

Computers, Materials & Continua CMC, vol.61, no.3, pp.1285-1304, 2019

CMC. doi:10.32604/cmc.2019.06160 www.techscience.com/cmc

Detecting Domain Generation Algorithms with Bi-LSTM

Liang Ding1, *, Lunjie Li1, Jianghong Han1, Yuqi Fan2, * and Donghui Hu1

Abstract: Botnets often use domain generation algorithms (DGA) to connect to a
command and control (C2) server, which enables the compromised hosts connect to the
C2 server for accessing many domains. The detection of DGA domains is critical for
blocking the C2 server, and for identifying the compromised hosts as well. However, the
detection is difficult, because some DGA domain names look normal. Much of the
previous work based on statistical analysis of machine learning relies on manual features
and contextual information, which causes long response time and cannot be used for real-
time detection. In addition, when a new family of DGA appears, the classifier has to be
re-trained from the very beginning. This paper presents a deep learning approach based
on bidirectional long short-term memory (Bi-LSTM) model for DGA domain detection.
The classifier can extract features without the need for manual feature extraction, and the
trainable model can effectively deal with new unknown DGA family members. In
addition, the proposed model only needs the domain name without any additional context
information. All domain names are preprocessed by bigram and the length of each
processed domain name is set as a value longer than the most samples. Bidirectional
LSTM model receives the encoded data and returns labels to check whether domain
names are normal or not. Experiments show that our model outperforms state-of-the-art
approaches and is able to detect new DGA families reliably.

Keywords: Bidirectional LSTM, network security, DGA.

1 Introduction
Botnets are hidden dangerous networks with great threat to the network security
operation and the user data security. The Botnets are some kind of one to many
centralized controlled networks, which is controlled by a Bot master and lots of
compromised hosts. Through command and control (C2) Server, Bot master sends orders
to the compromised hosts. Such networks have been created to conduct large-scale illegal
activities, such as launching denial-of-service attacks, phishing attacks, cryptoviral
extortion, which bring a large threaten to cloud computing and big data environment
[Cheng, Xu, Tang et al. (2018)].
Actually, attackers usually use multiple domain names to connect to the C2 server when

1 School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, 230009, China.
2 Department of Computer Science, University of Texas at Dallas, Campbell Rd, Richardson, Texas, 75080, USA.
* Corresponding Authors: Liang Ding. Email: liangding@hfut.edu.cn;
Yuqi Fan. Email: yuqi.fan@utdallas.edu.

mailto:liangding@hfut.edu.cn

1286 CMC, vol.61, no.3, pp. 1285-1304, 2019

operating botnet, so as to control the victim machines [Kührer, Rossow and Holz (2014)].
Some malware rely on static lists of domains and IP addresses that were hardcoded to
connect compromised machines [Stonegross, Cova, Gilbert et al. (2011)]. The domains
are often coded in malicious programs, giving attackers the flexibility to easily change
the domains and their IP addresses [Hampton and Baig (2015)]. The biggest advantage of
this connection is that it is easy to be implemented, while the disadvantage is that it is
very easy to be detected by the authorities. Due to limited amounts of domains and IP
addresses, defenders can blacklist them based on reverse techniques. However, attackers
propose corresponding countermeasure by using domain generation algorithms to
dynamically generate a large number of pseudo random domain names in a short period
of time, effectively increase the difficulty of blacklisting and detection.
Domain generation algorithms can produce a series of pseudo random domain names,
which contain strings and numbers using some seeds, encryption algorithms, such as
differences operations. We can predict the generated domains by collecting samples and
reverse engineering. Afterwards, we can preregister the domains or put them in a
blacklist. However, there may be a huge number of generated domains in a short term,
while the list cannot be updated in time. Therefore, a real-time detection of malicious
domain names produced by the DGA is needed.
With the update of DGAs, the number of generated domain names is increasing and the
defense work becomes more difficult. The accuracy of the traditional classification
algorithm and the hidden markov model is low. The features selection based on the
analysis and detection method of natural language features of domain names cannot deal
with the large number of features. In addition, some DGAs may even build the algorithm
to generate a large number of pseudo-domain names that conform to the characteristics of
normal domain names.
In this paper, we design a model to detect domain names generated by DGAs based on
bidirectional LSTM neural networks. Compared with the traditional detection methods,
the proposed scheme has the following advantages:
1. Our scheme uses a featureless way to handle domain names, by which all information

contained in the domain name is retained as much as possible. It also avoids manual
feature selection and the difficulty of determining the features effectiveness.

2. Our scheme can well adapt to the detection of pseudo-domain names generated by
new DGA. Compared with the defect of large data samples that need to be retrained in
the traditional detection scheme, the proposed scheme only needs to continue the
training on the original model.

3. Our scheme performs in a real-time and low-cost way. The model trained through the
pre-training data samples can be deployed and used directly, and can classify the domain
names and quickly blacklist suspicious domain name without requiring more information.

In this paper, we make the following contributions:
1. We obtain statistics on frequency distribution of domain names’ composition and

length, and analyze the differences between the normal and the DGA domain names.
On the premise of retaining the original domain name information as much as possible,
it is determined that bigram processing can make the differences more obvious.

Detecting Domain Generation Algorithms with Bi-LSTM 1287

2. In the experiment, we trained the processed data on LSTM networks and Bi-LSTM
networks. Experimental results show that the Bi-LSTM model can effectively distinguish
normal domain names and DGA domain name. The FPR (False Positive Rate) value
tested by this model is 30.6% higher than the result without bigram processing.

2 Related work
There exist various approaches to detect DGA domain names. Wang et al. [Wang, Lin
and Lin (2016)] proposed a DGA botnet detection mechanism utilizing the feature based
characteristics of social networks. Antonakakis et al. [Antonakakis, Perdisci, Nadji et al.
(2012)] presented a new technique to detect randomly generated domains without
reversing. Their approach used a combination of clustering and classification algorithms.
Kwon et al. [Kwon, Lee, Lee et al. (2016)] introduced PsyBoG, a fast and scalable
approach, for detecting malicious behavior within large volumes of DNS traffic.
Anderson et al. [Anderson, Woodbridge and Filar (2016)] leveraged the concept of
generative adversarial networks to test the hypothesis of whether adversarial generated
domains may be used to augment training sets in order to enhance the machine learning
models against new DGAs.
Wang et al. [Wang, Jia and Zhang (2018)] studied the characters’ features of DGA
domain names and extracted five attributes for the Support Vector Machine (SVM)
model. Chen et al. [Chen, Yan, Pang et al. (2018)] trained the classifier model through
Support Vector Machine (SVM), which is based on supervised machine learning. Huang
et al. [Huang, Wang, Zang et al. (2018)] proposed Helios, a DGA detection approach
based on a neural language model, which exploits the word formation of domain names
to identify those generated by DGAs.
Yadav et al. [Yadav, Reddy, Reddy et al. (2012)] described a model by testing
distribution of alphanumeric characters and bigrams in all domains to detect DGA
domain names. Wang et al. [Wang and Chen (2017)] proposed N-Gram features to
increase the accuracy of classification models. Schiavoni et al. [Schiavoni, Maggi,
Cavallaro et al. (2014)] combined linguistic and IP-based features and presented the
Phoenix framework to identify DGA domain names. Mowbray et al. [Mowbray and
Hagen (2014)] proposed a method by identifying client IP addresses with an unusual
distribution of second-level string lengths to classify domain names. Woodbridge et al.
[Woodbridge, Anderson, Ahuja et al. (2016)] described a method to predict domains
generated by DGAs with Long Short-Term Memory networks.
Based on method described by Woodbridge et al. [Woodbridge, Anderson, Ahuja et al.
(2016)], Lison et al. [Lison and Mavroeidis (2017)] compared the empirical performance
of various design choices, using of embedding, type of recurrent units, etc. For
processing sequential data such as natural language, a neural network model of RNN
(Recurrent Neural Network) usually used [Mahoney (1999); Mikolov, Karafiat, Burget et
al. (2010); Robinson (1994)]. Hochreiter et al. analyzed the problem of gradient
explosion and disappearance brought by back propagation through time algorithm, which
brought problems such as gradient oscillation and learning difficulty to the learning
algorithm. Network structure of LSTM was proposed [Gers, Schmidhuber and Cummins
(2000); Gers, Schraudolph and Schmidhuber (2002); Hochreiter and Schmidhuber (1996);

1288 CMC, vol.61, no.3, pp. 1285-1304, 2019

Hochreiter and Schmidhuber (1997)].
The basic idea of bidirectional recurrent neural network (BRNN) is to propose that each
training sequence are two RNNs, forward and backward respectively [Schuster and Paliwal
(1997)]. This structure provides complete past and future context information for each point
in the output layer’s input sequence. As a member of BRNN, Bi-LSTM has its general
structure characteristics [Graves and Schmidhuber (2005)]. Liu used Bi-LSTM proposed a
sentence encoding-based model for recognizing text entailment [Liu, Sun, Lin et al. (2016)].
The method presented in this paper is based on the operations presented in Woodbridge et
al. [Woodbridge, Anderson, Ahuja et al. (2016)]. This paper improves the existing
approach as follows:
1. By analyzing the character composition and length of the domain names, we can find

the relationship between the characters in the domain name, and use the binary
grammar (bi-gram) method to preprocess the domain name.

2. By using bidirectional training sample data from the Bi-LSTM network, future context
relationships are introduced in addition to the past context relationships.

3. Based on a large number of DGA data samples, the results are more suitable for
practical use.

3 System implementation
For effective detection of domain names, we set up a dictionary that contains the
characters of domain names and the corresponding positive integer values by analyzing
the characteristics of domain names. According to the form of the domain names, we
convert the characters into one-dimensional vectors. When the vectors are obtained by
Embedding layer, we put them in LSTM neural networks or Bi-LSTM neural networks to
get labels, based on which we determine whether the test domain name is generated by
DGAs. The normal set and DGA family set in the data set are divided into training set
and test set respectively at a ratio of 4:1. The design and implementation of the system is
divided into three parts: characteristic analysis, data processing and neural network model.

3.1 Characteristic analysis
Because the different levels of domain names on the Internet are managed by different
agencies, the way that each agency manages domain names and the rules for naming
them are also different. But there are some common rules for naming names: the domain
name contains 26 English alphabet letters (case insensitive), 10 Arabic numerals, and a
few other characters. We mainly analyze the following four aspects:
• Source
The experimental domain name data used in this paper are from the global top one
million domain names published by Alexa website and more than 1.4 million domain
names generated by 28 different domain name generation algorithms that ensure data
samples are representative and authoritative.
• Character composition
Though the analysis about word frequency statistics of the domain name samples

Detecting Domain Generation Algorithms with Bi-LSTM 1289

processed by unigram, we find that the regularity of the distribution of each character in
the domain name. It can be seen from Fig. 1 that the frequency distributions of each
character in the normal sample and DGA sample are significantly different.
In both samples, the frequency of numbers is lower, and the frequency of English
alphabet letters is relatively higher, which indicates that English alphabet letters are the
main constituent characters of domain names. In the DGA sample, the frequency of the
numbers is still low, but both are higher than the normal samples. The frequency
distribution of English alphabet letters in the DGAs domain names is of the average level,
and the overall fluctuation is smaller than normal.

Figure 1: Probability of each symbol

Fig. 2 shows that in normal samples, the international suffix domain name “.com”
appears in a large number in normal samples and the frequencies of “co”, “.c”, “om” and
“m%” are much higher than other characters. On the contrary, the frequency of remaining
characters is smoothly reduced. The frequency difference of characters in the DGA
samples is large, indicating that the frequency of high-frequency characters in normal
samples is not as high as that in the DGA samples.

Figure 2: Probability of each component

0

0.02

0.04

0.06

0.08

0.1

0.12

o . a r t s u p b k y w z x 2 4 q 8 9 7 _ % & :
DGA normal

0

0.01

0.02

0.03

0.04

0.05

co .c m% t% or s. g% es dn bi er fo si op re ca .i o% on lo
DGA normal

1290 CMC, vol.61, no.3, pp. 1285-1304, 2019

• Length
Obviously, the same domain name samples processed by unigram and bigram respectively
differ by only 1 in length. As can be seen from Fig. 3, most domain names are between 4
and 35 in length, and the distribution characteristics of the two data samples are different.
In normal samples, the domain length distribution is close to the normal distribution. A
domain name with a length of 12 has the highest frequency, and the domain name of other
lengths is relatively small. In the DGA samples, due to the limitations of the generation
algorithm, the domain length distribution presents a centralized situation, which is in
accordance with the characteristics of the pseudo-random generation.

Figure 3: Statistics of domain name length

• First character
According to the statistical analysis of the first character of the initial domain name in Fig.
4, it can be seen from the figure that in the normal sample and DGA sample, the
proportion of the first character is English letter is much higher than that of the number.
In normal samples, letters ‘q’, ‘x’ and ‘z’ are relatively low. The frequency change of
each English letter in the DGA samples is more gradual. However, due to the individual
DGA family algorithm, the probability of ‘0’ and ‘1’ being the first character of the
domain name in the digital part is greatly increased compared with other numbers.

Based on the above analysis of domain name characteristics, we are more convinced that
there is a textual natural language difference between normal and DGA domain names.
Besides, there are great differences between them with the processing of bigram.

0
20000
40000
60000
80000

100000
120000
140000
160000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

DGA normal

Detecting Domain Generation Algorithms with Bi-LSTM 1291

Figure 4: Probability of each initial

3.2 Data processing
We create the dictionary for all characters that appear by applying unary grammar to all
existing domain names samples. The statistics show that all domain names consist of 44
characters. By artificially specifying that each character corresponds to a different
positive integer, each single domain name in the sample is transformed into one-
dimensional vectors.
To conduct binary grammar processing for all domain names, we need to mark the
beginning and end of the domain names with ‘%’ (no symbol % is included in the known
domain names). The lengths of the sequence are different, after each domain name being
processed by different ways. Unigram is N, and bigram is N+1 (N is the length of the
domain name). We obtain statistics on the processed samples and create the dictionary.
The processing results of unary and binary grammar are different. Unary grammar results
show that each domain name is separated by each character to form a character sequence.
Binary grammar results illustrate that each domain name extracts adjacent characters
(including start and end character ‘%’) one by one to form a sequence.
The data set contains a collection of various DGA domain names, as well as a global one
million normal domain names downloaded from the Alexa website. We mark each of the
domain strings that contain the DGA domain name as 1, and all of the normal domain
names as 0. For different types of DGA samples, we also generate 40,000 pieces of 28
different types of DGA domain names. 40,000 normal domain names are randomly selected
from the normal data set, and the labels are treated the same as the DGA samples.

3.3 Neural network model
In the experiment, we construct the neural network through Keras. In this paper, four
training models are set up. We use unigram, bigram and LSTM, Bi-LSTM to combine
with each other and develop modules that use various grammars to generate vectors and
perform machine learning training. For the training models, we set up sequential model

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z
DGA normal

1292 CMC, vol.61, no.3, pp. 1285-1304, 2019

with Embedding layer, the LSTM (Bi-LSTM) layer, Dropout layer, Dense layer
(activation function is sigmoid).
• Embedding layer
The input to the embedding layer in the deep learning model is a vector which encodes
each character of the domain name string into a sequence of positive integers via a
dictionary. This dictionary is obtained by counting the characters that appear in all
domain names and then encoding them with a non-zero positive integer. The dimensions
of vectors can be either unfixed or fixed. As the fixed vector dimension can greatly
improve the model training effect, we choose a fixed vector dimension.
As for the determination of vector dimension, the previous method is to determine the
longest domain name length in the data set, and set the value as vector dimension to hold
all domain name strings. If the vector dimension does not reach the maximum dimension,
we pad zeroes to make it reach the maximum dimension. This process can be done using
sequence preprocessor function in Keras. The statistics in Fig. 5 show that the lengths of
domain names mainly concentrate in one region, while the number of large domain
names is very small. We count 99.9% of the total number of domain names, all of which
are in the range of 4-38 characters, while the number of domain names over 38 characters
is very small. Therefore, we determine the dimension of the vector to be 38, and fixe the
other vector dimensions to be 38 using the sequence preprocessor function in Keras.

Figure 5: Statistics of domain name length

Compared with previous methods, their vector dimensions are often greatly affected by
a small number of long domain names, which can easily cause too much computation.
The approach we use can cover almost all domain names, while greatly reducing the
training complexity.
After transforming the results obtained by the two grammars into vector matrices, we
respectively input them into LSTM and Bi-LSTM models for training. The input length
of training is the dimension of each vector. Among this article, it is set as 38. The specific
analysis is as follows:

0

50000

100000

150000

200000

250000

0 10 20 30 40 50 60 70 80 90 100

all domain names

Detecting Domain Generation Algorithms with Bi-LSTM 1293

For simplicity, let us first introduce some notations. We define V is a vector and v𝑖𝑖 is an
element in the vector. We define V𝑎𝑎:𝑏𝑏 as the row vector V from a to b, i.e.,
V𝑎𝑎:𝑏𝑏 = [V𝑎𝑎 V𝑎𝑎+1 … V𝑏𝑏] (1)
Define M is a matrix, and m𝑖𝑖,𝑗𝑗 is an element in the matrix. We define M𝑖𝑖,𝑎𝑎:𝑏𝑏 as the row
vector of matrix M consisting of elements from columns a to b of row i, i.e.,
M𝑖𝑖,𝑎𝑎:𝑏𝑏=[m𝑖𝑖,𝑎𝑎 m𝑖𝑖,𝑎𝑎+1 … m𝑖𝑖,𝑏𝑏] (2)
M𝑎𝑎:𝑏𝑏,𝑗𝑗 as the vector of M consisting of elements from rows a to b of column j, i.e.,
M𝑎𝑎:𝑏𝑏,𝑗𝑗=[m𝑎𝑎,𝑗𝑗 m𝑎𝑎+1,𝑗𝑗 … m𝑏𝑏,𝑗𝑗]𝑇𝑇 (3)
M𝑎𝑎:𝑏𝑏,𝑐𝑐:𝑑𝑑 as the sub matrix of M consisting of elements from cell a and c to cell b and d,
i.e.,

M𝑎𝑎:𝑏𝑏,𝑐𝑐:𝑑𝑑=�
m𝑎𝑎,𝑐𝑐 ⋯ m𝑎𝑎,d
⋮ ⋱ ⋮

m𝑏𝑏,𝑐𝑐 ⋯ m𝑏𝑏,d
� (4)

We convert all domain names to matrix X based on the obtained dictionary containing
values as follows:

X=�
x1,1 ⋯ x1,𝑇𝑇
⋮ ⋱ ⋮

x𝑚𝑚,1 ⋯ x𝑚𝑚,𝑇𝑇
� (5)

In order to speed up the operation of the program, we take T to be 38 and m to be all the
domain names, by the analysis of the domain name length above. We set the vector in the
matrix to V𝑚𝑚, that is
V𝑚𝑚 = [x𝑚𝑚,1 x𝑚𝑚,2 … x𝑚𝑚,38] (6)
V𝑚𝑚 represents the m-th domain name in the data set, where the element x𝑚𝑚,1 is the first
component in the domain name (single character in unigram and double character under
bigram). At the same time, in order to adapt to the input of LSTM and Bi-LSTM network
model, we set the dimension of each row of the matrix (tensor) output by the embedding
layer to 128. In the embedding layer, according to the size ‘l’ of the dictionary we input,
it performs the unique one-hot encoding of the elements in each column vector, operates
on the weight matrix W stored in the embedding layer, and then outputs the matrix.

W=�
w1,1 ⋯ w1,128
⋮ ⋱ ⋮

𝑤𝑤𝑙𝑙+1,1 ⋯ w𝑙𝑙+1,128
� (7)

For the determination of l, we can also assume that set A
A = {x1,1}∪{x1,2}∪…∪ {x𝑚𝑚,𝑇𝑇} (8)
𝑙𝑙=|A| (9)
The element V𝑚𝑚 in each column vector V𝑚𝑚,𝑖𝑖 is encoded by one-hot code
V𝑚𝑚,𝑖𝑖= (0 … 1… 0) (10)
For the sake of demonstration, we might as well assume that we have such a column
vector

1294 CMC, vol.61, no.3, pp. 1285-1304, 2019

V𝑚𝑚=[x𝑚𝑚,1 x𝑚𝑚,2 x𝑚𝑚,3]𝑇𝑇 (11)
Among them the one-hot coding of x𝑚𝑚,1 , x𝑚𝑚,2 , x𝑚𝑚,3
x𝑚𝑚,1= (1 0 0) (12)
x𝑚𝑚,2= (0 1 0) (13)
x𝑚𝑚,3= (0 0 1) (14)
The weight matrix W is

W=�
w1,1 … w1,128
w2,1 ⋱ w2,128
w3,1 … w3,128

� (15)

Then, the column vector V𝑚𝑚 can be converted to the matrix S by the weight matrix W
S = V𝑚𝑚× W (16)

 =�
1 0 0
0 1 0
0 0 1

�×�
w1,1 … w1,128
w2,1 ⋱ w2,128
w3,1 … w3,128

� (17)

=�
w1,1 … w1,128
w2,1 ⋱ w2,128
w3,1 … w3,128

� (18)

In our experiment, the matrix S is

S=�
s1,1 … s1,128
⋮ ⋱ ⋮

s𝑙𝑙+1,1 … s𝑙𝑙+1,128
� (19)

For any member s𝑖𝑖,𝑗𝑗 of the matrix S
∀s𝑖𝑖,𝑗𝑗 ∈ {w1,1}∪{w1,2}∪…∪{w𝑙𝑙+1,128} (20)
Through different domain name processing methods of unigram and bigram, we can get
dictionaries of different lengths. Through our dataset statistics, the size of the dictionary
processed by unigram is 44, and the size of the dictionary processed by bigram is 1789.
Then the one-hot code length and the weight matrix W in the Embedding layer are 45 and
1790 respectively.
Although the matrix S obtained by the weight matrix transformation in the experiment is
a matrix of 38 rows and 128 columns, the difference between the dimensions of the
bigram preprocessing and the unigram preprocessing is significantly different due to the
large difference in the dimension during the conversion process.
• The neural networks (LSTM and Bi-LSTM)
Each domain name is encoded according to a dictionary and obtained by the embedding layer
conversion, and the encoded domain name is input into the corresponding network model for
the output calculation. The structure of the LSTM network model is shown in the Fig. 6.

Detecting Domain Generation Algorithms with Bi-LSTM 1295

Every input vector S corresponds to a structure ℎ𝑖𝑖, which receives the previous structure
ℎ𝑖𝑖−1 and the current input vector 𝑆𝑆𝑖𝑖. The model outputs the result to the next structure
ℎ𝑖𝑖+1 by certain calculation, that is
ℎ𝑖𝑖=ƒ (ℎ𝑖𝑖−1, 𝑆𝑆𝑖𝑖) (21)
The final output y is obtained by a certain calculation method from the last structure ℎ𝑙𝑙+1,
that is
y= g (ℎ𝑙𝑙+1) (22)
To control the output results between [0, 1], we use the sigmoid function

Sig(x) = 1
1+𝑒𝑒−𝑥𝑥

 (23)

Then the final output Y is
Y =Sig (y) (24)
 =Sig (g (ℎ𝑙𝑙+1)) (25)
We make the following decision according to the output result

Result=�
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙 (𝑌𝑌 < 0.5)
𝐷𝐷𝐷𝐷𝑁𝑁 (𝑌𝑌 ≥ 0.5) (26)

The structure of the Bi-LSTM network model is shown in the Fig. 7.

�
s1,2
⋮

s128,2

� �
s1,𝑙𝑙
⋮

s128,𝑙𝑙

� �
s1,𝑙𝑙+1
⋮

s128,𝑙𝑙+1

� �
s1,1
⋮

s128,1

�

Y

𝑆𝑆2

𝑆𝑆𝑙𝑙+1

𝑆𝑆𝑙𝑙

𝑆𝑆1

ℎ0

ℎ1 ℎ2 ℎ𝑙𝑙+1 ℎ𝑙𝑙

Figure 6: The structure of the LSTM network

1296 CMC, vol.61, no.3, pp. 1285-1304, 2019

Figure 7: The structure of the Bi-LSTM network

The basic structure of the Bi-LSTM network is similar to LSTM. The final output is
obtained by a certain operation of ℎ𝑙𝑙+1, ℎ𝑙𝑙+1′ and the sigmoid function. That is
Y =Sig (g′ (ℎ𝑙𝑙+1,ℎ𝑙𝑙+1′)) (27)
The main process of the system training part we built is as follows.

Figure 8: The main process of the system

Y𝑆𝑆2

𝑆𝑆𝑙𝑙+1

𝑆𝑆𝑙𝑙

𝑆𝑆1

ℎ0

ℎ1 ℎ2 ℎ𝑙𝑙+1 ℎ𝑙𝑙

ℎ𝑙𝑙+1′ ℎ𝑙𝑙′ ℎ1′ ℎ2′ ℎ0′

Dense (1)
(activation = sigmoid)

Vector
Matrix

Embedding Layer

LSTM (128)
or

Bi-LSTM (128)

Dropout (0.5)

Flatten

Detecting Domain Generation Algorithms with Bi-LSTM 1297

4 Performance evaluation
In this section, we analyze the results of training and testing. The experiments focus on the
detection of the DGA and normal domain names. The normal data are from the Alexa top one
million domains and the DGA data are generated by 28 DGA families. Tab. 1 shows the
DGA families we used and the number of each family domains. We process the one million
normal data and more than 467 thousands DGA data in unigram grammar and binary
grammar, and then use LSTM and Bi-LSTM networks model for training and testing.

Table 1: DGA family used
DGA
Family

Frequency DGA
Family

Frequency DGA
Family

Frequency

banjori 16000 murofet 16313 qadars 16714
chinad 16039 necurs 16000 qakbot 17000
corebot 16000 newgoz 16000 ramdo 16000
dircrypt 16006 nymaim 16026 ranbyus 16008
dnschanger 16000 nymaim2 31670 shiotob 16000
fobber 16060 padcrypt 16005 simda 16000
gozi 16000 pizd 16000 suppobox 16000
kraken 16000 proslikefan 16544 symmi 16000
locky 16000 pykspa 16029 tempedreve 16412
 tinba 16404
 total 467230

We use several performance metrics for the evaluation of the detection network models. These
metrics are True Positive Rate (TPR), Recall, False Positive Rate (FPR), Precision and ACC.
TPR is the ratio between the number of correctly detected DGA domains to the total number of
DGA domains. FPR is the ratio between the number of normal domains that are incorrectly
classified as DGA and the total number of normal domains. Precision is the ratio between the
number of correctly detected DGA domains and the total number of domains detected as DGA
domains, Whereas ACC is the ratio between the number of correctly detected DGA domains
plus normal domains and the total number of the test domains.
In the following experiments, we evaluate our proposed Bi-LSTM network model in
three cases. Case 1 uses unigram, named as Bi-LSTM-Ug. Case 2 use bigram, called as
Bi-LSTM-Bg. Case 3 is a hybrid model combining of Bi-LSTM-Bg and LSTM.
We also compare our model with the state of art methods in the respective domains.
• A featureless LSTM model defined in Woodbridge et al. [Woodbridge, Anderson,

Ahuja et al. (2016)].
• A SVM classifier model using manual features defined in Chen et al. [Chen, Yan,

Pang et al. (2018)]. The manual features of the SVM included the following:
• the length of domain name;
• the ratio between vowel and domain name;
• the entropy of character distribution of the domain name;
• bigram frequency distribution occurrences count.

1298 CMC, vol.61, no.3, pp. 1285-1304, 2019

4.1 Evaluation metrics
FN: False Negative. It is considered as a negative sample, but it is actually a positive sample.
FP: False Positive. It is considered as a positive sample, but it is actually a negative sample.
TN: True Negative. It is considered as a negative sample, but it is actually a negative sample.
TP: True Positive. It is considered as a positive sample, but it is actually a positive sample.
TPR: True positive rate. It can be calculated as follow.

TPR = ∑𝑇𝑇𝑇𝑇
∑𝑇𝑇𝑇𝑇+∑𝐹𝐹𝐹𝐹

 (28)

FPR: False positive rate. It can be calculated as follow.

FPR = ∑𝐹𝐹𝑇𝑇
∑𝑇𝑇𝐹𝐹+∑𝐹𝐹𝑇𝑇

 (29)

Recall: Recall ratio. It can be calculated as follow.

Recall = ∑𝑇𝑇𝑇𝑇
∑𝑇𝑇𝑇𝑇+∑𝐹𝐹𝐹𝐹

 (30)

Precision: The ratio of the number of correctly retrieved samples to the total number of
positive samples.

Precision = ∑𝑇𝑇𝑇𝑇
∑𝑇𝑇𝑇𝑇+∑𝐹𝐹𝑇𝑇

 (31)

𝑭𝑭𝟏𝟏: The ratio is the harmonic mean of Precision and Recall.

𝑭𝑭𝟏𝟏= 2 Precision∙Recall
Precision+Recall

 (32)

ACC: The ratio of the number of correctly classified samples to the total number of
samples.

ACC = ∑𝑇𝑇𝑇𝑇+∑𝑇𝑇𝐹𝐹
∑𝑇𝑇𝑇𝑇+∑𝑇𝑇𝐹𝐹+∑𝐹𝐹𝑇𝑇+∑𝐹𝐹𝐹𝐹

 (33)

4.2 Results analysis
According to the results in Tab. 2, the results on ACC, Recall and 𝑭𝑭𝟏𝟏 are the best in the
Bi-LSTM model, and the results on Precision and ROC AUC are the best in the Bi-
LSTM-Bg model. The results of the Bi-LSTM-Bg model on the three performance
metrics of ACC, Recall and 𝑭𝑭𝟏𝟏 are only 0.002, 0.02 and 0.002, respectively.

Table 2: Results of the four models
Model ACC PRECISION RECALL 𝑭𝑭𝟏𝟏 ROC AUC
LSTM 0.973 0.976 0.975 0.976 0.9773
Bi-LSTM-Ug 0.974 0.972 0.981 0.977 0.9974
Bi-LSTM-Bg 0.974 0.990 0.963 0.976 0.9984

The results of the three sets of models in each performance metric differ little from each
other. With regard to Precision, the Bi-LSTM-Bg model is 1.852% higher than the worst
model and 1.434% higher than the sub-optimal model. In the case of Recall, it is the
worst model, with a decline of 2.035% compared with the optimal model and 1.231%
compared with the sub-inferior model. Precision is the ratio of the true number to the

Detecting Domain Generation Algorithms with Bi-LSTM 1299

total number of results returned after retrieval, while Recall is the ratio of the true number
to the whole data set (retrieved or not). The reasons for the results above can be further
explained by Tab. 3.

Table 3: Detailed results of the four models
Model TP FP TN FN TPR FPR NUM
LSTM 236573 5729 194847 6077 0.975 0.029 443226
Bi-LSTM-Ug 238656 6867 193120 4583 0.981 0.034 443226
Bi-LSTM-Bg 234643 2274 197258 9051 0.963 0.011 443226

According to the results in Tab. 3, under the data samples of the same capacity, the Bi-
LSTM-Bg model has significant advantages in FP, TN and FPR, and its results are still
improved by 60.307%, 1.237% and 62.069%, respectively, compared with the sub-
optimal of each performance metric. Compared with the worst of all performance
metrics, 66.885%, 2.143% and 67.647% are increased respectively. But the results on FN
with the Bi-LSTM-Bg model is the worst, with a value of 2.128 times that of the optimal
model. By introducing to various parameters in Tab. 3, we know FP dropped
substantially, FN jumped sharply. Because there are more data samples classified by Bi-
LSTM-Bg model as the DGA. It is that its normal probability is lower, so more DGA
samples are correct classified. There are more normal samples were mistaken to be
classified as the DGA. According to the results in Tab. 2, while the ACC (overall
accuracy rate) does not significantly decline and the FPR is significantly reduced, which
is more helpful for the detection of DGA family domain names, among which the error
rate of normal domain names is acceptable. This conclusion can be drawn from the DGA
family domain name detection results in Tab. 4.

Table 4: ACC and FPR of the four models

DGA
FAMILY

ACC FPR
NUM

LSTM Bi-LSTM-Ug Bi-LSTM-
Bg

LSTM Bi-LSTM-Ug Bi-LSTM-
Bg

banjori 1.000 1.000 1.000 0.000 0.000 0.000 16000
chinad 0.999 0.999 0.999 0.002 0.003 0.001 16039
corebot 1.000 1.000 1.000 0.000 0.000 0.000 16000
dircrypt 0.946 0.957 0.982 0.086 0.053 0.007 16006
dnschanger 0.962 0.982 0.991 0.066 0.032 0.014 16000
fobber 0.997 0.998 0.999 0.005 0.003 0.002 16060
gozi 0.954 0.961 0.993 0.086 0.062 0.024 16000
kraken 1.000 1.000 1.000 0.001 0.000 0.001 16000
locky 0.983 0.984 0.993 0.009 0.015 0.003 16000
murofet 0.996 0.999 1.000 0.000 0.002 0.000 16313
necurs 0.966 0.968 0.989 0.040 0.012 0.005 16000
newgoz 1.000 1.000 1.000 0.000 0.000 0.000 16000
nymaim 0.934 0.941 0.968 0.051 0.086 0.044 16026

1300 CMC, vol.61, no.3, pp. 1285-1304, 2019

nymaim2 0.960 0.961 0.974 0.135 0.149 0.051 31670
padcrypt 1.000 1.000 1.000 0.000 0.000 0.000 16005
pizd 0.986 0.991 0.999 0.027 0.019 0.003 16000
proslikefan 0.922 0.947 0.971 0.145 0.033 0.022 16544
pykspa 0.953 0.954 0.973 0.049 0.047 0.014 16029
qadars 1.000 1.000 1.000 0.000 0.000 0.000 16714
qakbot 0.977 0.971 0.991 0.018 0.010 0.011 17000
ramdo 1.000 1.000 1.000 0.000 0.000 0.000 16000
ranbyus 0.992 0.991 0.998 0.006 0.016 0.004 16008
shiotob 0.986 0.986 0.994 0.005 0.004 0.003 16000
simda 0.996 0.996 1.000 0.007 0.009 0.000 16000
suppobox 0.987 0.986 0.994 0.027 0.007 0.013 16000
symmi 1.000 1.000 1.000 0.000 0.000 0.000 16000
tempedreve 0.965 0.964 0.996 0.065 0.018 0.009 16412
tinba 0.983 0.986 0.999 0.006 0.011 0.001 16404

The Bi-LSTM-Bg model test results in Tab. 4 show that 85.7% of the DGA family
domain names have an FPR value of 1:100, which is the best among the three models and
is superior to LSTM model .The ACC value of 85.7% DGA family domain name is 0.99,
and 82.1% of them are the optimal results of the same DGA family domain name. In the
paper of Woodbridge et al. [Woodbridge, Anderson, Ahuja et al. (2016)], we know that
the model detection results in this paper are superior to the traditional bigram model and
HMM (Hidden Markov Model). According to our experimental results, under sufficient
training samples of DGA, the Bi-LSTM-Bg model can effectively detect suspicious DGA
domain names, and the miss is far lower than other models tested in the experiments. The
overall performance of the model is better than the model that proposed by Woodbridge
et al. [Woodbridge, Anderson, Ahuja et al. (2016)].
However, in the actual detection, in addition to the normal domain names and the DGA
domain names with known generation algorithm, the domain names to be detected may
also contain unknown DGA domain names. How well does our model detect these
unknown DGA domains?
We detect the domain names of five unknown DGA families, such as sisron,
github_malware, javascript_malware, unknown_malware and vawtrak. It can be seen from
Fig. 9 that the FPR value of Bi-LSTM-Bg model is much lower than that of SVM model by
comparing the FPR results detected by each model. It shows that the Bi-LSTM-Bg has better
ability to distinguish the unknown DGA family domains. Therefore, its ability to detect the
unknown DGA family is much stronger than the traditional machine learning model.

Detecting Domain Generation Algorithms with Bi-LSTM 1301

Figure 9: FPR comparison

In the experiment, other models are used to test the DGA domain name samples generated by
some DGA domains without training, and the test results are shown in Tab. 5.

Table 5: FPR on the new datasets
DGA
FAMILY

FPR NUM
LSTM Bi-LSTM-Ug Bi-LSTM-Bg

sisron 0.000 0.000 0.000 40
github_malware 0.000 0.000 1.000 120
javascript_malware 0.050 0.033 0.233 60
unknown_malware 0.001 0.000 0.010 100
vawtrak 0.053 0.063 0.940 300
Total 0.032 0.034 0.687 620

As shown in Tab. 5, when we test the untrained DGA samples, we find that the
misjudgment rates of the LSTM and Bi-LSTM-Ug models for the DGA are better than
that of the Bi-LSTM-Bg models in the tests without training. Among them, some DGA
family generate domain names with high detection rate in the four models, while there
are a large number of domains with poor results in the optimal Bi-LSTM-Bg model
detection, but achieve good results in the LSTM model.
There is no doubt that compared with the machine learning model, the neural network model
has the unique ability in training new data. Therefore, we can combine the two optimal models,
LSTM model and Bi-LSTM-Bg model, into a new model, Hybrid-LSTM. The experimental
results are shown in Fig. 10. Each group of models was trained with the suspicious samples
detected in this group, and the new domain data of the five families above were tested with the
trained model. In the Hybrid-LSTM model, LSTM is used for detection in the early stage, and
Bi-LSTM-Bg model is used for training and experimental detection and analysis of the detected
suspicious samples. Num is the sample size of each DGA family. It can be seen from Fig.10
that Hybrid-LSTM model has the best effect among all the neural network models after a small
amount of data training.

0.425

0.800

0.667

0.460

0.890

0.000

1.000

0.233

0.010

0.940

0.000

0.200

0.400

0.600

0.800

1.000

sisron github_malware javascript_malware unknown_malware vawtrak
SVM Bi-LSTM-Bg

1302 CMC, vol.61, no.3, pp. 1285-1304, 2019

Figure 10: Detecting new DGAs comparison

4 Conclusion
This paper proposes a botnet’s DGA detection model based on Bi-LSTM. To the best of our
knowledge, this is the first time to deal domain name structure features with Bidirectional
LSTM network. The model can extract features without the need of manual feature creation,
and its trainable model can effectively deal with new unknown DGA family members. In
addition, it only needs the domain name, without any additional context information. Hybrid-
LSTM model is a kind of neural network model with high accuracy detection of known and
unknown DGA families. Bi-LSTM-Bg model and LSTM model can be deployed on the
detection system. For the domain name to be tested, if it is the domain name of the known DGA
families, the Bi-LSTM-Bg model can ensure that the domain name of the most known DGA
families is recognized. If it is the domain name of the unknown DGA families, the domain
name can mostly be detected by the Hybrid-LSTM model. Since the botnets controlling process
often lasts for hours or even days, when the suspect domain name is identified as the DGA
domain name, training in the above models can ensure the effective identification of the DGA
domain name afterwards.

Acknowledgement: This work was supported by the National Natural Science
Foundation of China (NSFC) under the grant (No. U1836102).

References
Anderson, H. S.; Woodbridge, J.; Filar, B. (2016): DeepDGA: adversarially-tuned
domain generation and detection. arXiv:1610.01969.
Antonakakis, M.; Perdisci, R.; Nadji, Y.; Vasiloglou, N.; Abunimeh, S. et al. (2012):
From throw-away traffic to bots: detecting the rise of DGA-based malware. Usenix
Security Symposium, pp. 491-506.

40

120

60

100

290

40
60

78

204

40

120

60

100

300

40

120

60

100

300

30

80

130

180

230

280

LSTM Bi-LSTM-Bg Hybrid-LSTM Num

Detecting Domain Generation Algorithms with Bi-LSTM 1303

Chen, Y.; Yan, S.; Pang, T.; Chen, R. (2018): Detection of dga domains based on
support vector machine. Third International Conference on Security of Smart Cities,
Industrial Control System and Communications, pp. 1-4.
Cheng, R.; Xu, R.; Tang, X.; Sheng, V. S.; Cai, C. (2018): An abnormal network flow
feature sequence prediction approach for ddos attacks detection in big data environment.
Computers, Materials & Continua, vol. 55, no. 1, pp. 95-119.
Gers, F. A.; Schmidhuber, J.; Cummins, F. (2000): Learning to forget : continual
prediction with lSTM. Neural Computation, vol. 12, no. 10, pp. 2451-2471.
Gers, F. A.; Schraudolph, N. N.; Schmidhuber, J. (2002): Learning precise timing with
lstm recurrent networks. Journal of Machine Learning Research, vol. 3, no. 1, pp. 115-143.
Graves, A.; Schmidhuber, J. (2005): Framewise phoneme classification with
bidirectional lstm and other neural network architectures. Neural Networks, vol. 18, no. 5,
pp. 602-610.
Hampton, N.; Baig, Z. A. (2015): Ransomware: emergence of the cyber-extortion
menace. Proceedings of the13th Australian Information Security Management.
Hochreiter, S.; Schmidhuber, J. (1996): LSTM can solve hard long time lag problems.
Advances in Neural Information Processing Systems.
Hochreiter, S.; Schmidhuber, J. (1997): Long short-term memory. Neural Computation,
vol. 9, no. 8, pp. 1735-1780.
Huang, J.; Wang, P.; Zang, T.; Qiang, Q.; Wang, Y. et al. (2018): Detecting domain
generation algorithms with convolutional neural language models. 17th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE
International Conference on Big Data Science and Engineering.
Kührer, M.; Rossow, C.; Holz, T. (2014): Paint it black: evaluating the effectiveness of
malware blacklists. International Workshop on Recent Advances in Intrusion Detection.
Kwon, J.; Lee, J.; Lee, H.; Perrig, A. (2016): PsyBoG: a scalable botnet detection
method for large-scale DNS traffic. Computer Networks, vol. 97, no. 1, pp. 48-73.
Lison, P.; Mavroeidis, V. (2017): Automatic detection of malware-generated domains
with recurrent neural models. arXiv:1709.07102.
Liu, Y.; Sun, C.; Lin, L.; Wang, X. (2016): Learning natural language inference using
bidirectional lstm model and inner-attention. arXiv:1605.09090.
Mahoney, M. (1999): Text compression as a test for artificial intelligence. Sixteenth
National Conference on Artificial Intelligence & the Eleventh Innovative Applications of
Artificial Intelligence Conference Innovative Applications of Artificial Intelligence.
Mikolov, T.; Karafiat, M.; Burget, L.; Cernocký, J.; Khudanpur, S. (2010):
Recurrent neural network based language model. Conference of the International Speech
Communication Association, pp. 1045-1048.
Mowbray, M.; Hagen, J. (2014): Finding domain-generation algorithms by looking at
length distribution. IEEE International Symposium on Software Reliability Engineering
Workshops.

1304 CMC, vol.61, no.3, pp. 1285-1304, 2019

Robinson, A. J. (1994): An application of recurrent nets to phone probability estimation.
IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 298-305.
Schiavoni, S.; Maggi, F.; Cavallaro, L.; Zanero, S. (2014): Phoenix: dga-based botnet
tracking and intelligence. International Conference on Detection of Intrusions & Malware.
Schuster, M.; Paliwal, K. K. (1997): Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681.
Stonegross, B.; Cova, M.; Gilbert, B.; Kemmerer, R.; Kruegel, C. et al. (2011):
Analysis of a botnet takeover. IEEE Security & Privacy, vol. 9, no. 1, pp. 64-72.
Wang, T.; Chen, L. C. (2017): Detecting algorithmically generated domains using data
visualization and n-grams methods. Proceedings of Student-Faculty Research Day, CSIS,
Pace University, pp. 1-4.
Wang, Z.; Jia, Z.; Zhang, B. (2018): A detection scheme for DGA domain names based on
SVM. International Conference on Mathematics, Modelling, Simulation and Algorithms.
Wang, T. S.; Lin, C. S.; Lin, H. T. (2016): DGA botnet detection utilizing social
network analysis. International Symposium on Computer.
Woodbridge, J.; Anderson, H. S.; Ahuja, A.; Grant, D. (2016): Predicting domain
generation algorithms with long short-term memory networks. arXiv:1611.00791.
Yadav, S.; Reddy, A. K.; Reddy, A. N.; Ranjan, S. (2012): Detecting algorithmically
generated domain-flux attacks with dns traffic analysis. IEEE ACM Transactions on
Networking, vol. 20, no. 5, pp. 1663-1677.

	Detecting Domain Generation Algorithms with Bi-LSTM
	Liang Ding0F , *, Lunjie Li1, Jianghong Han1, Yuqi Fan2, * and Donghui Hu1
	• The neural networks (LSTM and Bi-LSTM)

	4 Performance evaluation
	4 Conclusion
	References

