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Abstract: In the research, the dynamic fracture failure problem of functionally graded 
materials (FGMs) containing two pre-cracks was analyzed using a bond-based 
Peridynamic (PD) method numerical model. The two convergence of decreasing the area 
of PD horizon (δ-convergence) and uniform mesh refinement (m-convergence) were 
studied. The effects of both crack position and distance between two cracks on crack 
propagation pattern in FGMs plate under tensile loads are studied. Furthermore, the effects 
of different gradient patterns on the dynamic propagation of cracks in FGMs are also 
investigated. The simulate results suggest that the cracks positions and the distance 
between them can significantly influence the dynamic propagation of crack in FGMs. 
Gradient mode also has a certain effect on crack propagation, but the effect of specific 
gradient variation patterns on dynamic propagation of crack is finite. 
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1 Introduction 
Functionally graded materials (FGMs) are a new type of composite materials, which 
consist of two or more materials. Their composition and structure are continuous gradients. 
The purpose of FGMs is to eliminate/reduce stress concentration in the material, and 
improve the bond strength of composites. Generally, FGMs is a kind of multiphase material 
which can be designed, and the desired material properties can be obtained by controlling 
the volume ratio of the constituent materials changing along the desired direction. FGM 
coatings and FGMs can be employed in multitudinous applications involving mechanical 
studies [Bobaru (2017)]. 
At present, many components are related to FGMs, therefore, it is of great significance to 
study and solve the fracture problem of FGMs. On the basis of introducing the concept of 
FGMs, various aspects of fracture of FGMs under mechanical or thermal loads have been 
widely studied. Delale et al. [Delale and Erdogan (1983)] studied the crack dynamic 
propagation of FGM plates with elastic gradients along the crack direction. The results 
show that the variation of Young’s modulus has an effect on the crack propagation in the 
material, while the Poissons r atio has little effect. It can be seen that the Young’s modulus 
is an important performance parameter for the fracture behavior of FGMs, and the 
Poisson’s ratio does not produce too much image for the stress field. Atkinson and List 
[Atkinson and List (1978)] conducted a theoretical study on the crack steady-state 
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propagation in materials with variable elastic modulus in space. Kirugulige and Tippur 
[Kirugulige and Tippur (2006)] used PD theory to simulate the crack dynamic propagation 
of FGMs materials in mixed-mode. The samples were made of glass-filled epoxy plates 
with different volume contents, and edge-pre-cracks are set in the gradient direction along 
the material. In studying the fracture toughness of polymers, Zhuang et al. [Rabczuk, 
Zhuang, Lahmer et al. (2016); Hamdia, Zhuang, Rabczuk et al. (2017)] proposed a 
sensitivity analysis toolbox to quantitatively analyze the influence extent of uncertain input 
parameters on the simulation results, to determine the most important factors affecting the 
model results, and to obtain the most significant parameters affecting the fracture energy. 
Due to the asymmetric material properties of gradient materials, the numerical simulation 
of it has always been a problem in the computational mechanics, especially its dynamic 
crack propagation mechanism remains a huge challenge. Kim et al. [Kim and Paulino 
(2003)] used finite element method to simulate the crack initiation in FGM. They 
incorporated the mixed mode of T-stress in the material, and studied the crack initiation 
mechanism in FGM. Liu et al. [Liu, Yao, Ma et al. (2012)] studied the fracture 
characterizations of mixed-mode crack in FGMs by using digital speckle correlation 
method (DSCM). Bayesteh et al. [Bayesteh and Mohammadi (2013)] have analyzed the 
fracture behavior of orthotropic FGMs by using the extended finite element method 
(XFEM). Petrova et al. [Petrova and Schmauder (2017)] have used the boundary equation 
methods associated with singular integral equations to study the interaction between edge 
crack systems and how this interplay affects the formation of crack patterns and the fracture 
process. Rizov [Rizov (2016)] has analyzed the nonlinear fracture behavior of functionally 
graded beams by applying the J-integral approach. Zhou et al. [Zhou, Ren, Meng et al. 
(2017); Zhou, Meng, Li et al. (2016)] proposed a virtual crack closure technique based on 
non-uniform finite element method, developed a virtual fracture node element for 
functionally graded materials under dynamic loads, and calculated the energy release rate 
of functionally graded plates under dynamic loads by Abaqus. Khazal et al. [Khazal, 
Bayesteh, Mohammadi et al. (2015)] have adopted an extended element free Galerkin 
method (XEFGM) to simulate the fracture behavior of FGM. The dynamic fracture 
mechanics of FGMS under thermal shock loading was analyzed by Zheng et al. [Zheng, 
Yang, Gao et al. (2018)] with a coupled thermoelastic radial integral boundary element 
method. Rabczuk et al. [Rabczuk and Belytschko (2004); Rabczuk and Belytschko (2007)] 
presented a meshfree method-EFG-P, in which the modeling of cracks is achieved by 
discontinuous enrichment, and the method can record the crack propagation path and crack 
tip expansion speed. Numerical simulation analysis is more suitable for simulating difficult 
and complex experimental conditions because there are fewer restrictions than 
experimental and analytical methods. However, the above methods use the classical 
continuum mechanics model to study the crack problem. Because the calculation equations 
of the above methods are based on partial differential equations, there are defects in dealing 
with discontinuity problems in continuous media, especially fracture problems. 
Silling et al. [Silling (2000); Silling, Epton, Weckner et al. (2007)] have proposed a new 
calculation method, Peridynamics (PD), to model and analyze the dynamic fractures at first. 
The PD is a new non-local successive model in which the equation of motion is represented 
without spatial derivatives. And for the practicality of PD theory, in the true degree of 
reaction crack path, Agwai et al. [Agwai, Guven and Madenci (2011)] carried out a number 
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of experimental studies and finally concluded that PD theory is a high fidelity value in the 
study of dynamic fracture of objects，and the simulation method can handle numerous 
cracks and branches. Bobaru et al. [Ha and Bobaru (2011); Ha and Bobaru (2010); Hu, 
Wang, Bobaru et al. (2013); Hu, Ha and Bobaru (2012); Bobaru, Yang, Alves et al. (2009)] 
conducted several PD researches of dynamic fracture in composite materials and brittle 
materials, including impact loading, crack branching and fragmentation. Liu et al. [Liu, Liu 
and Zhou (2017)] have used the bond-based PD approach to study the fracture of a beam 
under impact loads with a notch that deviates from the center of the beam. Based on PD 
theory, Zhang et al. [Zhang, Le, Loghin et al. (2016)] established a fatigue model of two-
phase composites and simulated fatigue crack growth. There are multiple crack initiation 
points in the model, and it is found that the fatigue crack paths interact with each other in 
a complicated way. Zhou and his co-worker [Gu and Zhou (2017)] have used a fundamental 
equation of state-based PD theory to simulate the classical fracture process of a single side 
tensional plate with a circle hole and the propagation and coalescence of cracks in rock 
under biaxial tensile stress. Zhou et al. [Zhou, Wang and Xu (2016)] simulated a three-
point bending test through a non-ordinary state-based PD model, they set a notch in the 
model that deviates from the center of the beam, and analyzed the crack propagation under 
quasi-static loading. And Zhou et al. [Zhou and Shou (2017)] developed a new type of 
bond-based PD method for studying the crack propagation of brittle rock materials. It is 
well known that rock materials are prone to fracture under stress, or crack propagation and 
coalescence are more likely to occur in the presence of cracks. Therefore, they studied and 
analyzed the crack initiation, the law of crack propagation and the coalescence between 
cracks of brittle rock materials under the compressive loads. Ren et al. [Ren, Zhuang, 
Rabczuk et al. (2016); Ren, Zhuang and Rabczuk (2017)] further improved the PD formula 
and presented a dual-horizon PD formula, which allows for simulations with dual-horizon 
with minimal spurious wave reflection, and demonstrate several advantages of DH-PD on 
a constant level PD. Yaghoobi et al. [Yaghoobi and Chorzepa (2017)] have proposed a 
bond-based PD model for simulating dynamic crack propagation in fiber-reinforced 
concrete. De et al. [De, Zhu and Oterkus (2016)] have researched the influence of fracture 
toughness, grain size, grain orientation, and grain boundary strength on crack speed, time-
to-failure, fracture morphology, and fracture behavior by applying the PD theory. 
Chowdhury et al. [Chowdhury, Roy, Roy et al. (2016)] have presented a state-based PD 
formula for simulating the fracture behavior of a shell, and carried out a simulation study 
of quasi-static crack propagation in the shell. Cheng et al. [Cheng, Zhang, Wang et al. 
(2015)] proposed a PD model for the dynamic fracture of FGMs, and verified that the PD 
method can be applied to simulate the brittle fracture behavior of FGMs under dynamic 
loads. Cheng et al. [Cheng, Liu, Zhao et al. (2018)] studied the dynamic crack propagation 
and bifurcation of functionally graded plates with pre-cracks under impact loads and 
dynamic biaxial tensile loads, and analyzed the effects of dynamic load size and material 
gradient form on crack propagation. In this research, we study the cracks propagation in 
functionally graded material plates with two cracks under uniform tension with the bond-
based PD model, and discuss the effects of crack location, crack spacing and material 
gradient on the crack growth behavior. 
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2 PD model for FGMs 
2.1 Brief review of PD theory 
As shown in Fig. 1, The sample is divided into a number of nodes, where the PD numerical 
equation at node x and time t is: 
𝜌𝜌�̈�𝑢(𝑥𝑥, 𝑡𝑡) = ∫ 𝑓𝑓(𝑢𝑢(𝑥𝑥, 𝑡𝑡) − 𝑢𝑢(𝑥𝑥�, 𝑡𝑡), 𝑥𝑥 − 𝑥𝑥�)𝑑𝑑𝑉𝑉𝑥𝑥�

 
𝐻𝐻 + 𝑏𝑏(𝑥𝑥, 𝑡𝑡)            (1) 

where 𝑢𝑢  is the displacement vector field, 𝜌𝜌  is mass density, 𝑓𝑓  is the pairwise force 
function in the PD bond that connects material points x and 𝑥𝑥�, and 𝑏𝑏(𝑥𝑥, 𝑡𝑡) is the body 
force. The internal region 𝐻𝐻 (see Fig. 1.) called the “horizon region” is defined as 
𝐻𝐻 = {𝑥𝑥� ∈ 𝑅𝑅: |𝑥𝑥 − 𝑥𝑥�| < 𝛿𝛿}                 (2) 
Here, 𝛿𝛿 is “horizon”, the size of the nonlocal interaction. 
The pair-wise force function derives from the micro-potential function 𝜔𝜔: 

𝑓𝑓(𝜂𝜂, 𝜉𝜉) = 𝜕𝜕𝜕𝜕(𝜂𝜂,𝜉𝜉)
𝜕𝜕𝜂𝜂

            (3) 

where 𝜉𝜉 = 𝑥𝑥� − 𝑥𝑥  is the relative position and 𝜂𝜂 = 𝑢𝑢� − 𝑢𝑢  is the relative displacement 
between points x and 𝑥𝑥�. We can obtain the micro-potential function in Eq. (4) when the 
force magnitude in the material linearly on the relative elongation magnitude. 

𝜔𝜔(𝜂𝜂, 𝜉𝜉) = 𝑐𝑐(𝜉𝜉)𝑠𝑠2‖𝜉𝜉‖
2

          (4) 

where 𝑠𝑠 = 𝜁𝜁−‖𝜉𝜉‖
‖𝜉𝜉‖

 is the relative elongation of a bond, and 𝜁𝜁 = ‖𝜂𝜂 + 𝜉𝜉‖. The 𝑐𝑐(𝜉𝜉) called 
the micro-modulus function. We can get the following form of pair-wise force function 
from Eqs. (3), (4). 

𝑓𝑓(𝜉𝜉, 𝜂𝜂) = �
𝜉𝜉+𝜂𝜂
‖𝜉𝜉+𝜂𝜂‖

𝑐𝑐(𝜉𝜉)𝑠𝑠      𝜉𝜉 ≤ 𝛿𝛿
     0        𝜉𝜉 > 𝛿𝛿

                 (5) 

In this study, the micro-modulus function uses the following equation [Bobaru, Yang, Alves 
et al. (2009)]: 

𝑐𝑐(𝜉𝜉) = 𝑐𝑐1 �1 − 𝜉𝜉
𝛿𝛿
� = 24𝐸𝐸

𝜋𝜋𝛿𝛿3(1−𝜐𝜐) �1 − 𝜉𝜉
𝛿𝛿
�            (6) 

During the deformation of the object, the bond breaks when the length of the PD bond 
exceeds the critical value (𝑠𝑠0 ). In the two-dimensional problem, the work required to 
completely separate an object into two units is called fracture energy 𝐺𝐺0, expressed by the 
following equation: 

𝐺𝐺0 = 2∫ ∫ ∫ �𝑐𝑐(𝜉𝜉)𝑠𝑠02𝜉𝜉
2

� 𝜉𝜉𝑑𝑑𝜉𝜉𝑑𝑑𝜉𝜉𝑑𝑑𝜉𝜉
𝑐𝑐𝑐𝑐𝑠𝑠−1(𝑧𝑧𝜉𝜉)

0
𝛿𝛿
𝑧𝑧

𝛿𝛿
0              (7) 

𝑠𝑠0 = �5𝜋𝜋𝐺𝐺0
9𝐸𝐸𝛿𝛿

            (8) 
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Figure 1: Point x connected with point 𝑥𝑥� in the horizon region 

 

Figure 2: The bonds between points x and 𝑥𝑥� 

2.2 The PD model for FGMs 
FGMs are a type of nonhomogeneous composites that is a mixture of two or more materials 
and both structure and composition are continuously gradients. To simplify the analysis, 
we assume that the mass density and Youngs  modulus of the FGMs have the same form of 
change and can be depicted as the following functions: 
𝐸𝐸(𝑥𝑥, 𝑦𝑦) = g(𝐸𝐸0, 𝑥𝑥,𝑦𝑦),𝜌𝜌(𝑥𝑥,𝑦𝑦) = g(𝜌𝜌0,𝑥𝑥,𝑦𝑦)               (9) 
where 𝐸𝐸0 and 𝜌𝜌0 are constants. Delale et al. [Delale and Erdogan (1983)] have proved 
that the variation in Poisson’s ratio ν  has a negligible effect on solving the fracture 
behavior of nonhomogeneous materials, and we can assume that the ν is constant. Hence, 
for two-dimensional PD numerical models, the value of 1/3 of the Poisson’s ratio is used 
in this paper. 
We derived the criteria for fracture energy according to the methods of Kim et al. [Kim and 
Paulino (2004)]. They are given by: 

𝐺𝐺0 = 𝐾𝐾𝐼𝐼𝐼𝐼
2 (𝑥𝑥,𝑦𝑦)
𝐸𝐸(𝑥𝑥,𝑦𝑦)

    (10) 
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where E is the Youngs modulus and 𝐾𝐾𝐼𝐼𝐼𝐼 is the fracture toughness function. Eqs. (6)-(8) 
are derived from homogeneous materials and its micromodels are constant. However, the 
FGMs we studied were nonhomogeneous. Therefore, we also use the pair-wise interaction 
mechanism proposed by Cheng and apply additional hypotheses to derive the general 
situation of FGMs [Cheng, Liu, Zhao et al. (2018)]. Here, we use two single bonds the 
same as the original PD bond, as shown in Fig. 2. Both bond 1 and bond 2 are a half of the 
original interaction and have a half modulus obtained from the node. Accordingly, Eqs. (6) 
and (8) can be changed to the following equations, separately. 

𝑐𝑐𝑥𝑥(𝜉𝜉) = 𝑐𝑐1 �1 − 𝜉𝜉
𝛿𝛿
� = 24𝐸𝐸𝑥𝑥

𝜋𝜋𝛿𝛿3(1−𝜐𝜐) �1 − 𝜉𝜉
𝛿𝛿
�      (11a) 

𝑐𝑐𝑥𝑥�(𝜉𝜉) = 𝑐𝑐1 �1 − 𝜉𝜉
𝛿𝛿
� = 24𝐸𝐸𝑥𝑥�

𝜋𝜋𝛿𝛿3(1−𝜐𝜐) �1 − 𝜉𝜉
𝛿𝛿
�        (11b) 

𝑠𝑠𝑥𝑥 = �5𝜋𝜋𝐺𝐺𝑥𝑥
9𝐸𝐸𝑥𝑥𝛿𝛿

 , 𝑠𝑠0 = �5𝜋𝜋𝐺𝐺𝑥𝑥�
9𝐸𝐸𝑥𝑥�𝛿𝛿

              (12) 

where 𝐸𝐸𝑥𝑥� , 𝐺𝐺𝑥𝑥� , 𝜌𝜌𝑥𝑥� , are their effect Young’s modulus, fracture energy, and density, 
respectively. In addition, if one of the two bonds breaks due to reaching the critical 
elongation, the other bond will also break. Material parameters such as elastic modulus is 
different in different specimen positions and different horizons, but the relationship 
between PD parameters (such as s) and material parameters (such as 𝐾𝐾𝐼𝐼𝐼𝐼) is independent 
of the position of the specimen and the horizon. 

 
(a) 

 
(b) 
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(c) 

Figure 3: Sample size and boundary conditions: (a) pre-cracks on different edges, (b) pre-
cracks on the same edge, (c) pre-cracks in the middle of the specimen 

3 Convergence studies for crack propagation path of FGMs 
Cheng et al. [Cheng, Liu, Zhao et al. (2018)] have verified the PD model to get that the 
model is suitable for analyzing the dynamic fracture behavior of FGMs.In this section, we 
set the pre-cracks at the edge of the FGMs specimen and study the convergence of the PD 
in this model by the crack propagation under tensile loads. 

3.1 Problem setting 
We establish a rectangular FGMs plate measuring 100 mm×50 mm that has two pre-cracks 
with a length of 15 mm and a spacing of 10 mm (s=10 mm) under dynamic tension loads, 
as described in Fig. 3(a). The material samples used were made from a mixture of epoxy 
resin and solid soda-lime balls. The solid soda-lime spheres have different amounts along 
the diagonal of the sample plate, from 0 to forty percent. The material parameters of the 
sample plates are shown in Tab. 1 [Rousseau and Tippur (2001)]. A dynamic tension load, 
𝜎𝜎𝑥𝑥(𝑡𝑡), is showed in Fig. 4. In this model, we apply uniform tensile loads 𝜎𝜎0 = 10 MPa on 
the left and right boundaries of the FGM plate, as shown in Fig. 3. As mentioned above, ν 
is 1/3. 

 𝜎𝜎𝑥𝑥(𝑡𝑡) 

𝜎𝜎0 

𝑡𝑡  
Figure 4: Applied dynamic loads vs. time 
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Table 1: Mechanical properties of FGM samples 

E(Pa ) ρ(kg/m3) KIC(MPa ∙ m1/2) 
3.8(E1) 948(ρ1) 2.1(KIC1) 
11.1(E2) 1812(ρ2) 3.6(KIC2) 

 
Table 2: Material parameters of FGMs 

 𝐄𝐄𝟑𝟑(𝐆𝐆𝐆𝐆𝐆𝐆) 𝛒𝛒𝟑𝟑(𝐤𝐤𝐤𝐤/𝐦𝐦𝟑𝟑) 𝐊𝐊𝐈𝐈𝐈𝐈𝟑𝟑(𝐌𝐌𝐆𝐆𝐆𝐆 ∙ 𝐦𝐦𝟏𝟏/𝟐𝟐) 
Linear gradient 9.64 1639.20 3.30 

Exponential gradient 8.96 1591.80 3.30 
Sinusoidal gradient 10.74 1769.71 3.30 

3.2 Numerical convergence 
In this section, we analyzed the numerical convergence of the FGM plate crack propagation, 
and tried to control the size of the non-local area to be small enough by simulation. There 
are two numerical convergence standards in the PD model, δ-convergence and m-
convergence. In this section, they are realized through crack paths. 
The material properties in the FGM board are expressed by the following functions, the 
boundary values of which are listed in Tab. 1. 

𝐸𝐸(𝑥𝑥, 𝑦𝑦) = 3.8+11.1
2

+ 58.4𝑥𝑥 + 29.2𝑦𝑦        0 ≤ 𝑥𝑥 ≤ 100𝑚𝑚𝑚𝑚, 0 ≤ 𝑦𝑦 ≤ 50𝑚𝑚𝑚𝑚      (13a) 

𝜌𝜌(𝑥𝑥, 𝑦𝑦) = 948+1812
2

+ 6912𝑥𝑥 + 3456𝑦𝑦  0 ≤ 𝑥𝑥 ≤ 100𝑚𝑚𝑚𝑚, 0 ≤ 𝑦𝑦 ≤ 50𝑚𝑚𝑚𝑚       (13b) 

𝐾𝐾𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑦𝑦) = 2.1+3.6
2

+ 12𝑥𝑥 + 6𝑦𝑦                 0 ≤ 𝑥𝑥 ≤ 100𝑚𝑚𝑚𝑚, 0 ≤ 𝑦𝑦 ≤ 50𝑚𝑚𝑚𝑚      (13c) 

For m-convergence, we conduct the test for the horizon size δ=1.6 mm and used the following 
values for the m: 3 (Δx=0.67 mm), 4 (Δx=0.5 mm), and 5 (Δx=0.4 mm). The crack 
propagation of the numerical simulation at 120 s is shown in Fig. 5. We can know that when 
the ratio of horizon to node spacing is greater than 4 (m>4), the crack path no longer expands 
further. Additionally, the crack propagation in Figs. 5(b) and 5(c) is substantially identical, 
indicating that the crack propagation rates are very similar in both cases. 

  
(a)                                         (b) 
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(c) 

Figure 5: m-Convergence, the crack path map is at 120 μs: (a) m=3, (b) m=4, and (c) m=5 

 
(a)                                          (b) 

 

 
(c) 

Figure 6: δ-Convergence, the crack path map is at 120 μs: (a) δ=1.2 mm, (b) δ=1.6 mm, 
and (c) δ=2 mm 

For δ-convergence, we conduct the test for m=4 and applied δ: 1.2 mm, 1.6 mm, and 2 mm 
for the horizon size. The crack propagation of the numerical simulation at 120 s is shown 
in Fig. 6. We can know that when the horizon is small enough (δ<1.6), the crack path no 
longer expands further, and becomes more determined. 
Therefore, in the next section, in order to save computational cost and ensure computational 
accuracy, we keep δ=1.6 mm and m=4. 
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4 Numerical results of the dynamic fracture of FGMs and discussion 
In this section, the effects of three factors will be considered to study the dynamic fracture 
behavior of FGMs under different conditions. 

4.1 Problem setting 
We establish a rectangular FGMs plate measuring 100 mm×50 mm that has two pre-cracks 
with a length of 15 mm. The cracks are arranged symmetrically with respect to y axis and 
the distance between cracks is L. Symmetrical tensile load are applied to the sheet, as 
shown in Fig. 3. The material parameters of the sample plates are shown in Tab. 1. A 
dynamic tension load, 𝜎𝜎𝑥𝑥(𝑡𝑡), is showed in Fig. 4. In this model, we apply uniform tensile 
loads 𝜎𝜎0 = 10 MPa on the left and right boundaries of the FGM plate, as shown in Fig. 3. 
As mentioned above, ν is 1/3. 

4.2 Model establishing 
In order to study the FGMs fracture behavior under different variations, we studied three 
variations: linear gradient, exponential gradient and sinusoidal gradient, it is observed that 
the fracture toughness gradient always displays a linear gradient regardless of the gradient 
form of the material content. It is assumed that the elastic properties of the FGMs change 
according to the following equations. 

𝐸𝐸(𝑥𝑥, 𝑦𝑦) = 𝐸𝐸1+𝐸𝐸2
2

+ 𝛾𝛾1𝑥𝑥 + 𝛾𝛾2𝑦𝑦,𝜌𝜌(𝑥𝑥,𝑦𝑦) = 𝜌𝜌1+𝜌𝜌2
2

+ 𝛾𝛾3𝑥𝑥 + 𝛾𝛾4𝑦𝑦       (14a) 

𝐾𝐾𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑦𝑦) = 𝐾𝐾𝐼𝐼𝐼𝐼1+𝐾𝐾𝐼𝐼𝐼𝐼2
2

+ 𝛾𝛾5𝑥𝑥 + 𝛾𝛾6𝑦𝑦     (14b) 

𝐸𝐸(𝑥𝑥, 𝑦𝑦) = �𝐸𝐸1 × 𝐸𝐸2 × 𝑒𝑒(𝛼𝛼1𝑥𝑥+𝛼𝛼2𝑦𝑦),𝜌𝜌(𝑥𝑥,𝑦𝑦) = �𝜌𝜌1 × 𝜌𝜌2 × 𝑒𝑒(𝛼𝛼3𝑥𝑥+𝛼𝛼4𝑦𝑦)       (15a) 

𝐾𝐾𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑦𝑦) = 𝐾𝐾𝐼𝐼𝐼𝐼1+𝐾𝐾𝐼𝐼𝐼𝐼2
2

+ 𝛼𝛼5𝑥𝑥 + 𝛼𝛼6𝑦𝑦       (15b) 

𝐸𝐸(𝑥𝑥, 𝑦𝑦) = 𝐸𝐸1 + (𝐸𝐸2 − 𝐸𝐸1) × 𝑠𝑠𝑠𝑠𝑠𝑠 �𝜋𝜋
2

× �𝜇𝜇1(𝑥𝑥 + 0.05) + 𝜇𝜇2(𝑦𝑦 + 0.025)��     (16a) 

𝜌𝜌(𝑥𝑥, 𝑦𝑦) = 𝜌𝜌1 + (𝜌𝜌2 − 𝜌𝜌1) × 𝑠𝑠𝑠𝑠𝑠𝑠 �𝜋𝜋
2

× �𝜇𝜇3(𝑥𝑥 + 0.05) + 𝜇𝜇4(𝑦𝑦 + 0.025)��          (16b) 

𝐾𝐾𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑦𝑦) = 𝐾𝐾𝐼𝐼𝐼𝐼1+𝐾𝐾𝐼𝐼𝐼𝐼2
2

+ 𝜇𝜇5𝑥𝑥 + 𝜇𝜇6𝑦𝑦      (16c) 

where γi(i=1, 2,…6), αi(i=1, 2,…6), and µi(i=1, 2,…6) are calculated from the sample 
boundary value. E1, KIC1, ρ1, and E2, KIC2, ρ2, are expressed in Tab. 1. Eqs. (14)-(16) 
resent three gradients of material properties in the model: linear gradient, exponential 
gradient, and sinusoidal gradient. The directions of gradient variation can be described by 
the γ, α, µ in the formulas. The gradient varying simultaneously along x-axial and y-axial 
will be analyzed below. 
Material properties vary diagonally from E1,ρ1, KIC1  to E2,ρ2, KIC2 . In order to 
determine γi,αi,µi, we have to calculate E3,ρ3, KIC3 first, the following is the calculation 
process, the result is shown in Tab. 2. 

𝐸𝐸3 = 3.8 + (11.1− 3.8) × � 2
√5
�
2

= 9.64      (17a) 
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𝜌𝜌3 = 948 + (1812 − 948) × � 2
√5
�
2

= 1639.20     (17b) 

𝐾𝐾𝐼𝐼𝐼𝐼3 = 2.1 + (3.6 − 2.1) × � 2
√5
�
2

= 3.30        (17c) 

𝐸𝐸3 = 3.8 × (11.1 3.8⁄ )�
2
√5
�
2

= 8.96     (18a) 

𝜌𝜌3 = 948 × (1812 948⁄ )�
2
√5
�
2

= 1591.80       (18b) 

𝐾𝐾𝐼𝐼𝐼𝐼3 = 2.1 + (3.6 − 2.1) × � 2
√5
�
2

= 3.30       (18c) 

𝐸𝐸3 = 3.8 + (11.1− 3.8) × sin �𝜋𝜋
2

× � 2
√5
�
2
� = 10.74     (19a) 

𝜌𝜌3 = 948 + (1812 − 948) × sin�𝜋𝜋
2

× � 2
√5
�
2
� = 1769.71        (19b) 

𝐾𝐾𝐼𝐼𝐼𝐼3 = 2.1 + (3.6 − 2.1) × � 2
√5
�
2

= 3.30      (19c) 

Eqs. (17)-(19) calculate respectively the E3,ρ3, KIC3 in the linear function gradient model, 
exponential function gradient model and sinusoidal function gradient model. Then, we can 
get γi,αi,µi. 

𝛾𝛾1 = 9.64−3.8
0.1

= 58.4,   𝛾𝛾2 = 11.1−9.64
0.05

= 29.2   (20a) 

𝛾𝛾4 = 1812−1639.2
0.05

= 3456.0,   𝛾𝛾3 = 1639.2−948
0.1

= 6912.0     (20b) 

𝛾𝛾5 = 3.30−2.1
0.1

= 12,   𝛾𝛾6 = 3.6−3.30
0.05

= 6       (20c) 

𝛼𝛼1 =
𝑙𝑙𝑙𝑙8.96

3.8
0.1

= 8.58,𝛼𝛼2 =
𝑙𝑙𝑙𝑙11.1

8.96
0.05

= 4.29,𝛼𝛼3 =
𝑙𝑙𝑙𝑙1591.8

948
0.1

= 5.18      (21a) 

𝛼𝛼4 =
𝑙𝑙𝑙𝑙 1812

1591.8
0.05

= 2.59,𝛼𝛼5 = 3.30−2.1
0.1

= 12,𝛼𝛼6 = 3.6−3.30
0.05

= 6      (21b) 

𝜇𝜇1 =
𝑎𝑎𝑎𝑎𝑐𝑐𝑠𝑠𝑎𝑎𝑙𝑙�10.74−3.8

11.1−3.8 �
𝜋𝜋
2×0.1

= 8, 𝜇𝜇2 = (1−0.1×𝜆𝜆1)
0.05

= 4     (22a) 

𝜇𝜇3 =
𝑎𝑎𝑎𝑎𝑐𝑐𝑠𝑠𝑎𝑎𝑙𝑙�1769.71−948

1812−948 �
𝜋𝜋
2×0.1

= 8, 𝜇𝜇4 = (1−0.1×𝜆𝜆1)
0.05

= 4     (22b) 

𝜇𝜇5 = 3.30−2.1
0.1

= 12, 𝜇𝜇6 = 3.6−3.30
0.05

= 6       (22c) 

From the convergence studies above, we keep δ=1.6 mm and m=4. We use the Verlet 
algorithm, and the time step takes ∆𝑡𝑡 = 2 × 10−8 𝑠𝑠. 
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4.3 Numerical results and discussion 

  
(a)                                        (b) 

 
(c) 

Figure 7: Double cracks on different edges with L=5 mm propagate in FGMs with different 
graded models: (a) linear graded model. (b) exponential graded model. (c) sinusoidal 
graded model 

 
  (a)                                           (b) 

 
(c) 

Figure 8: Double cracks on different edges with L=10 mm propagate in FGMs with 
different graded models: (a) linear graded model. (b) exponential graded model. (c) 
sinusoidal graded model 
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In Fig. 9, some snapshots of crack propagation path (both cracks are located in the same 
side and the distance is L=10 mm) in the FGMs with linear gradient, exponential gradient 
and sinusoidal gradient, respectively. We can know that the crack growth rate on the left 
side is always higher, because the gradient material discussed here is bi-directional gradient 
material, and the stiffness of the material on the left side is smaller. As in shown Fig. 7 and 
Fig. 8, the specific gradient function of FGMs have no significant effect on the crack 
growth behavior. 

 
(a)                                          (b) 

 
(c) 

Figure 9: Double cracks on the same edge with L=10 mm propagate in FGMs with 
different graded models: (a) linear graded model. (b) exponential graded model. (c) 
sinusoidal graded model 

 
    (a)                                      (b) 
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    (c)                                       (d) 

  
Figure 10: Double cracks on different edges propagate in FGMs with linear graded model: 
(a) L=5 mm. (b) L=10 mm. (c) L=20 mm. (d) L=30 mm 
 

 
(a)                                (b) 

 

 
(c)                                        (d) 

Figure 11: Double cracks on the same edge propagate in FGMs with linear graded model: 
(a) L=5 mm. (b) L=10 mm. (c) L=20 mm. (d) L=30 mm 

Figs. 10-12 show some snapshots of the crack propagation paths of bilateral, single side 
and intermediate cracks with the crack distance of 5 mm, 10 mm, 20 mm and 30 mm, 
respectively. It can be found that the propagation paths of cracks at different locations vary 
greatly. It can also be noticed that when the crack spacing is small (for example L=5 mm 
or smaller), the propagation behavior of bilateral cracks has a greater effect on each other, 
while the interaction of cracks at other locations is small, and the interaction decreases with 
the increase of the crack spacing regardless of where the crack is located. 
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(a)                                           (b) 

 

  
(c)                                          (d) 

                  
Figure 12: Double middle cracks in the FGMs with linear graded model: (a) L=5 mm. (b) 
L=10 mm. (c) L=20 mm. (d) L=30 mm 

 
Figure 13: Evolution of crack length in time. The pre-cracks on the same edge with a 
spacing of 10 mm under different function gradients 
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(a) 

 
(b) 

Figure 14: Evolution of crack length in time. (a): The pre-cracks on different positions 
with a spacing of 10 mm under a linear function gradient. (b): The pre-cracks on the same 
edge with different spacings under a linear function gradient 

We obtained the crack length from the simulation results, and made a comparison of the 
crack length under different effect factors, which can reflect the crack growth speed and 
the crack initiation time. We chose the pre-cracks on the same edge with a spacing of 10 
mm to analysis the crack growth under different function gradients, as shown in Fig. 13, 
we can know that the specific gradient form has an effect on the crack propagation, but not 
significant. Under the three functional gradients, the crack growth rate is not significantly 
different. Obviously, the left crack inhibits the right crack growth, due to the left crack tip 
is more fragile than the right crack tip, and the bond is more easily to break. We chose the 
linear gradient, and the pre-cracks in different positions with different spacing to analysis 
the crack propagation, as shown in Fig. 14, it can be seen that the position and spacing of 
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the two pre-cracks will affect the crack propagation, and the left crack also inhibits the right 
crack growth. For the case of the pre-crack on different edges, the material properties of 
the two pre-cracks tip are almost on the same gradient, so the left crack restrains the right 
crack less. From Fig. 14(b), we can more intuitively find out the effect of the spacing of 
pre-cracks on crack propagation. 

5 Conclusions 
The PD method is a method suitable for simulating the dynamic fracture behavior of 
materials. In this research, the dynamic fracture failure problem of FGMs containing two 
pre-cracks was analyzed using a bond-based PD method numerical model. Both the effect 
of crack positions and crack spacings and the influence of gradient patterns of FGMs on 
crack propagation in FGMs under uniaxial dynamic tensile loads was analyzed. The results 
suggested that crack positions and spacing of can significantly influence the dynamic 
propagation of crack in FGMs. Gradient mode also has a certain effect on crack 
propagation in FGMs, but the effect of specific material gradient variation patterns on crack 
propagation is finite. 
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