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Abstract: We present a novel refinement approach in peridynamics (PD). The proposed 
approach takes advantage of the PD flexibility in choosing the shape of the horizon by 
introducing multiple domains (with no intersections) to the nodes of the refinement zone. 
We will show that no ghost forces are needed when changing the horizon sizes in both 
subdomains. The approach is applied to both bond-based and state-based peridynamics and 
verified for a simple wave propagation refinement problem illustrating the efficiency of 
the method. 
 
Keywords: Peridynamics, variable horizon size, multi-horizon, ghost force, wave reflection, 
refinement. 

1 Introduction 
Peridynamics has initially been introduced by Silling [Silling (2000)]. The initial bond-
based peri- dynamics (BB-PD) has been extended later on to the so-called state-based 
peridynamics (SB-PD) approaches [Silling, Epton, Weckner et al. (2007)]. In contrast to 
BB-PD, SB- PD allows for general constitutive models. PD can be regarded as a nonlocal 
extension of classical continuum mechanics. One key application of PD is modeling 
material failure though the method has been meanwhile applied to other fields, see e.g., the 
contributions in Oterkus et al. [Oterkus, Madenci and Agwai (2014), Bobaru and 
Duangpanya (2012); Diyaroglu, Oterkus, Oterkus et al. (2015)]. PD has meanwhile been 
implemented into open-source software such as LAMMPS [Parks, Seleson, Plimpton et al. 
(2011)], which is a software for Molecular Dynamics (MD) simulations.  
The “standard” PD requires a fixed horizon size over the whole domain yielding high 
computational cost. The approaches presented in the work of Dipasquale et al. [Dipasquale, 
Zaccariotto and Galvanetto (2014)] allow for variable horizon sizes but introduce so-called 
ghost forces which lead to artificial wave reflections between domains of different horizon 
sizes. An elegant solution that avoids ghost forces is dual-horizon peridynamics (DH-PD) 
[Ren, Zhuang, Cai et al. (2016), Ren, Zhuang and Rabczuk (2017)]. Other contributions 
dealing with improving the computational efficiency of PD have been proposed, for 
instance, by Pasetto et al. [Pasetto, Leng, Chen et al. (2018)] or by Lindsay et al. [Lindsay, 
Parks and Prakash (2016)]. In this manuscript, we present another simple alternative to 
deal with multiple horizon sizes. The next section describes the basic idea of the refinement 
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approach including advantages and disadvantages. Examples are presented in Section 3 
before Section 4 concludes the manuscript.  

2 Multi-horizon peridynamics 
The PD equations of motion theoretically introduce no limitation on the integration over their 
horizon [Silling (2000)]. In this article, we are proposing a change of the horizon shapes for 
nodes in the interaction regions between domains with different horizon sizes.  
The PD domain can be refined utilizing the “standard” formulation, which requires a fixed 
spherical horizon with a constant radius. The refinement cost will increase by the 
neighborhood size, which is exponentially increasing by the refinement factor (the 
difference between refined and coarse subdomains).  
Employing different horizon radii will lead to erroneous results or even instabilities due to 
ghost forces as illustrated in Fig. 1, where a subdomain at a position X has a horizon radius 
of R and its neighbor at X’ has a horizon radius of r, where R>r and r<|X-X’|<R; X will 
include X’ in its neighborhood but will not be included in the X’ neighborhood. Thus, X 
will have a force toward X’ (i.e., ghost force) without X’ having any force towards X, 
causing an imbalance in the bond between X and X’.  

 

Figure 1: The appearance of the ghost force at the refinement bound 

For the sake of simplicity, let us assume refinement occurs along a straight line, as 
illustrated in Fig. 2. The proposed approach suggests enforcing the symmetry of the 
interaction nodes having different horizon sizes by forcing all the nodes to include 
themselves to all of their neighbor nodes. For instance, x’ in Fig. 2(a) will include all 
volumes of the subdomains in which x’ is included (e.g., x in Fig. 2(a)). Thus, the nodes in 
the refined domain may have more than one horizon. Note that the interaction between the 
domains is a one to one relation, thus multi-horizons of the refined nodes cannot coincide. 
Let us call the part of the multi-horizon that has the same radius as those of refined nodes 
as the natural horizon (Hn), and the rest of the multi-horizon as the interaction horizon (Hi). 
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Figure 2: a) The proposed horizons for nodes inside the refinement zone, b) multi-horizon 
of a node inside the refined domain (Hi: interaction horizon, Hn: natural horizon) 

Fig. 2(a) illustrates the horizons of two nodes on the refinement zone, x, and x’, while Fig. 
2(b) presents the natural horizon and interaction horizon of the refined node. Outside of 
the refinement zone, multi-horizons do not affect the PD equation of motion which can be 
written for each point of domain positioned at x and a node x’ inside its horizon H in the 
global form of 

𝜌𝜌�̈�𝐮 = ∫  �𝐓𝐓 − 𝐓𝐓′� 𝑑𝑑𝑉𝑉𝑥𝑥′𝐻𝐻 + 𝐛𝐛             (1) 

where 𝜌𝜌, 𝐛𝐛, and 𝐮𝐮 are the density, the body force, and the displacement of the center of x’s 
horizon respectively. Note, that equation 1 is valid for all PD-types, i.e., bond-based (BB-
PD), ordinary state-based (OSB-PD), and non-ordinary state-based (NSB-PD) peridynamics. 
Let us consider the force vector state T. Its relation to the deformed direction vector state M 
is given as 
𝑇𝑇 = 𝑡𝑡 𝑀𝑀             (2) 

where 𝑡𝑡 can be written as a scalar function over the domain for OSB-PD, and in the special 
case where 𝑡𝑡 ≡ 1, Eq. (2) represents BB-PD and any other form of function for 𝑡𝑡 results in 
NSB-PD. 
Eq. (1) within the refinement zone can be written as 

ρ�̈�𝑢 = ∫  �𝑇𝑇 − 𝑇𝑇′� 𝑑𝑑𝑉𝑉𝑥𝑥′𝐻𝐻𝑛𝑛
+ ∫  �𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑖𝑖′�  𝑑𝑑𝑉𝑉𝑥𝑥′𝐻𝐻𝑖𝑖

+ 𝑏𝑏,             (3) 

where  𝑻𝑻𝒊𝒊s are the force vector state for the interaction horizon and  𝑻𝑻𝒊𝒊′   has to be defined in 
a way that Eq. (1), and Eq. (3) have one to one equivalent integral functions on their right-
hand side. In other words, the multi-horizon formulation has to provide the same 
acceleration as if the whole domain was refined. This requires  

∫  �𝑇𝑇 − 𝑇𝑇′� 𝑑𝑑𝑉𝑉𝑥𝑥′𝐻𝐻 = ∫  �𝑇𝑇 − 𝑇𝑇′� 𝑑𝑑𝑉𝑉𝑥𝑥′𝐻𝐻𝑛𝑛
+ ∫  �𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑖𝑖′�  𝑑𝑑𝑉𝑉𝑥𝑥′𝐻𝐻𝑖𝑖

   

∫  �𝑇𝑇 − 𝑇𝑇′� 𝑑𝑑𝑉𝑉𝑥𝑥′𝐻𝐻−𝐻𝐻𝑛𝑛
= ∫  �𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑖𝑖′�  𝑑𝑑𝑉𝑉𝑥𝑥′𝐻𝐻𝑖𝑖

             (4) 

where 𝐻𝐻 −𝐻𝐻𝑛𝑛    is the difference between the “standard” horizon and the natural horizon, 
which is a subset of the interaction horizon since it still has no intersections with the natural 
horizon. Rewriting Eq. (2) for 𝑻𝑻𝒊𝒊 and utilizing the deformed direction vector state  𝑴𝑴, we 
obtain  
𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖 𝑀𝑀, 
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Thus,  
𝑇𝑇𝑖𝑖
𝑡𝑡𝑖𝑖

=
𝑇𝑇
𝑡𝑡

 

𝑇𝑇𝑖𝑖 =
𝑡𝑡𝑖𝑖
𝑡𝑡

 𝑇𝑇 = α𝑇𝑇.             (5) 

Substituting Eq. (5) into Eq. (6) 

∫  �𝑇𝑇 − 𝑇𝑇′� 𝑑𝑑𝑉𝑉𝑥𝑥′𝐻𝐻−𝐻𝐻𝑛𝑛
= ∫  �𝛼𝛼 𝑇𝑇 − 𝛼𝛼 𝑇𝑇′� 𝑑𝑑𝑉𝑉𝑥𝑥′𝐻𝐻𝑖𝑖

             (6) 

Since 𝛼𝛼 is constant for both BB-PD and OSB-PD, we can rewrite Eq. (6) as following 

∫  �𝑇𝑇 − 𝑇𝑇′� 𝑑𝑑𝑉𝑉𝑥𝑥′𝐻𝐻−𝐻𝐻𝑛𝑛
= α∫  �𝑇𝑇 − 𝑇𝑇′� 𝑑𝑑𝑉𝑉𝑥𝑥′𝐻𝐻𝑖𝑖

             (7) 

where the only unknown parameter is 𝛼𝛼, which can be easily computed having the interaction 
horizon and its equivalent horizon in case of refining the whole domain (𝐻𝐻 − 𝐻𝐻𝑛𝑛). Note that 
α remains time-independent and therefore, it needs to be computed only at the initial 
configuration. It is also worth mentioning that NSP-PD can also be implemented as a multi-
horizon method if Eq. (6) is satisfied. If the refined node is located within a finite number of 
refinement zones, Eq. (7) can be utilized for each of the interaction horizons individually. 

2.1 Absence of ghost forces 

Ghost forces occur due to violation of Newton’s law, which is the case for unsymmetrical 
interactions of particles, which commonly occur for nodes with different horizon sizes. 
This is also possible for un-symmetric or dissimilar shapes of the horizons. For models 
with only spherical horizon shapes for all sub-domains, only differences in the horizon 
radius between two sub-domains can cause ghost forces in the refinement zone. Multi-
horizons guarantee the existence of the nodes inside the domain with larger horizon radii, 
which eliminates ghost forces. 

2.2 Numerical implementation 

Implementing the concept of multi-horizons into an existing PD-code requires three 
changes: 
1. At the initial configuration, the nodes in the refinement zone have to be determined. 
2. The parameter α(s) for each node located inside refinement zone should be determined. 

Note that neighbor nodes may share their representative volume with more than one 
horizon. 

3. After computing the bond forces, the forces of the interaction horizons have to be 
multiplied with α. 

Implementing the first two changes usually requires the modification of the data structure 
in which the horizons and their neighbors are stored. 
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3 Numerical example 

The computation of α can be cumbersome for complex refinement zones, especially in 2D 
and 3D, as the intersections of the associated volumes of the neighboring nodes may 
demand complex geometry computations. For the sake of simplicity, we, present a simple 
1D example to demonstrate the performance of the multi-horizon approach. Consider a 1D 
bar of length 100 mm and two fixed ends applied to a velocity wave excitation in the middle 
of the bar, as illustrated in Fig. 3. The two ends of the bar have a node distance of 0.1 mm. 
The distance between nodes and the horizon radius in the middle of the bar is four-time 
bigger than the ends. The velocity wave has an exponential equation of v =
𝑒𝑒−0.03(𝑥𝑥−0.05)2 𝑚𝑚/𝑠𝑠. 

 
Figure 3: Initial configuration of the numerical example 

 
Figure 4: The first eight returned velocity waves for the bar in Fig. 3 

To study the artificial wave reflection added by refinement zone, the response of the bar is 
recorded whenever the displacement of the mid node arrives at its peak. Fig. 4 presents the 
first eight returned velocity waves. The artificial wave reflection due to the refinement zone 
is relatively small. As illustrated in Fig. 5, the maximum error of 15% is observed after the 
eights wave reflection. 
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Figure 5: The velocity error of waves in Fig. 4 compare to the non-refined bar (Colors are 
the same as Fig. 4) 

Let us consider now a 0.2 mm node distance in the middle and 0.05 mm node distance at 
the two ends of the bar. The velocity and its error after the eight wave reflection can be 
found in Figs. 6 and 7, respectively. 
 

 
Figure 6: The first eight returned velocity waves for a bar similar to the bar Fig. 3 with 
half of the node distance 

 
Figure 7: The velocity error of waves in Fig. 6 compare to the non-refined bar (Colors are 
the same as Fig. 6) 

Finally, we test a pulse excitation on the same bar (see Fig. 3) where the node distances are 
0.05, and 0.2 mm at the end and middle, respectively. Fig. 8 illustrates the first eight wave 
reflections. Although the error is about 40%, the simulation still remains stable. Note that 
this error is expected as PD is not well suited for capturing such sharp wave shapes. 
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Figure 8: The first eight returned velocity waves for a bar similar to the bar Fig. 3 with a 
pulse excitation 

4 Conclusions 

A simple approach for PD with variable horizons is proposed, which is important for 
computational efficiency. The approach avoids ghost forces and related artificial wave 
reflections. Several problems have been simulated utilizing the proposed method. In summary: 
• The proposed model can be used in the interaction of any finite number of domains with 

different node distances and horizon sizes. 
• The method eliminates the existence of any ghost forces. 
• The implementation of the method has almost no effect on the computational cost, and 

only demands changes in the initiation of the domain(s) configuration. 
On the downside, the implementation of the method in 2D and 3D requires complex 
geometrical solver. However, such solvers are open-source and can be combined with the 
proposed scheme. 
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