www.techscience.com/cmes 

 
 

Numerical Simulation of Dynamic Interaction Between                
Ice and Wide Vertical Structure Based on Peridynamics 

 
Bin Jia1, Lei Ju1, * and Qing Wang1 

 
 
Abstract: In the ice-covered oceanic region, the collision between sea ice and offshore 
structures will occur, causing the crushing failure of ice and the vibration of structures. The 
vibration can result in fatigue damage of structure and even endanger the crews’ health. It 
is no doubt that this ice-structure interaction has been noted with great interest by the 
academic community for a long time and numerous studies have been done through 
theoretical analysis, experimental statistics and numerical simulation. In this paper, the 
bond-based Peridynamics method is applied to simulate the interaction between sea ice and 
wide vertical structures, where sea ice is modeled as elastic-plastic material, with a certain 
yield condition and failure criterion. Oscillation equation of single-degree-of-freedom is 
considered to investigate the vibration features of the structure during the interaction 
process. The damage of ice, ice forces and vibration responses of structure in the duration 
are obtained through numerical simulation. A parametric investigation is undertaken to 
identify the key parameters, such as ice thickness, the diameter of structure and relative 
velocity that trigger the ice crushing, ice forces and vibration responses of the structure. 
Results indicate that all three parameters have a positive correlation with the overall level 
of ice force and vibration displacement. Besides, a velocity coefficient is proposed to 
predict the vibration displacement based on its relation with ice speed. 
 
Keywords: Ice, Peridynamics, vertical structure, interaction. 

1 Introduction 
With increasing attention attracted by the polar area, ice-related issues have been deeply 
studied by researchers around the world. For various types of marine structures, they could 
inevitably contact with ice floating on the water during their operation. However, the 
complex characteristics of sea ice make this ice-structure interaction problem even harder 
to solve. Marine platforms in the ice-covered area are mainly in the form of cone, slope, 
and cylinder. As a widely-used structural type, vertical cylindrical structures would cause 
the crushing failure of sea ice. In return, the interaction creates structural vibration, which 
induces the risk of fatigue damage to the structure. 
There have been several research achievements about the interaction between the sea ice 
and vertical structure. Research focuses mainly on theoretical analysis [Matlock, Dawkins 
and Panak (1969); Eranti (1991); Withalm and Hoffmann (2010); Ji and Oterkus (2016); 
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Hendrikse (2017) and etc.] and experimental studies [Sodhi and Morris (1984); Sinding-
Larsen (2014); Huang, Shi and Song (2007) and etc.]. Meanwhile, numerical simulation is 
becoming a promising method to investigate relevant problems, owing to its remarkable 
operation convenience, high computational efficiency and relatively low cost. Feng et al. 
[Feng, Pang and Zhang (2016)] used cohesive element method, which is integrated in LS-
DYNA, to simulate the failure of ice and output ice forces generated during the process; 
Di [Di (2015)] carried out discrete element simulation of ice action on vertical structure 
based on GPU parallel algorithm, which revealed the non-simultaneous failure features of 
sea ice. Considering ice as visco-elastic-plastic material, Wang et al. [Wang, Yang, Zhang 
et al. (2017)] applied Material Point Method to predict the ice load and discuss the influence 
of parameters like temperatures and velocities. 
The most significant phenomenon in ice-structure interaction is the crack failure of ice. There 
are several particle methods that can describe fracture features of material. Rabczuk et al. 
[Rabczuk and Belytschko (2004)] presented cracking-particle method (CPM), a simplified 
meshfree method for arbitrary evolving cracks where the crack growth is represented by 
activation of crack surfaces at each particle. Therefore, CPM could be used for simulating 
large deformations and arbitrary nonlinear and rate-dependent materials [Rabczuk and 
Belytschko (2007)]. Based on that, Rabczuk et al. [Rabczuk, Zi, Bordas et al. (2010)] modeled 
the crack by splitting particles located on opposite sides of the associated crack segments as a 
modification. In addition,  Areias et al. [Areias, Msekh and Rabczuk (2016); Areias, Reinoso, 
Camanho et al. (2018)] proposed a crack propagation algorithm, which is composed of a 
localization limiter in the form of the screened Poisson equation with local mesh refinement, 
where the crack growth has been proven to be able to emerge naturally. 
Peridynamics (PD) is a meshfree numerical method, whose fundamental theory was 
proposed by Professor Silling in 2000 [Silling (2000)]. Based on non-local interaction 
ideology, Peridynamics works by solving governing equations in integral form, which 
naturally avoids continuity hypothesis and the problems of solving partial differential 
equations [Silling and Askari (2005)]. In this way, Peridynamics shows a clear advantage 
on discontinuous problems like fracture, making it feasible to simulate the rupture 
characteristics of sea ice when interacting with marine structures. Liu et al. [Liu, Xue, Lu 
et al. (2018)] and Liu et al. [Liu, Wang and Lu (2017)] simulated the ship navigation in ice 
rubbles and interaction between ice and vertical structure using peridynamics successfully. 
With an uncomplicated principle, bond-based peridynamics is rather easy to realize. It can 
describe the characteristic of certain material models including prototype micro-elastic 
brittle (PMB) model and micro-plastic (MP) model, which could be expressed by some 
plain types of force density function. To a certain extent, bond-based peridynamics avoids 
some complex handlings like modification of zero-energy mode, making it own higher 
application flexibility in certain cases. Bond-based peridynamics has been proven effective 
in various problems, such as quasi-static deformation and dynamic damage. Gu et al. [Gu, 
Zhang, Huang et al. (2016)] even applied modified bond-based peridynamics to research 
the elastic wave dispersion and propagation. Based on bond-based peridynamics, Ren et al. 
[Ren, Zhuang, Cai et al. (2016)] proposed dual-horizon peridynamics that could solve 
unbalanced interactions between the particles with different horizon sizes, which possesses 
clear superiority in capturing complex fracture and owns higher computational efficiency 
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with adaptive refinement. It can completely realize the removal the ghost force and is 
suitable for nonuniform discretization [Gu, Zhang and Xia (2016)]. However, it should be 
noted that bond-based peridynamics does have some drawbacks. For instance, only the 
isotropic material with Poisson's ratio of 1/3 in 2D or 1/4 in 3D can be modeled. And it 
can’t be simply applied when constitutive relation of material is complicated. Meanwhile, 
the quantities that matter in mechanics (like stress, strain etc.) could not be obtained 
directly through this method, which weakens the relation with traditional continuum 
mechanics. In addition, it does not distinguish the dilatational and distortional parts of the 
deformation [Gu, Madenci and Zhang (2018)]. 
Sea ice is a type of extremely complicated material, whose physical and mechanical 
properties could be easily affected by temperature, sanity, brine volume and etc. In this way, 
there emerged various kinds of constitutive models to depict the characteristics of sea ice 
when it moves against certain structure. Among them, the most widely accepted constitutive 
model is the visco-plastic model firstly presented by Hibler, which has always been a basic 
for following academic extension [Hibler (1979)]. And simple elastic-brittle constitutive 
model has also applicable for some high-strain-rate scenarios [Liu, Wang and Lu (2017); 
Wang, Wang, Zan et al. (2017)]. Different from above, Ralston investigated the yield 
conditions and plastic deformation before its failure, providing feasibilities to apply 
knowledge incorporated with elastic-plastic theory to study on failure of ice [Ralston (1977)]. 
As a matter of fact, Coon et al. [Coon, Maykut and Pritchard (1974); Pritchard (1975); Coon, 
Knoke, Echert et al. (1998)] had proposed isotropic and anisotropic elastic-plastic laws for 
the use of numerical dynamic simulations of sea ice at relatively large scale. In 2015, Gao et 
al. [Gao, Hu, Ringsberg et al. (2015)] presented an ideal elasto-plastic model, which has been 
validated to be efficient to predict the collision between ice and ship.  
In this paper, a bond-based Peridynamics method is used to simulate the interaction 
between sea ice and a wide vertical structure. Sea ice is modeled as ideal elastic-plastic 
material, which is realized by micro-plastic (MP) model in Peridynamics. To provide more 
practical data, a single-degree-of-freedom vibration equation is considered to well explain 
the ice-structure coupling effect. Numerical results including ice force and vibration 
displacement are compared with numerical data from DEM simulation carried out by Ji et 
al. [Ji, Di, Li et al. (2013)]. It shows that two sets of data hold favorable consistency, 
verifying the effectiveness and practicability of Peridynamic algorithm in ice-related 
scenarios. Based on that, parameter sensitivity analysis is undertaken to conclude the 
influence of parameters like the diameter of structure, ice thickness and ice speed, which 
is appropriate for revealing the mechanism of ice-structure interaction. 

2 Peridynamic theory 
In Peridynamic theory, the material points in an object could only interact with points 
around them within a certain scope, as shown in Fig. 1.  
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Figure 1: Interaction between material points in Peridynamic frame 

These interactions between material points would appear as non-local forces. For an object 
R occupying a particular space region at time t, the governing equation of a single material 
point inside could be written as [Silling (2013)] 

( , ) ( ( ', ) ( , ), ' ) ( , )
x

xH
t t u t dV tρ = − −∫u x f u x x  x x + b x  (1) 

where ρ  is material density, u is the displacement vector of material point x at time t and 
b is the body force acting on the material point. Hx is a horizon centered with the material 
point x, which is defined by a zone radius δ . And x’ is a material point located in the 
horizon of material point x so that an imaginary “bond” could be created connecting x and 
x’.  f is the force density function representing the interaction state between x and x’. 
In Peridynamic framework, MP model could be used to describe ideal elastic-plastic 
features of the material. The force density function f takes the form [Parks, Seleson, 
Plimpton et al. (2011)] 

( , ) [ ( )] ( , )pc s s t tµ +
= − ⋅

+
ξ ηf η ξ ξ
ξ η

 (2) 

where ξ  and η  denote initial relative position vector 'ξ = x - x  and relative displacement 
vector after deformation ( ' ) ( )t t= −η u x u x, , respectively; The material parameter c is 
referred as the bond-constant. For general three-dimensional structures, c is expressed as 
[Silling and Askari (2005)] 

4

18Kc
πδ

=  (3) 

where K is bulk modulus of material; However, the formula above considers that material 
points within horizon act on the centered material point to the same extent no matter where 
they locate at. It’s reasonable to recognize that those closer material points should interact 
more intensively with the centered one. In this way, researchers have derived a function to 
express this thought, which could be written as follows [Wang, Wang, Zan et al. (2017)]: 
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s denotes the stretch of the bond, which is defined as follows [Silling and Askari (2005)] 
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( )ps t  is the plastic stretch history which follows 

(0) 0ps =  (6) 
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where Ys  is the yielding stretch. 

It should be emphasized that if the material is isotropic, s should be positive when the bond 
is in stretching status and negative when bond is under compressive condition respectively; 

( , )tµ ξ  is a scalar quantity that represents the damage state of “bond”, which is written as 

0

0

1, ( )
( , )

0, ( )
  s t', <s  

t
  s t', s

µ


=  ≥

ξ
ξ

ξ
 (8) 

where 0s  is critical stretch, a quantity that determine whether bond has been broken. When 
s exceeds 0s , the bond could be regarded as damaged. Theoretically, critical stretch could 
be derived from energy release rate of the fracture section. 
Furthermore, another coefficient ( , )tϕ x , was proposed by Silling to describe the local 
damage of material point [Silling and Askari (2005)]. 

( , , )
( , ) 1 x

x

H

H

t dV
t

dV

ξ

ξ

µ ξ
ϕ = −

∫
∫

x
x  (9) 

The coefficient ϕ  ranges from 0 to 1. ϕ =0 means that bonds connected to material point 
x are all intact. And ϕ =1 indicates that there is no more interaction between x and other 
material points within its horizon. 

3 Numerical implementation 
3.1 Constitutive model of sea ice 
A complex feature of sea ice lies in its strength difference in tension and in compression. 
As a rule, the compressive strength is 2~4 times larger than its tensile strength [Karr and 
Das (1983)]. In this way, a relation of sc=-4·s0 is chosen to reflect its strength-difference 
effect. To simplify the problem, it assumes that ice only yields under compression. From 
the above, the constitutive relation of ice is shown in Fig. 2. 
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Figure 2: Constitutive relation of sea ice 

Besides the method mentioned above, inspired by Huang et al.’s work, critical stretch can 
be approximated as [Huang, Lu and Qiao (2015)] 

0
ts

E
σ

=  (10) 

where tσ  is the tensile strength of the material. In this paper, the critical compressive 
stretch is calculated by the equation above with slight change from tensile strength to 
compressive strength. Then the critical tensile stretch is evaluated from the 4-time multiple 
relationships between two kinds of strengths mentioned above. 
In addition, the bond yield stretch should be related to the conventional continuum 
mechanics properties, i.e., engineering ultimate strength sσ , by noting that all bonds have 
yielded when the material reaches its ultimate strength. The relation between the two could 
be expressed as [Macek and Silling (2007)] 

3
s

Ys
K
σ

≈  (11) 

where sσ  is also referred to yield strength (MPa).  

3.2 Contact model 
Since the vertical structure, i.e., impactor, is assumed to rigid, only the target material would 
be deformable and those material points within are governed by the Peridynamic equation of 
motion. It assumes that the impactor moves towards the material point with its constant 
velocity 0v  at the beginning, as illustrated in Fig. 3(a). At time t t+ ∆ , a contact takes place 
between the material point and the impactor, inducing an interpenetration of material points 
(see Fig. 3(b)). From the perspective of reflecting the physical reality, the material points are 
relocated to their new positions outside the impactor. Their new locations are assigned to 
achieve the closest distance to the surface of the impactor, as shown in Fig. 3(c).  
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Figure 3: Relocation of a material point inside the target material to reflect the contact 
phenomenon. (a) Time, t. (b) Time, t t+ ∆ . (c) Time, t t+ ∆  (relocation) 

According to the cases in this paper, the distance d should be calculated as 
d = R - d0 (12) 
where R is the radius of the structure, d0 is the distance between penetrated material point 
and the center of the structure. So that the new location could be written as 

( ) ( ) ( )
t t t t
k k k t d+∆ = + ⋅∆ + ⋅x x v n  (13) 

The velocity of the material point ( )kx , in its new location at time t t+ ∆ , can be expressed 
as [Ye, Wang, Chang et al. (2017)]  

( ) ( )
( )

t t t
t t k k
k

t

+∆
+∆ −

=
∆

u u
v  (14) 

where ( )
t t
k
+∆

u  is the modified displacement vector at time t t+ ∆ , ( )
t
ku  is the displacement 

vector at time t, and  is referred as time increment. In this way, the contribution to the 
contact force from this certain material point to the impactor could be computed from 

( ) ( )
( ) ( ) ( )

( )
1

t t t t
k kt t

k k kV
t

ρ
+∆ +∆

+∆ −
= − ×

∆

v v
F  (15) 

where ( )
t t
k
+∆v  is the velocity vector at time before relocating the material point ( )kx , with  

( )kρ and ( )kV  representing its density and volume, respectively. The total contact force on 
the impactor can then be obtained by adding up the contributions of all material points 
inside the impactor. 

( )
1

n
t t t t

k
k

+∆ +∆

=

=∑F F  (16) 

where n denotes the amount of material points penetrated in the impactor. 

3.3 Dynamical model of the structure 
Compared to inclined or conic structures, vertical structures would vibrate more violently 
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while interacting with sea ice. The phenomenon of ice-induced vibration could be considered 
as an ice-structure coupling problem. In this paper, this vibration-related mutual effect is 
simplified as a single-degree-of-freedom system, where the vertical structure is regarded as 
an oscillating body with certain mass M, structural stiffness K and damping factor C and its 
motion are limited in horizontal direction. The vibration model is shown in Fig. 4. 

 

Figure 4: Single-degree-of-freedom vibration model of the vertical structure 

The vibration equation of a single-degree-of-freedom should be written as 

cM u C u K u F⋅ + ⋅ + ⋅ =   (17) 

and the central difference method is used to solve the physical quantities in it. 

3.4 Numerical computational algorithm 
When it comes to numerical calculation, the continuum should be divided into a series of 
closely linked material points in the cartesian coordinate system. Meanwhile, the integral 
part of the governing equation could be transformed into a limited sum form so that the 
numerical governing equation should be expressed as 

1
( , )

m

i j i j i j i
j

Vρ
=

= − − +∑u f u u x x b  (18) 

where xj represents those material points within the horizon of centered material point xi. 
m is the quantity of xj. ui and uj are the displacements of material point xi and xj respectively. 

iu  is the acceleration of xi, bi is the body force acting on xi and Vj is the volume of xi. 
In order to capture the motion of material points involved, the explicit central difference 
formula is introduced to calculate the acceleration of the material points 

1 1

2

2n n n
n i i i
i

u u uu
t

+ −− +
=

∆
  (19) 

And for the purpose of ensuring the stability of the numerical method, the time increment 
should satisfy the limitation that [Madenci and Oterkus (2014)] 

2

ij jj

t
C V
ρ

∆ <
∑

 (20) 

where ijC
η
∂

=
∂

f . The full program flow charts are shown in Figs. 5 and 6.  
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Figure 5: Flow chart of numerical 
calculation 

Figure 6: Calculation flow chart of the 
bond force

4 Model validation based on three-point bending test 
Peridynamic model in this paper is verified through three-point bending test. Schematic 
diagram is shown in Fig. 7. The ice sample for experiment is taken from a lake in 
Heilongjiang Province of China. The dimension of ice beam is 0.65 m×0.07 m×0.07 m, 
while the distance between the bearing points is 0.6 m [Lu (2017)]. Based on experimental 
data, the density ρ  is 896.977 kg/m3, elastic modulus E is 6.81 GPa, and the flexural 
strength fσ  is 2.5 MPa.  

Based on the experiment, numerical model is built with a grid layout of 93×10×10. Horizon 
radius is set to be 3 times the material point size. In general numerical simulation of sea 
ice, its yield strength yσ  is usually chosen as 2.12 MPa [Zhu, Qiu, Chen et al. (2016)], 

which is of use in the speculation of tensile strength tσ  of it together with the flexural 
strength fσ . According to Jin et al.’s mean strength criterion, the relationship among the 
quantities above can be expressed as [Jin, Yue, Bao et al. (1997)] 
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Figure 7: Schematic diagram of three-point bending test 

(1 )t f h
σ σ ∆

= −  (21) 

( )
2

f y

f

h σ σ
σ
−

∆ =  (22) 

where h represents the height of beam sample. Based on the relation above, the tensile 
strength can be obtained as 2.31 MPa. Therefore, the critical stretch could be derived from 
Eq. (10). In addition, a constant velocity load of 0.763 mm/s is applied on the center of the 
ice beam. Time step size is 2.5×10-6 s. The simulated results show the process of crack 
initiation, crack growth until the failure of ice beam occurs (as shown in Fig. 8).  

                                               

 

Figure 8: Simulated fracture process of ice beam in the three-point bending test 
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Besides, deflections of middle point calculated based on proposed numerical model and 
that recorded during experimental process are compared and show good agreement (as 
shown in Fig. 9). It is noted that the calculated moment when ice beam breaks seems to be 
a little later than that in the experiment, which can be explained by the fact that the ice in 
numerical simulation is more close to ideal state while that in the experiment is formed 
with defects and impurities in a natural setting and weakens its strength. Comparative 
analysis shows the potential of numerical model to describe characteristic of ice and 
validates the method used to determine the critical stretch effectively. 

5 Interaction between sea ice and vertical structure 
Considering that the accuracy of the numerical results calculated in this paper would be 
validated by comparing with the data computed by DEM method, the parameters including 
density and ice thickness used in this numerical example are chosen according to Ji et al.’s 
DEM simulation settings [Ji, Di, Li et al. (2013)]. Since the sea ice involved in the DEM 
simulation is assumed to be taken from the Bohai sea, material parameters including elastic 
modulus, compressive strength and yield strength are referred to experimental data and 
conclusion, and other settings of numerical simulation [Bai, Liu, Li et al. (1999); Meng 
(1993); Zhu, Qiu, Chen et al. (2016)], which are listed in Tab. 1 below.  

 

Figure 9: Deflections of middle point of ice sample in simulation and experiment 

In order to manifest its semi-infinite characteristic in width and ignore the boundary effect, 
ice model is fixed at circumference except for the face that contact takes place. The 
schematic diagram of the calculation model and the corresponding coordinate system with 
it is shown in Fig. 10. Among those parameters related to Peridynamic calculation, the ice 
model is divided into 3 layers in the direction of thickness, with the material point size 
approximately equaling 0.087 meters; 90 material points are assigned in length and width 
direction; to achieve relatively higher computational accuracy, horizon radius is set to be 
3 times the material point size as well; and time step size is chosen as 1.0×10-4 s. 
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Table 1: Computation parameters 

Parameter Symbol Value 
Thickness of ice sheet T 0.26 m 
Dimensions of ice sheet L×B 7.8 m×7.8 m 
Density of ice ρ  920 kg/m3 
Elastic modulus of ice E 0.89 GPa 
Compressive strength of ice cσ  3.07 MPa 
Yield strength of ice sσ  2.12 MPa 
Poisson ratio of ice ν  1/4 
Ice speed v0 0.5 m/s 
Diameter of the vertical 
structure D 2 m 

Mass of the vertical structure M 3.0×105 kg 
Damping factor of the vertical 
structure 

ζ  0.03 

Structural stiffness of the 
vertical structure K 5.0×108 N/m 

 
Figure 10: Schematic diagram of the interaction between ice and vertical structure 

Typically in a situation like this ice-structure interaction, ice sheet often constantly breaks 
into pieces with the structure’s moving. As for qualitative results, Fig. 11 presents the 
crushing failure of sea ice during the interaction process. It proves that the numerical 
method based on Peridynamics can simulate the ice-structure interaction reasonably, 
reflecting the physical reality. And as depicted in Fig. 12 (fully damaged material points 
have been erased), the middle material point in its thickness direction is damaged more 
severely than its top one and the bottom one. Though stress states of material points cannot 
be obtained directly in the bond-based Peridynamic framework, to a certain extent, the 
damage of material does prove the intensity of the ice-structure interaction. The highly-
damaged material point is more like the hot point in the “high-pressure zone” theory, which 
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confirms the non-simultaneous failure pattern of sea ice when interacting with a relatively 
wide marine structure from another perspective [Liu, Wang and Lu (2017)]. 

 
Figure 11:  The global damage of 
simulation of ice-structure interaction 
(time step=5440) 

Figure 12: The local damage of 
simulation of ice-structure interaction 
(time step=28160)

Fig. 13 describes the computed horizontal ice loads applied to the vertical structure during 
the interaction process when ice speed is 0.5 m/s. According to the figure, the plot of ice 
loads exhibits irregular fluctuation, which reflects its high degree of randomness. In 
addition, the vertical structure’s vibration displacement and acceleration during the 
simulation are shown in Figs. 14 and 15, whose trends are generally consistent with those 
corresponding ones in DEM simulation by Ji et al. [Ji, Di, Li et al. (2013)]. 

 
Figure 13: Dynamic ice force on vertical offshore structures during the simulation 

Besides, Tab. 2 lists the analysis results of horizontal ice loads, vibration displacement and 
vibration acceleration of vertical structure for comparison with data calculated by DEM 
simulation in Ji et al.’s work [Ji, Di, Li et al. (2013)]. It turns out the numerical results 
agree quite well to each other, which further proves the validity of the numerical model in 
this paper. 
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Figure 14: Vibration displacement of 
the vertical offshore structure during the 
simulation 

Figure 15: Vibration acceleration of 
vertical structure during the simulation 

Table 2: Results calculated by Peridynamics and in Ji et al.’s DEM simulation 

Parameter 
Results from 
Peridynamic 
simulation 

Results from Ji 
et al.’s DEM 
simulation 

Error 

Maximum value of  
horizontal ice forces/Fmax 

99.52 kN 100.08 kN 0.56% 

Average value of  
horizontal ice forces/Fmean 

47.43 kN 44.42 kN 6.78% 

Maximum value of  
vibration displacements/umax 

0.26 mm 0.22 mm 18.00% 

Average value of  
vibration displacements/umean 

0.062 mm 0.09 mm 31.11% 

Maximum value of  
vibration accelerations/amax 

36.43 gal 34.31 gal 6.18% 

6 Sensitivity analysis 
6.1 Diameter of structure and ice thickness 
Both the diameter of structure and ice thickness contribute to the contact area, which 
directly reflects the degree of interaction between the two. Besides, the quotient of these 
two parameters determines the stress condition of sea ice, affecting the failure of it. 
Therefore,  the effects of the diameter of structure and ice thickness are discussed in detail. 
Firstly, based on numerical model mentioned, different diameters of vertical structure, 
including 1.2 m, 1.6 m, and 2.4 m, are chosen to investigate how it affects the horizontal 
ice force and vibration displacement during the interaction process. In these cases, ice 
speed is still taken as 0.5 m/s and other parameters remain unchanged. 
Tab. 3 presents the result of horizontal ice force. 
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Table 3: Horizontal ice forces with various diameters of structure 

Diameter 
/D 

Thickness
/T 

Maximum value of  
horizontal ice forces 

/Fmax 

Average value of  
horizontal ice forces 

/Fmean 
1.2 m 0.26 m 91.04 kN 29.04 kN 
1.6 m 0.26 m 89.65 kN 38.11 kN 
2.0 m 0.26 m 99.52 kN 47.43 kN 
2.4 m 0.26 m 105.69 kN 51.31 kN 

It is noted that the peak value in the first case (D=1.2 m) is slightly higher than the peak 
value when the D is set as 1.6 m, which might be concerned with the simultaneous failure 
of ice with a relatively small diameter at a certain instant. Fig. 16 shows the relation 
between the diameters of structure and horizontal ice forces in chart form. As it is shown, 
horizontal ice forces monotonically increase with the increase of diameter in general. It can 
be explained by the larger contact area and sufficient contact under the circumstance of 
larger diameters, which consequently causes an increase of the overall level of the random 
ice forces. 

 

Figure 16: Horizontal ice loads under various diameters of the vertical structure 

As well, structural vibration displacements with various diameters of the vertical structure 
are given in Tab. 4. 

Table 4: Vibration displacements with various diameters of structure 

Diameter 
/D 

Thickness 
/T 

Maximum value of  
vibration displacements 

/umax 

Average value of  
vibration displacements 

/umean 
1.2 m 0.26 m 0.20 mm 0.042 mm 
1.6 m 0.26 m 0.21 mm 0.055 mm 
2.0 m 0.26 m 0.26 mm 0.062 mm 
2.4 m 0.26 m 0.29 mm 0.065 mm 
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And as the graph below illustrates, both the peak value and average value of vibration 
displacements increase with the diameter. The reason for these may be that the larger 
diameters lead to a relatively higher-level horizontal ice force, which elevates the external 
excitation imported in the vibration system and induces more violent vibration responses.  

 

Figure 17: Vibration displacements under various diameters of the vertical structure 

Likewise, a series of ice thickness values are imported to the program to study its influence 
on the interaction. The results of horizontal ice forces and structural vibration 
displacements are given in Tab. 5. Fig. 18 describes the relation between ice thickness and 
ice forces. And Fig. 19 demonstrates the characteristics of vibration displacements with a 
changing thickness.  

Table 5: Numerical results with various ice thickness (v0 =0.5 m/s) 

Diameter 
/D 

Thickness 
/T 

Maximum 
value of  

horizontal 
ice forces 

/Fmax 

Average 
value of  

horizontal 
ice forces 

/Fmean 

Maximum 
value of  
vibration 

displacements 
/umax 

Average 
value of  
vibration 

displacements 
/umean 

2.0 m 
0.26 m 

 (3 layers) 
99.52 kN 47.43 kN 0.26 mm 0.062 mm 

2.0 m 
≈0.35 m 
(4 layers) 

131.87 kN 56.84 kN 0.27 mm 0.064 mm 

2.0 m 
≈0.43 m 
(5 layers) 

163.46 kN 64.68 kN 0.33 mm 0.065 mm 

2.0 m 
0.52 m 

(5 layers) 
178.87 kN 69.06 kN 0.45 mm 0.072 mm 

It can be concluded by a comparative study that ice thickness plays a similar role as the 
diameter of structure in the analysis of ice-structure interaction, where they both contribute 
to the contact area directly.  
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The relation between the effective pressure and the effective contact area are studied in this 
section. Based on data from the numerical cases above with varied ice thickness and 
diameter, the area-pressure curve is plotted, as shown in Fig. 20. The effective contact area 
is taken as the product of ice thickness and diameter of the vertical structure, then the 
effective pressure is the quotient of mean ice forces and the contact area. It is clear that the 
effective pressure does reduce with the increase of contact area, whose trend agrees well 
with former research achievements [Sanderson (1988); Masterson, Frederking, Wright et 
al. (2007)]. In addition, it is found that the quotient of Fmax and Fmean decreases with the 
diameter-thickness ratio, which is consistent with Sodhi and Morris’s experimental results 
and Kry’s proposition related to this quotient value and the width of structure [Sodhi and 
Morris (1984); Kry (1978, 1979, 1981)].  

                     
Figure 18:  Horizontal ice loads under 
various ice thickness 

 

Figure 19: Vibration displacements 
under various ice thickness 

 

Figure 20: Effective pressure vs. 
contact area 

 

Figure 21: The ratio of maximum force 
to mean force Fmax/Fmean versus the 
diameter-thickness ratio D/T 

6.2 Ice speed 
Ice speed is directly related to the strain rate of sea ice in this scenario. Considering that 
sea ice is a type of material whose failure is sensitive to strain rate, ice speed is also taken 
as a significant influence factor in these interactions.  
Ice speed value involved in this section are chosen as 0.3 m/s, 0.5 m/s, 0.7 m/s and 0.9 m/s, 
other parameters are same as those set in the initial case. The results calculated in this part 
are shown in Tab. 6, Fig. 22 and Fig. 23 below. 
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Table 6: Numerical results with various ice speed (D=2.0 m, T=0.26 m) 

Ice speed/ 
v0 

Maximum 
value of 

horizontal ice 
forces          
/Fmax 

Average value 
of horizontal 

ice forces         
/Fmean 

Maximum 
value of 
vibration 

displacements 
/umax 

Average value 
of vibration 

displacements 
/umean 

0.3 m/s 98.66 kN 45.21 kN 0.29 mm 0.059 mm 
0.5 m/s 99.52 kN 47.43 kN 0.26 mm 0.062 mm 
0.7 m/s 102.62 kN 50.06 kN 0.21 mm 0.068 mm 
0.9 m/s 110.27 kN 54.32 kN 0.17 mm 0.070 mm 

According to the numerical results, though the average value of ice force in these 4 cases 
is similar, it is found that ice load has a positive correlation with ice speed. But interestingly, 
with the ice speed increases, the maximal vibration displacement is in decline and the 
average value of vibration displacement rises gradually. It can be understood that the higher 
ice speed leads to a higher vibrational frequency, which lowers the vibration amplitude and 
lifts up the overall level of the vibration at the same time. 

 
Figure 22: Horizontal ice loads under 
various ice speed 

Figure 23: Vibration displacements 
under various ice speed 

Furthermore, in order to measure the extent of ice-structure interaction, a velocity coefficient 
is proposed, which is defined by the ratio of ice speed and the average vibration velocity. It 
is found that this velocity coefficient always remains around 0.010~0.014 (Tab. 7), which 
might be used to predict the vibration states effectively in ice-structure interaction. 

Table 7: Calculation of velocity coefficient 

Ice speed (m/s) Vibration velocity (m/s) Velocity coefficient  
0.3 0.003982 0.01327 
0.5 0.006992 0.01398 
0.7 0.007739 0.01106 
0.9 0.009595 0.01066 
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Similarly, the quotient of Fmax and Fmean decreases with the ratio of ice speed and thickness 
as well, agreeing well with Sodhi and Morris’s experimental results [Sodhi and Morris 
(1984)]. 

 
Figure 24: The ratio of maximum force to mean force Fmax/Fmean vs. the ratio of ice speed 
and thickness ratio v0/T 

7 Conclusion 
In this paper, the bond-based Peridynamics method is applied to simulate the interaction 
between ice and a wide vertical structure. It is shown that Peridynamics could preferably 
describe the crushing failure of sea ice during the interaction process. Meanwhile, 
numerical results obtained are found to be consistent with those calculated by DEM method, 
which further illustrates the effectiveness of Peridynamics in these similar scenarios. 
Beyond that, parameters like the diameter of vertical structure, ice thickness, and ice speed 
are proven to have effects on the ice-structure interaction.  
(1) For the reason that both the diameter of structure and ice thickness contribute to the 
contact area of interaction, both of them have a positive correlation with the level of ice 
force and vibration displacement. 
(2) Effective pressure decreases with the increasing ratio of diameter and thickness. 
(3) Considering the severity of ice-structure interaction, higher ice speed would cause 
relatively larger ice force and higher vibration frequency, whereas the latter mainly 
manifesting as higher average vibration displacement but lower peak vibration displacement. 
(4) Quotient of the maximum ice force and average ice force decreases with both the 
diameters-thickness ratio and the velocity-thickness ratio. 
(5) A velocity coefficient, which is defined as the ratio of ice speed and the average 
vibration velocity, remains around 0.010~0.014. 
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