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A Dual-Support Smoothed Particle Hydrodynamics for Weakly 
Compressible Fluid Inspired By the Dual-Horizon Peridynamics

Huilong Ren1, Xiaoying Zhuang2,3, ∗ and Timon Rabczuk1

Abstract: A dual-support smoothed particle hydrodynamics (DS-SPH) that allows 
variable smoothing lengths while satisfying the conservations of linear momentum, angular 
momentum and energy is developed. The present DS-SPH is inspired by the dual-support, 
a concept introduced from dual-horizon peridynamics from the authors and applied here 
to SPH so that the unbalanced interactions between the particles with different smoothing 
lengths can be correctly considered and computed. Conventionally, the SPH formulation 
employs either the influence domain or the support domain. The concept of dual-support 
identifies that the influence domain and the support domain involves the duality and 
should be simultaneously in the SPH formulation when variable smoothing lengths are 
used. The DS-SPH formulation can be implemented into conventional SPH codes with 
minimal changes and also without compromising the computational efficiency. A number 
of numerical examples involving weakly compressible. fluid are presented to demonstrate 
the capability of the method.

Keywords: Dual-support, conservation law, variable smoothing length, duality, SPH, 
dual-horizon peridynamics.

1 Introduction
In the field of numerical methods of solving continuum mechanics, various particle-based 
methods have been proposed, among which include smoothed particle hydrodynamics 
(SPH) [Lucy (1977)], discrete element method (DEM) [Mishra and Rajamani (1992)], 
particle finite element method (PFEM) [Idelsohn, Oñate and Pin (2004)], material point 
method (MPM) [Bardenhagen and Kober (2004)], Peridynamics [Silling (2000); Ren, 
Zhuang, Cai et al. (2016)] and so on. As one of the most famous particle-based method, 
SPH was originally proposed in the 1970s for the modeling of astrophysical problems 
[Lucy (1977); Gingold and Monaghan (1977)]. The SPH method has attracted attentions 
of the researchers from a variety of fields since the beginning of the 1990s, and has been 
successfully applied to solve problems such as the impact in solids [Allahdadi, Carney, Hipp
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et al. (1993); Randles and Libersky (1996); Rabczuk and Eibl (2003); Hedayati and Vahedi
(2017)], dynamic fracture and fragmentation [Rabczuk, Eibl and Stempniewski (2004)],
multiple-phase flows [Cleary (1998); Hu and Adams (2006); Memarzadeh, Barani and
Ghaeini-Hessaroeyeh (2018)], free-surface flows in fluid dynamics [Monaghan (1994)],
Magnetohydrodynamics [Monaghan (1988); Price and Monaghan (2004)]. For a more
complete review of SPH, we refer to [Liu and Liu (2010); Ye, Pan, Huang et al. (2019)].

Peridynamics [Silling (2000); Silling, Epton, Weckner et al. (2007); Nikravesh and Gerstle
(2018); Zhao, Tang and Xue (2018); Shafiei (2018)] is a formulation of solid mechanics that
is oriented toward deformations with discontinuities, especially fractures. Though derived
from different physical background, Lagrangian smoothed particle hydrodynamics shows
great similarity with the state-based peridynamics [Ganzenmüller, Hiermaier and May
(2015)]. Peridynamics is regarded as a physics-based method for solid mechanics, and the
attempt to solve fluid problem has not been explored. On the other hand, the conventional
SPH is restricted by constant smoothing length for all particles, though several numerical
techniques have been proposed [Nelson and Papaloizou (1994); Monaghan (2002); Springel
and Hernquist (2002)]. Variable smoothing length in SPH can significantly improve
the numerical efficiency and allows for adaptive analysis. Dual-horizon peridynamics
allows variable horizon domain for each point by defining two horizon domains for each
point, where the horizon describes the direct force interaction and dual-horizon represents
the reaction force interaction. Based on the similarity between SPH and peridynamics,
it is possible to apply the dual support (inspired by the concept of “dual-horizon” in
peridynamics) in the field of SPH to solve the variable smoothing length problem.

SPH is a Lagrangian method based on the kernel approximation, where the partial
differential equations are transformed into integral form with the so-called kernel
interpolation technique [Liu and Liu (2003)]. The computational domain is represented by
a set of particles which carry the physical properties, i.e., mass, density, velocity, position,
pressure and internal energy. The particles move and properties change with the time due
to the interactions between neighboring particles.

One constraint on the kernel approximation is that the smoothing lengths are required to
be constant for all particles. However, a computationally efficient SPH implementation
requires locally refined regions where variable smoothing lengths can be used. In order
to introduce variable smoothing lengths, several methods have been proposed e.g., the
averaged kernel method [Hernquist and Katz (1989)] or correction methods with ∇h
[Nelson and Papaloizou (1994); Springel and Hernquist (2002); Vacondio, Rogers and
Stansby (2012); Vacondio, Rogers, Stansby et al. (2013)]. The averaged kernel method
uses the averaged smoothing lengths or averaged kernel functions, where the conservation
laws can not be satisfied. In the correction methods, the gradient of the smoothing length
must be calculated to determine the optimal smoothing length, and a modified coefficient is
introduced in all SPH formulations to preserve the conservations laws (more details will be
presented in §2). The optimal smoothing length is calculated iteratively, which makes the
implementation of SPH more complicated.
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The difficulty of varying support domain for SPH arises from that the single support of
one particle fails to account for all force interactions with other particles. In contrast with
the correction methods aforementioned, we introduce the concept of “dual-horizon” in
dual-horizon peridynamics [Ren, Zhuang, Cai et al. (2016); Ren, Zhuang and Rabczuk
(2017)] into SPH for varying the smoothing length for each particle. Meanwhile, the
dual-support SPH in fluid may be viewed as the fluid version of dual-horizon peridynamics
based on the similarity of SPH and peridynamics in solid.

In this paper, we develop a SPH formulation which naturally includes variable smoothing
lengths. The formulation named dual-support smoothed particle hydrodynamics (DS-SPH)
is simple, satisfies the conservation of linear momentum, angular momentum and energy
when variable smoothing lengths are employed. The paper is outlined as following. In
§2, the theoretical background of SPH is reviewed. In §3, the concepts of support and
dual-support are introduced, based on which we present a general method to reformulate
the SPH equations. In §4, we convert the traditional SPH formulation into the dual-support
SPH. In §5, the conservations of momentum, angular momentum and energy are proved.
In §6, the implementation of DS-SPH is discussed. Three numerical examples are tested to
demonstrate the performance of the DS-SPH method in §7.

2 Theoretical background
2.1 Kernel function

Let i denote the point in the global domain Ω; ri being the current coordinates vector of
point i, Hi is the support domain associated with i with a radius of hi. The kernel function
Wi is defined as

Wij := Wi(rij , hi) (1)

∇iWij :=
∂Wij

∂ri
=
∂Wij

∂rij
· ∂rij
∂ri

=
∂Wij

∂rij
· rij
rij

(2)

∇jWij :=
∂Wij

∂rj
=
∂Wij

∂rij
· ∂rij
∂rj

=
∂Wij

∂rij
· −rij
rij

, (3)

where rij = |rij |, rij = ri − rj . It can be seen that if hi = hj , Wij = Wji,∇iWij =
−∇jWji. There are a wide variety of kernel functions including the Gaussian kernel,
cubic-spline, quintic spline or Wendland kernel [Wendland (1995)], to name only a few.
For more discussions on these kernel functions, readers are referred to Liu et al. [Liu
and Liu (2003); Dehnen and Aly (2012)]. As the support in SPH fluid is often defined
by the current configuration of the particles, the kernel function is termed as the Eulerian
kernel. Aside from the Eulerian kernel, there exists another type of kernel function called
Lagrangian kernel whose support domain is based on the material coordinates in the initial
configuration. The Lagrangian kernel is capable of overcoming the tensile instability when
large deformation is encountered in the context of SPH for modeling solid [Rabczuk,
Belytschko and Xiao (2004)]. However, the Eulerian kernel is more suitable for fluid
simulation compared with the Lagrangian kernel [Rabczuk, Belytschko and Xiao (2004)].
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2.2 Kernel interpolation

Kernel interpolation theory starts with the identity

f(ri) =

∫
f(rj)δ(ri − rj)dVj (4)

where f is an arbitrary scalar variable, δ is the Dirac delta function and Vj is the volume
associated with point j. This integral is approximated by replacing the delta function with
a smoothing or kernel function W with finite width hi, e.g.,

f(ri) =

∫
Ω
f(rj)Wij(ri − rj , hi)dVj =

∫
Hi

f(rj)Wij(ri − rj , hi)dVj , (5)

where W has the property

lim
hi→0

W (ri − rj , hi) = δ(ri − rj) .

Integration by parts and neglecting all surface terms, the derivative of f(ri) is derived as

∇f(ri) =

∫
Hi

f(rj) · ∇iWijdVj . (6)

Hence the derivative of a function is transferred to the kernel function by kernel
interpolation theory.

2.3 Completeness of kernel function

The completeness is related to the capability of the kernel approximation to reproduce a
polynomial function of certain degree exactly. Zero-order completeness is necessary to
represent the rigid body modes while first-order completeness is a necessary condition for
constant strain state. According to Belytschko et al. [Belytschko, Krongauz, Dolbow et al.
(1998)], first-order completeness is defined by∑
Hi

Wijxj∆Vj = xi . (7)

First-order completeness for the derivatives of the kernel approximation for any particle i
in 1, 2 and 3 dimensions should satisfy∑

rij ⊗∇iWij∆Vj = I. (8)
Hi

Here, I is the identity matrix. SPH in its continuous form (or integral form) fulfills 
zero- and first-order completeness and hence the 'standard' kernel function as given in 
Eq. (5) is sufficient. However, not even zero-order completeness is guaranteed for the 
discrete SPH form as shown by Nguyen et al. [Nguyen, Rabczuk, Bordas et al. (2008)]. 
Therefore, many correction methods have been developed such as the symmetrization 
proposed by Monaghan [Monaghan (1988)], Randles & Libersky correction [Randles 
and Libersky (1996)], Johnson & Beissel correction [Johnson and Beissel (1996)] and
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Krongauz-Belytschko corrected derivatives [Krongauz and Belytschko (1997)]. In the
current paper, two of those approaches are briefly summarized.

The gradient correction of kernel function [Bonet and Lok (1999)] in discrete form
satisfying Eq. (8) is

∇̃iWij = Li∇iWij (9)

L−1
i =

∑
Hi

∆Vj ∇iWij ⊗ (rj − ri),

where ∆Vj = mj/ρj . The gradient correction guarantees the conservation of angular
momentum. The zero-order (Shepard filter) is given by

W̃ij =
Wij∑

Hi
Wij∆Vj

(10)

Such correction is often adopted to reduce the pressure oscillations for particles near
the boundaries or close to free-surfaces when density summation is used instead of the
continuity equation. Based on Eq. (10), the kernel gradient correction (or corrected
derivatives method) is given by

∇̃iW̃ij = Li∇iW̃ij (11)

L−1
i =

∑
Hi

∆Vj ∇iW̃ij ⊗ (rj − ri)

∇iW̃ij =
∇iWij − γ(ri)∑

Hi
∆VjWij

γ(ri) =

∑
Hi

∆Vj∇iWij∑
Hi

∆VjWij

where ∆Vj = mj/ρj . It is not difficult to verify that both Eq. (9) and Eq. (11) satisfy Eq.
(8).

The gradient correction Eq. (9) is much simpler than the mixed correction Eq. (11). In
the current paper, the gradient correction is employed. The formulations with zero-order
correction or gradient kernel correction are straightforward in SPH. It requires only the
replacement of the kernel functions with their associated corrected kernels, i.e.,Wij → W̃ij

and∇iWij → ∇̃iWij or∇iWij → ∇̃iW̃ij . Subsequently, we derive all equations based on
the standard SPH formulation but the equations for the associated correction methods are
straight forward.

2.4 Variable smoothing length in SPH

There are several methods to deal with the variable smoothing length issue. The first method
is the averaged kernel function [Hernquist and Katz (1989)] given by

W ij =
1

2
[W (|rij |, hi) +W (|rij |, hj)] or W ij = W (|rij |, [hi + hj ]/2) (12)
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The averaged kernel between paired particles with different smoothing lengths guarantees
the anti-symmetrical pair-wised forces and thus preserves the symmetry of the particle
interactions [Liu and Liu (2003)]. The second method is based on the correction term ∇h
[Nelson and Papaloizou (1994); Springel and Hernquist (2002); Vacondio, Rogers, Stansby
et al. (2013)] in the equations of motion. The key idea is to relate the local number density
of particles with the smoothing length and to keep the variable inside the smoothing sphere
constant [Springel and Hernquist (2002)], i.e.,

h(ri) ∝ n(ri)
−1/d; n(ri) =

∑
Hi

W [(ri − rj), h(ri)] (13)

The equation of motion in Springel et al. [Springel and Hernquist (2002)] is

dvi
dt

= −
N∑
j

mj

[
fi
pi
ρ2
i

∇iWij(hi) + fj
pj
ρ2
j

∇iWij(hj)

]
, (14)

where N is the number of all particles, pi is the pressure and fi is defined as

fi =

[
1 +

hi
3ρi

∂ρi
∂hi

]−1

. (15)

The quantities ∂ρi
∂hi

can be computed along with the densities themselves; more details are
found in Springel et al. [Springel and Hernquist (2002)].

Monaghan [Monaghan (2002)] proposed a similar formulation for the smoothing length. In
his work, the momentum equation is

dvi
dt

=
N∑
j

mj

[
pi

Ωiρ2
i

∇̃iWij(hi) +
pj

Ωjρ2
j

∇̃iWji(hj)

]
, (16)

where Ωi is given by

Ωi = 1− ∂hi
∂ρi

∑
Hi

mj
∂Wij(hi)

∂hi
. (17)

The coefficient Ωi is also introduced in the continuity and energy equations. Both
expressions in Eq. (15) and Eq. (17) are related to the term ∇hi. The basic idea is to
find the proper value hi which satisfies Eq. (13). In order to find the desirable smoothing
length, Eq. (13) is transformed into a set of two simultaneous equations which is computed
at the location of particle i,

ρ(ri) =
∑
Hi

mjW (ri − rj , hi); h(ri) = η

(
mi

ρi

)1/d

, (18)

where η is a parameter specifying the smoothing length in units of the mean particle
spacing (m/ρ)1/d, d is the number of dimensions. These two equations can be solved
simultaneously using standard root-finding methods such as Newton-Raphson or Bisection
[Price (2012)]. However, this inevitably increases the computational cost and make the SPH
implementation more complex.
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3 Support domain and dual-support domain
In this section, the key concepts of support and dual-support are presented and the duality of
dual-support is proved. The new concept provides great flexibility to convert the traditional
constant support SPH to dual-support SPH allowing for variable smoothing length for each
particle.

3.1 Support and dual-support

The conventional SPH formulations based on variable smoothing lengths consider the
unbalanced interaction with averaged kernel functions, correction terms ∇h. The basis
of all these methods is a single support domain. However, the single support domain
cannot elegantly resolve the unbalanced interaction with different support radii. In SPH
with variable smoothing lengths, one common situation as shown in Fig. 1 is that
j ∈ Hi, i /∈ Hj . The unilateral interaction violates the Newton’s third law. Therefore,
a single variable support is not sufficient to define the interactions between particles and the
new concept of support and dual-support is introduced subsequently. A similar concept is
the “dual-horizon” in peridynamics [Ren, Zhuang, Cai et al. (2016)].

iHi

j Hj

Figure 1: Two points with different support domains. j ∈ Hi, i /∈ Hj

H0

r3

r5 r4 r6

r2

r1
r0

Figure 2: The support and dual-support for point 0, H ′0 = {1, 2, 3, 4}, H0 = {1, 2, 4, 6},
where circles denote support domains

Support
The support Hi for point i is defined as a domain related to i. When the domain is centered
at i with a radius of hi, the support Hi can be given as

Hi = {j : |ri − rj | ≤ hi} (19)
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In traditional SPH, the support of a particle is a domain where the kernel function is positive
(see p60 in Liu et al. [Liu and Liu (2003)]). The definition in Eq. (19) implies the positivity
of kernel function since the kernel function is calculated in the support, and the kernel
function is zero outside of the support domain. Therefore, the support in Eq. (19) is the
same as that in conventional SPH. Dual-support of i is defined as a union of the points
whose support domain includes i, denoted by

H ′i = {j : i ∈ Hj} (20)

In the notation of dual-support H ′i, the superscript prime indicates “dual”, and the subscript
i denotes the object particle. When the support is defined as circle or sphere centered at that
point, i’s dual-support can be expressed as

H ′i = {j : |ri − rj | ≤ hj} (21)

For any point i, the shape ofH ′i is arbitrary and depends on the sizes and shapes of supports
as well as the locations of the particles. For example, as shown in Fig. 2, the dual-support
with respect to point 0 contains particles {1, 2, 3, 4}, whose supports are denoted by thin
solid circles. Particles {5, 6} are not included in the dual-support of point 0 since their
supports do not include point 0. For case with constant smoothing length, as j ∈ Hi ⇔ i ∈
Hj , H ′i is equal to Hi and then support and dual-support degenerate to the constant support
in traditional SPH.

It is worth mentioning that the dual-support domain with respect to the support domain
is similar to the relation between the influence domain and support domain in meshfree
methods [Hernquist and Katz (1989); Liu and Liu (2003)]. The dual-support domain
actually represents the influence domain. However, to the authors’ knowledge, the duality
of the influence domain and support domain was not identified in the literature. In
the conventional SPH formulation, either the support domain or the influence domain is
employed. In our study, the influence domain and the support domain should be employed
simultaneously in the SPH formulation when variable smoothing lengths are used. For the
simplicity of derivation, we use the dual-support domain to represent influence domain.

3.2 The duality of dual-support and support domain

Let F(i, j) be any expression depend on two points i, j. The duality of dual-support-which
we have proven in Ren et al. [Ren, Zhuang and Rabczuk (2017)]-states that the double
integral of the term F(i, j) in dual-support domain can be converted to the double integral
of the term F(j, i) in support domain:∑
Ω

∑
H′

i

F(i, j) ∆Vj

∆Vi =
∑
Ω

∑
Hi

F(j, i) ∆Vj

∆Vi discrete form (22)

∫
Ω

∫
H′

i

F(i, j) dVjdVi =

∫
Ω

∫
Hi

F(j, i) dVjdVi continuous form (23)

The key idea lies in the fact that the term F(i, j) can be both interpreted in Hi and Hj
′ . For 

the sake of completeness, the proof of duality of dual-support is provided in Appendix A.
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3.3 The dual formulation based on support and dual-support

Let ρ be any scalar, f be any scalar field. The SPH formulation of ∇fiρi
can be obtained as

∇fi
ρi

= ∇i(
f

ρ
) +

fi
ρ2
i

∇iρ

=

∫
Hi

fj
ρ2
j

∇iWijρjdVj +

∫
Hi

fi
ρ2
i

∇iWijρjdVj (24)

In order to derive the DS-SPH formulation, we simply exploit the duality, Eq. (23), and
replace the integral over the support of the first term in Eq. (25) with the integral over the
dual-support:

Hi → H ′i, ∇iWij → −∇jWji (25)

This obviously yields the DS-SPH formulation:

∇fi
ρi

= −
∫
H′

i

fj
ρ2
j

∇jWjiρjdVj +

∫
Hi

fi
ρ2
i

∇iWijρjdVj (26)

Note that for points with identical smoothing length, hi = hj leads to Hi = H ′i and
∇iWij = −∇jWji in Eq. (25). Eq. (25) forms the key step to convert traditional constant
support SPH to dual-support SPH. Let φ be any scalar and A be any vector. With the
operation defined in Eq. (25), the following dual support formulations can be devised

φi∇i ×A = ∇i × (φA) + A×∇iφ

=

∫
H′

i

φjAj ×∇jWjidVj +

∫
Hi

φjAi ×∇iWijdVj (27)

1

φi
∇i ×A = ∇i × (

A

φ
)− A×∇iφ

φ2

=

∫
H′

i

Aj

φ2
j

×∇jWjiφjdVj −
∫
Hi

Ai

φ2
i

×∇iWijφjdVj (28)

The second order derivative can be obtained in a similar way. One expression recommended
by Brookshaw et al. [Brookshaw (1985); Morris, Fox and Zhu (1997)] for second derivative
is

(
1

ρ
∇ · (µ∇v))i =

∑
Hi

mj
µj + µi
ρiρj

rij · ∇iWij

r2
ij + η2

vij (29)

→
∑
Hi

mj
µi
ρiρj

rij · ∇iWij

r2
ij + η2

vij −
∑
H′

i

mj
µj
ρiρj

rji · ∇jWji

r2
ji + η2

vji (30)

which requires only first spatial derivatives, where vij = vi − vj , η is a small number
introduced to avoid a zero denominator during computations and is set to 0.1h. Eq. (29) is
the combination of SPH formulation of first derivative and first order finite difference.
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4 Dual-support smoothed particle hydrodynamics
In this paper, we apply the dual-support formulation to fluids. The application of DS-SPH
in solid is refereed to Dai et al. [Dai, Ren, Zhuang et al. (2017)]. The Lagrangian form of
the fluid dynamics equations is given as

dρ

dt
= −ρ∇ · v continuity equation (31)

dv

dt
=

1

ρ
∇ · σ + b linear momentum (32)

de

dt
=

1

ρ
∇ · (σ · v)− 1

ρ
∇ · q + b · v +

ṡ

ρ
specific energy (33)

dε

dt
=

1

ρ
σ : ∇v − 1

ρ
∇ · q +

ṡ

ρ
internal energy (34)

where d
dt is the material time derivative, σ the Cauchy stress; q = −κ∇T the heat flux

density vector, κ the thermal conductivity, T the temperature, ṡ the source term; b the body
force density, ε the internal energy density, e = v2

2 + ε the specific energy per unit mass.
Eq. (33) and Eq. (34) are equivalent. Two constitutive models for the fluid are

σ = −pI inviscid fluid (35)

σ = (−p+ λ∇ · v)I + µ(∇⊗ v + v ⊗∇) newtonian fluid (36)

where p is the pressure; µ is the dynamic viscosity, and λ is the second coefficient of
viscosity. As a detailed derivation of the SPH equations is provided elsewhere, see e.g.,
[Liu and Liu (2003)], we omit it in this manuscript. The continuity equation in SPH form
is given by [Liu and Liu (2003)]

dρi
dt

=
∑
Hi

mjvij∇iWij . (37)

In the Lagrangian formulation, the conservation of mass is naturally satisfied, hence we are
not going to recast the continuity equation into the dual-support formulation. The continuity
equation is often replaced by the summation density approach

ρi =
∑
Hi

mjW̃ij . (38)

4.1 SPH formulation with dual-support

It can be shown [Randles and Libersky (1996)] that the SPH formulation with constant
smoothing length for the equation of motion is given by

dvi
dt

=
∑
Hi

mj

(
σi
ρ2
i

+
σj
ρ2
j

)
· ∇̃iWij + b, (39)



A Dual-Support Smoothed Particle Hydrodynamics 363

and the energy equation by

dei
dt

=
∑
Hi

mj

(
σi
ρ2
i

: (vj ⊗ ∇̃iWij) +
σj
ρ2
j

: (vi ⊗ ∇̃iWij)

)

+
∑
Hi

mj

ρiρj

(κi + κj)Tij
r2
ij + η2

rij · ∇̃iWij + b · vi, (40)

where the term on heat conduction is similarly expressed by Eq. (30).

Eq. (40) can be simplified via the momentum equations Eq. (39), which leads to the energy
equation based on the internal energy
dεi
dt

= −
∑
Hi

mj
σi
ρ2
i

: (vij ⊗ ∇̃iWij) +
∑
Hi

mj

ρiρj

(κi + κj)Tij
r2
ij + η2

rij · ∇̃iWij . (41)

In order to allow variable smoothing lengths, applying the procedure in Eq. (25)-Eq. (39),
Eq. (40) and Eq. (41), we obtain the following dual-support formulations for the equation
of motion and energy equations,
dvi
dt

=
∑
Hi

mj
σi
ρ2
i

· ∇̃iWij −
∑
H′

i

mj
σj
ρ2
j

· ∇̃jWji + b (42)

dei
dt

=
∑
Hi

mj
σi
ρ2
i

: (vj ⊗ ∇̃iWij)−
∑
H′

i

mj
σj
ρ2
j

: (vi ⊗ ∇̃jWji)+

∑
Hi

mj

ρiρj

κiTij
r2
ij + η2

rij · ∇̃iWij −
∑
H′

i

mj

ρiρj

κjTji
r2
ji + η2

rji · ∇̃jWji + b · vi (43)

dεi
dt

=−
∑
Hi

mj
σi
ρ2
i

: (vij ⊗ ∇̃iWij) +
∑
Hi

mj

ρiρj

κiTij
r2
ij + η2

rij · ∇̃iWij

−
∑
H′

i

mj

ρiρj

κjTji
r2
ji + η2

rji · ∇̃jWji. (44)

4.2 Two special cases

For fluid with material constitution given by Eqs. (35), (42) and (44) can be further
simplified into, respectively
dvi
dt

= −
∑
Hi

mj(
pi
ρ2
i

+
Πij

2
)∇̃iWij +

∑
H′

i

mj(
pj
ρ2
j

+
Πji

2
)∇̃jWji + b. (45)

dεi
dt

=
∑
Hi

mj(
pi
ρ2
i

+ Πij)∇̃iWij · vij +
∑
Hi

mj

ρ2
i

κiTij
r2
ij + η2

rij · ∇̃iWij

−
∑
H′

i

mj

ρ2
j

κjTji
r2
ji + η2

rji · ∇̃jWji. (46)
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where Πij is the artificial viscosity, which is necessary to model strong shocks and prevent
particles from interpenetration [Benz (1990)] in the absence of physical viscosity and is
given by

Πij =


− αc̄ijµ̃ij + βµ̃2

ij

ρ̄ij
, if vij · rij < 0;

0, otherwise,
(47)

where µ̃ij = (h̄ijvij · rij)/(r2
ij + η2), ρ̄ij = 0.5(ρi + ρj), c̄ij = 0.5(ci + cj), h̄ij =

0.5(hi + hj); ci is the sound speed associated to particle i, α and β are constants that are
all typically set around 1.0 [Monaghan (1988)].

When all support radii are constant, the dual-support domain is identical to the support
domain, then Eqs. (45) and (46) degenerate to the traditional SPH with artificial viscosity
(e.g., [Liu and Liu (2003); Gomez-Gesteira, Rogers, Dalrymple et al. (2010)]).

Another viscosity in fluid is the physical viscosity. When the artificial viscosity in Eqs. (45)
and (46) is replaced with the physical viscosity using Eq. (30), SPH can be reformulated
as,

dvi
dt

=−
∑
Hi

mj
pi
ρ2
i

∇̃iWij +
∑
H′

i

mj
pj
ρ2
j

∇̃jWji

−
∑
H′

i

mj
µj
ρ2
j

rji · ∇̃jWji

r2
ji + η2

vji +
∑
Hi

mj
µi
ρ2
i

rij · ∇̃iWij

r2
ij + η2

vij + b (48)

dεi
dt

=
∑
Hi

mj
pi
ρ2
i

∇̃iWij · vij −
∑
j∈Hi

mj
µi
ρ2
i

rij · ∇̃iWij

r2
ij + η2

v2
ij

+
∑
Hi

mj
κi
ρ2
i

Tij
r2
ij + η2

rij · ∇̃iWij −
∑
H′

i

mj
κj
ρ2
j

Tji
r2
ji + η2

rji · ∇̃jWji (49)

5 Conservation of the basic laws
In this section, the conservation laws, i.e., the linear momentum conservation, angular
momentum conservation and energy conservation, in DS-SPH are discussed. Due to the
Lagrangian description of motion, the total mass is conserved naturally as pointed out
previously.

5.1 Conservation of linear momentum

The conservation of momentum requires

dP

dt
=

∫
Ω(t)

ρi
dvi
dt
dVi = 0, or

dP

dt
=
∑
Ω(t)

mi
dvi
dt

= 0 (50)
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which represent the continuous form and discrete form, respectively. The variation of
momentum is derived as
dP

dt
=
∑
Ω(t)

mi
dvi
dt

=
∑
Ω(t)

mi

∑
Hi

mj
σi
ρ2
i

· ∇̃iWij −
∑
H′

i

mj
σj
ρ2
j

· ∇̃jWji


=
∑
Ω(t)

∑
Hi

mimj
σi
ρ2
i

· ∇̃iWij −
∑
Ω(t)

∑
H′

i

mimj
σj
ρ2
j

· ∇̃jWji

=
∑
Ω(t)

∑
Hi

mimj
σi
ρ2
i

· ∇̃iWij −
∑
Ω(t)

∑
Hi

mimj
σi
ρ2
i

· ∇̃iWij

=0

In the fourth step, the duality of dual-support is used. Therefore, the conservation of
momentum is satisfied.

5.2 Conservation of angular momentum

The conservation of angular momentum requires

dL

dt
=

∫
Ω(t)

ρi ri ×
dvi
dt
dVi = 0 or

dL

dt
=
∑
Ω(t)

mi ri ×
dvi
dt

= 0 (51)

In the proof of angular momentum, we replace { 1
ρ2i
, 1
ρ2j
} in momentum equation with 1

ρiρj
.

The variation of angular momentum is derived as

dL

dt
=
∑
Ω(t)

miri ×
dvi
dt

=
∑
Ω(t)

miri ×

∑
Hi

mj
σi
ρiρj

· ∇̃iWij −
∑
H′

i

mj
σj
ρiρj

· ∇̃jWji


=
∑
Ω(t)

∑
Hi

mimjri × (
σi
ρiρj

· ∇̃iWij)−
∑
Ω(t)

∑
H′

i

mimjri × (
σj
ρiρj

· ∇̃jWji)

=
∑
Ω(t)

∑
Hi

mimjri × (
σi
ρiρj

· ∇̃iWij)−
∑
Ω(t)

∑
Hi

mimjrj × (
σi
ρiρj

· ∇̃iWij)

=
∑
Ω(t)

∑
Hi

mimjrij × (
σi
ρiρj

· ∇̃iWij)

=
∑
Ω(t)

∑
Hi

rij × (σi · ∇̃iWij)∆Vj∆Vi (52)
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In the fourth step, the duality of dual-support is used. Temporally, for the sake of simplicity,
we abbreviate Hi → H , ∆Vj → ∆V , rij → r, Wij →W and σi → σ . Let capital letters
I, J,K,L be the dimensional index.∑

Hi

rij × (σi · ∇̃iWij)∆Vj

=
∑
H

r× (σ · ∇̃W )∆V

=
∑
H

rieI × (σJKeJ ⊗ eK ·W,LeL) ∆V

=εIJLσJK
∑
H

rIW,K∆V︸ ︷︷ ︸
=δIK

eL

=εIJLσJIeL = 0

where εIJL is the permutation symbol and rI refers to the I-th component of r, ∇̃W is the
function with gradient correction, and the symmetry of the Cauchy stress tensor σ and the
completeness of ∇̃iWij are used. Therefore, Eq. (52) is zero, and the angular momentum
is conserved when the linear completeness is satisfied.

5.3 Conservation of energy

The conservation of energy requires
dE

dt
=

∫
Ω(t)

ρi
dei
dt
dVi = 0 or

dE

dt
=
∑
Ω(t)

mi
dei
dt

= 0 (53)

The variation of specific energy is derived as
dE

dt
=
∑
Ω(t)

mi
dei
dt

=
∑
Ω(t)

∑
Hi

mimj
σi
ρ2
i

: (vj ⊗ ∇̃iWij)−
∑
Ω(t)

∑
H′

i

mimj
σj
ρ2
j

: (vi ⊗ ∇̃jWji)

=
∑
Ω(t)

∑
Hi

mimj
σi
ρ2
i

: (vj ⊗ ∇̃iWij)−
∑
Ω(t)

∑
Hi

mimj
σi
ρ2
i

: (vj ⊗ ∇̃iWij)

= 0 (54)

In the third step, the duality of dual-support is used. So the specific energy is conserved.

6 Implementation of DS-SPH
At each step, the values at step t+∆t are calculated based on the known variables as rti, vti ,
f ti , ρ

t
i, ε

t
i, ρ̇

t
i, ε̇

t
i. Many numerical schemes can be used to integrate the SPH formulation, e.g.,

the Leap-frog prediction-correction scheme and the Verlet-velocity scheme [Verlet (1967)].
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When the energy equation is considered, the Leapfrog prediction-correction scheme is
preferred. The Leapfrog prediction-correction scheme comprises three steps as below

1. Prediction step

rt+∆t
i = rti + ∆tvti +

∆t2

2mi
f ti

vpi = vti +
∆t

mi
f ti

ρpi = ρti + ∆tρ̇i
t

εpi = εti + ∆tε̇ti

2. Calculate all forces f t+∆t
i and all derivatives, ρ̇t+∆t

i , ε̇t+∆t
i based on rt+∆t

i ,vpi , ρ
p
i , ε

p
i .

3. Correction step

vt+∆t
i = vti +

∆t

2mi
(f ti + f t+∆t

i )

ρt+∆t
i = ρti +

∆t

2
(ρ̇i

t + ρ̇i
t+∆t)

εt+∆t
i = εti +

∆t

2
(ε̇ti + ε̇t+∆t

i )

DS-SPH requires the summation over the support and dual-support for each particle.
However, the forces from the dual-support domain are obtained from other particles’
support domains. For any particle j ∈ Hi, the force fij for pair ij is calculated and added
to particle i. Since j ∈ Hi ⇔ i ∈ H ′j , −fij is the force from dual-support H ′j of particle j,
thus it can be added to particle j. Hence, when summing over all other particles, the forces
from H ′i are automatically calculated. In other words, the force from one particle’s support
domain is reusable for the other particle’s dual-support domain.

Let us consider Eq. (45). In the implementation, we loop over all particles j ∈ Hi and add
the force fij = −mimj(

pi
ρ2i

+
Πij

2 )∇̃iWij to particle i. Since j ∈ Hi ⇔ i ∈ H ′j , we can

simply add −fij to particle j. In contrast, traditional SPH requires computing −mj(
pi
ρ2i

+
pj
ρ2j

+ Πij)∇̃iWij when looping j ∈ Hi, and calculating −mi(
pi
ρ2i

+
pj
ρ2j

+ Πji)∇̃jWji when

d

looping i ∈ Hj . Hence, DS-SPH is more efficient compared with the traditional SPH.
In contrast with the kernel average method which depends on two particles’ kernel 
functions, any particle in DS-SPH only concentrates on its own kernel function and support 
domain, which is independent with the other particles. Eq. (18) indicates that the smoothing 
length is inverse proportional to the density. Let ∆xi denote the 'size' of particle i. Without 
loss of generality√ , we assume that the shape of the particle is a cube in 3D or square in 2D. 
Then ∆xi = mi/ρi, where d is the number of dimensions. Since each particle’s mass is 
fixed, ∆xi decreases when the density ρ i increases. At m(≈ 50) time steps, we update the
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support radius based on the new estimated particle size by

hi = n∆xi = n d
√
mi/ρi, (55)

where n ≈ 1.5 ∼ 3. It can be seen that the smoothing length decreases with increasing
particle density; the low(high) density, which indicates relatively sparse (dense) neighbors,
causes the support domain to expand (shrink) adaptively.

7 Numerical examples
7.1 1D heat conduction

Consider a 1D bar of with length L =50 cm. The bar is discretized with a particle spacing
of ∆x =1 cm or ∆x =0.5 cm; the heat diffusion coefficient is α = 1.0× 10−4m2s−1. The
left half is assigned an internal energy of e0

l = 1 J/m, the right half e0
r = 2 J/m. The total

energy in the 1D bar is Etotal =0.75 J. There is neither potential nor kinetic energy present
in this simulation. The only non-zero contribution is the total internal energy. The energy
profile given by

e(x, t) =
e0
r + e0

l

2
+
e0
r − e0

l

2
erf
(
x− xc√

4αt

)
(56)

is compared to the analytic solution at 4.0 s. Three cases as shown in Tab. 1 are considered.
The first case is modeled by conventional SPH with constant smoothing length. The
second case is simulated by conventional SPH with variable smoothing lengths but without
additional treatment. The third case is implemented with our dual-support SPH. In order to
test the influence of the transition of smoothing length, two particle spacings ∆x =1 cm,
∆x =0.5 cm in Case II and Case III were employed , more specific, the particle spacing in
the interval of x = 0.3L − 0.5L is ∆x =0.5 cm. The L2 error in internal energy is given
by

|err|L2
=
|eh − eanalytic|
|eanalytic|

, (57)

with

|e| =
(∫ L

0
e · e dx

) 1
2

.

Case ∆x 102 · h Particle numbers
I 0.01 3 100
II 0.01,0.005 3/1.5 118
III 0.01,0.005 3/1.5 118

Table 1: The parameters of three cases
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Case ∆E/Etotal |err|L2
[e/eanalytical]max

I -1.18E-15 0.0072 -2.40%

II 3.38E-3 0.0115 -5.15%

III -1.18E-15 0.0061 -2.89%

The numerical results agree well with theoretical solution, as shown in Tab. 2. The error of 
the conventional SPH formulation with varying smoothing length is roughly twice as high 
as the error with the dual-support SPH version.

7.2 Water droplet flow

In this section the flow simulation of an elliptical water droplet is presented. The main 
purpose of this example is to demonstrate that the total linear and angular momentum are 
conserved for the dual-support SPH in the absence of external forces. This example is tested 
by two formulations, one is the Eq. (39) with only one varying support for each particle 
(namely, single support SPH), the other is Eq. (42) (dual-support SPH). No treatment of 
varying support radii is employed for the first formulation. The gradient correction of kernel 
function (cubic-spline kernel) is employed in two formulations. The continuity equation Eq.
(31) is calculated directly by the divergence of velocity. The velocity gradient is calculated 
by

∇⊗ vi = −
∑
Hi

mj

ρj
vij ⊗ ∇̃iWij . (58)

The geometry of the bubble is a circle of 1 m radius without external forces but with initial
velocity field of (−100x, 100y) m/s. The bubble is discretized with 1979 particles, whose
distribution is shown in Fig. 3. The cell’s volume represents the particle’s volume. In order
to test the influence of variable smoothing lengths on the conservation laws, the upright part
of the bubble is discretized with small particles. The initial smoothing length is selected as
two times of the particle size, i.e., hi = 2∆xi. The particle size is estimated by assuming
the shape of square.

The total stress is calculated by Eq. (36). The pressure is calculated by the following
equation of state for water [Monaghan (1994)],

p = p0((
ρ

ρ0
)γ − 1), c2(ρ) =

∂p

∂ρ
= c2

0(ρ/ρ0)γ−1, (59)

where γ is a constant; γ = 7 in our simulations; ρ0 is the reference density, c0 = 1400m/s
is the sound speed at the reference density. p0 = c2

0ρ0/γ is the artificial bulk modulus
[Morris, Fox and Zhu (1997)]. In this example, the artificial bulk modulus is p0 = 285.714
MPa, viscosity coefficients λ = 0 and µ = 0.5 kg m−1s−1, initial density ρ0 = 103 kg/m3.
Within the simulations, the shape of the bubble should remain elliptical, the value of ab

Table 2: The results of three cases for t = 4 s
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(semi-major axis × semi-minor axis) should remain constant. The analytical solution of b
varying with time can be obtained as

db

dt
= −bB, where

dB

dt
=
B2(b4 − w4)

b4 + w4
(60)

and w is the initial value of ab.

Fig. 4 shows the geometry of the water droplet simulated by single support SPH and the
dual-support SPH. The result by DS-SPH agree well with the theoretical shape denoted by
solid lines, while the result by traditional SPH using only one support domain is affected
by the particle distribution. The reason is that the traditional SPH formulation is only
suitable for constant smoothing length; when encountering the variable smoothing length,
the accumulated unbalanced forces drive the final result away from the theoretical solution.
In addition, when tracking the total linear momentum (Fig. 5), and total angular momentum
(Fig. 6), the results by single support SPH change significantly with time, whereas that by
dual-support SPH fulfill all conservation laws. The non-zero initial total momentum and
angular momentum are due to the unsymmetrical discretization. The variation of linear
momentum and angular momentum for single support SPH is due to the variation of the
smoothing length for each particle at every 50 steps.

Figure 3: The particle discretization of water droplet. Each cell represents one particle

7.3 2D dam break over dry bed

The dam breaking experiment, which was described in Koshizuka et al. [Koshizuka and
Oka (1996)], is a benchmark problem to test the accuracy of SPH code by Violeau et
al. [Violeau and Issa (2007)] and Crespo et al. [Crespo, Gómez-Gesteira and Dalrymple
(2007)]. The tank is 4 m long, the initial volume of water is 1 m long and its height 2 m,
as shown in Fig. 7. The system is solved with a leapfrog prediction-correction scheme,
using a cubic-spline kernel without kernel gradient correction, specular reflection boundary
condition by Eq. (61), artificial viscosity, α = 1, β = 1. The density is calculated by Eq.
(37). Fluid particles were initially placed on a staggered grid with zero initial velocity. In
order to employ a large time increment, the sound speed is set as 100 m/s, which is 10 times
larger than the maximum flowing speed. The specular reflection boundary is given by

v′ = v − 2(v · n)n if v · n < 0 , (61)
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Figure 4: The geometry of water droplet at t = 8 × 10−3 s. The solid line represents the
theoretical shape
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Figure 5: The total linear momentum against time

0 1 2 3 4 5 6 7 8 9

x 10
−3

−70

−60

−50

−40

−30

−20

−10

0

10

Time [second]

T
ot

al
 a

ng
ul

ar
 m

om
en

tu
m

 

 

single support SPH
 dual−support SPH

Figure 6: The total angular momentum against time
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Figure 7: Initial configuration of the water column and the tank

where v denotes the velocity, n is the inward normal direction of the wall at that point. Note
that the specular reflection boundary only changes the direction of the particle’s velocity
when the particle is approaching the boundary, thus the kinetic energy is not affected. Such
good property enables us to track the global energy during the simulation. Although the
equation of state given by Eq. (59) is irrelevant to the energy state, the energy equation Eq.
(46) is considered in order to track the internal energy since the artificial viscosity converts
the kinetic energy into the internal energy.

Three cases are run to shown the capabilities of the dual-support SPH. Case I is based
on traditional single support SPH with variable smoothing length and Case II adopts the
DS-SPH formulation. Case III uses constant smoothing length during the simulation. The
initial smoothing length is set as hi = 2∆xi. The smoothing length for each particle in
Case I and Case II is updated with Eq. (55) at every 200 time steps. The particle spacing
of Case I (5,600 particles) and Case II (5,600 particles) is ∆x = 2.5 × 10−2 m in Ω0,
∆x = 1.25× 10−2 m in Ω1, whereas only one particle spacing ∆x = 1.25× 10−2 in Case
III (12,800 particles). There is a sharp change of smoothing length in the interface of Ω0 and
Ω1 for Case I and Case II. Such transition deteriorates the traditional single support SPH,
while dual-support SPH can reduce the adverse effect. The Case III based on traditional
constant support SPH is served as the reference.

As shown in Fig. 8, the toe velocity of Case II and Case III agreed well with experimental
data, whereas that of Case I was affected by sharp transition of smoothing lengths.

The fluid domain is marked with four colors so that the deformation of the interfaces can be
tracked. The deformation of water column for three cases at different time is shown in Fig.
9 and Fig. 10. For case I, the blue zone pushed the red zone and caused the simulation to
deviate far away from the reference results given by Case III; the interfaces became irregular
and the blue zone spreaded over the bottom. The results of Case II agreed well with that
by Case III; the interfaces were continuous and smooth in all steps. Hence the dual-support
SPH can reduce the adverse effect of variable smoothing lengths to minimum. When the
front toe hit the right wall, for Case II and Case III, the maximal density variation for front
toe is smaller than 2%, as shown in Fig. 11, while the density for other parts of the fluid is
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Figure 8: The evolution of dam front toe in experiment [Koshizuka and Oka (1996)] and
three cases

(a) case I, t = 0.25 s (b) case II, t = 0.25 s (c) case III, t = 0.25 s

(d) case I, t = 0.5 s (e) case II, t = 0.5 s (f) case III, t = 0.5 s

(g) case I, t = 0.72 s (h) case II, t = 0.72 s (i) case III, t = 0.72 s

Figure 9: The profile of particles at different time
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(a) case I, t = 1.0 s (b) case II, t = 1.0 s (c) case III, t = 1.0 s

(d) case I, t = 1.38 s (e) case II, t = 1.38 s (f) case III, t = 1.38 s

(g) case I, t = 2.5 s (h) case II, t = 2.5 s (i) case III, t = 2.5 s

Figure 10: The profile of particles at different time

(a) Case II (b) Case III

Figure 11: The density contour at different time



A Dual-Support Smoothed Particle Hydrodynamics 375

very close to the initial density.
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Figure 12: The total energy at different time

The total energy for three cases were compared in Fig. 12. Fig. 12(a) shows that the total
energy of Case I increased over time, which indicates that the spurious force has a great
impact on the global energy conservation. In fact, the spurious force is the unbalance force
interaction between two particles with different smoothing lengths. For Case II and Case III,
the total energy variation arising from the time integration is less than 4% . Therefore, the
dual-support SPH formulation conserves the global energy in the absence of external force
doing work. The dual-support formulation is a good alternative to varying the smoothing
lengths in SPH.

8 Conclusions
In this paper, we have introduced the dual-support domain, the dual part of support
domain, based on which the conventional SPH was reformulated into dual-support SPH.
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We identified that the duality of influence domain and support domain in conventional SPH
method. This formulation enables the conservations of momentum, angular momentum
and energy when variable support domains are employed. In DS-SPH, the change of
smoothing length is achieved with ease and the modified coefficients in Eq. (14) and Eq.
(16) are eliminated. The implementation of DS-SPH shows that the DS-SPH can reduce
the computational cost compared with traditional SPH.

Three numerical examples were presented to validate the dual-support SPH. The first
numerical example showed for heat diffusion problem the energy is conserved when
variable smoothing lengths are utilized. The third numerical example verified that the
conservations of basic laws for DS-SPH are well preserved while the traditional SPH not.
The last example showed traditional SPH is greatly affected by the variable smoothing
lengths and DS-SPH can eliminate the adverse effect.

The concept of dual-support facilitates the support-variable SPH formulation. To some
extent, the concept of support domain and dual-support domain is similar to Newton’s
third law, considering the direct force and reaction force for paired particles. The proof
of conservation is obtained easily with the aid of duality of dual-support and support
domain. Therefore, the dual-support can be also applied in the SPH on solid or SPH on
magnetohydrodynamics. The present method is also promising for multi-scale analysis
where the models with different length scales can be bridged by using different smooth
length settings.
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Appendix A: The duality of dual-support

Let F(i, j) be any expression depend on two points i, j. The duality of dual-support is
that the double integral of the term F(i, j) in dual-support can be converted to the double
integral of the term F(j, i) in support, as shown in Eq. (22) and Eq. (23). The key idea lies
in that the term F(i, j) can be both interpreted in Hi and H ′j .

∑
Ω

∑
H′

i

F(i, j) ∆Vj

∆Vi =
∑
Ω

∑
Hi

F(j, i) ∆Vj

∆Vi discrete form (62)

∫
Ω

∫
H′

i

F(i, j) dVjdVi =

∫
Ω

∫
Hi

F(j, i) dVjdVi continuous form (63)

Proof:
Let Ω be discretized with N voronoi tessellations (or other shape), as shown in Fig. 13.

Hi i

�

Figure 13: The discretization of domain Ω

Each polygon is denoted with an index i ∈ {1, · · · , N}, ri is the coordinate for i’s center
of gravity, ∆Vi is the volume associated to i, Hi and H ′i are i’s support and dual-support,
respectively. So

Ω =
N∑
i=1

∆Vi
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Consider the double summation of F(i, j) on Ω.

∑
∆Vi∈Ω

∑
H′

i

F(i, j)∆Vj

∆Vi

=
∑

1≤i≤N

∑
H′

i

F(i, j)∆Vj

∆Vi

=
∑
H′

1

F(1, j)∆Vj∆V1 +
∑
H′

2

F(2, j)∆Vj∆V2 + · · ·+
∑
H′

N

F(N, j)∆Vj∆VN (64)

In the third step, j ∈ {1, · · · , N} means j belongs to that point’s dual-support. Each term
F(i, j)∆Vj∆Vi in H ′i can be interpreted as term F(i, j)∆Vi∆Vj in Hj . Let us sum all
terms in a way based on point j’s support Hj , where j ∈ {1, · · · , N}∑
H′

1

F(1, j)∆Vj∆V1 +
∑
H′

2

F(2, j)∆Vj∆V2 + · · ·+
∑
H′

N

F(N, j)∆Vj∆VN

=
∑
H1

F(i, 1)∆V1∆Vi +
∑
H2

F(i, 2)∆V2∆Vi + · · ·+
∑
HN

F(i,N)∆VN∆Vi (65)

In the second step of Eq. (65), for example,
∑

i∈H1
F(i, 1)∆V1∆Vi means gathering all

terms j = 1 in∑
H′

2

F(2, j)∆Vj∆V2 +
∑
H′

3

F(3, j)∆Vj∆V3 + · · ·+
∑
H′

N

F(N, j)∆Vj∆VN

∑
H1

F(i, 1)∆V1∆Vi +
∑
H2

F(i, 2)∆V2∆Vi + · · ·+
∑
HN

F(i,N)∆VN∆Vi

=
∑
H1

F(j, 1)∆Vj∆V1 +
∑
H2

F(j, 2)∆Vj∆V2 + · · ·+
∑
HN

F(j,N)∆Vj∆VN

=
∑

1≤i≤N

∑
Hi

F(j, i)∆Vj

∆Vi (66)

In the second step of Eq. (66), i and j is swapped. Eqs. (64)-(66) lead to

∑
1≤i≤N

∑
H′

i

F(i, j)∆Vj

∆Vi =
∑

1≤i≤N

∑
Hi

F(j, i)∆Vj

∆Vi

When N →∞ so that ∆Vi → 0, we have

lim
N→∞

∑
1≤i≤N

∑
H′

i

F(i, j)∆Vj

∆Vi =

∫
i∈Ω

∫
H′

i

F(i, j)dVjdVi (67)
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Hence the duality of dual-support in the integral form is∫
Ω

∫
H′

i

F(i, j) dVjdVi =

∫
Ω

∫
Hi

F(j, i) dVjdVi (68)

Eq. (68) means the double integral of the term in dual-support can be converted to the
double integral of the term with i and j swapped in support.

Note that the domain is not necessary to be continuous, ∆Vi,∆Vj can be replaced with
sparse particles with mass mi,mj , respectively. So, we get∑
Ω

∑
H′

i

mimj F(i, j) =
∑
Ω

∑
Hi

mimjF(j, i) (69)




