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Abstract: Since the spatial resolution of diffusion weighted magnetic resonance imaging 
(DWI) is subject to scanning time and other constraints, its spatial resolution is relatively 
limited. In view of this, a new non-local DWI image super-resolution with joint 
information method was proposed to improve the spatial resolution. Based on the non-local 
strategy, we use the joint information of adjacent scan directions to implement a new 
weighting scheme. The quantitative and qualitative comparison of the datasets of 
synthesized DWI and real DWI show that this method can significantly improve the 
resolution of DWI. However, the algorithm ran slowly because of the joint information. In 
order to apply the algorithm to the actual scene, we compare the proposed algorithm on 
CPU and GPU respectively. It is found that the processing time on GPU is much less than 
on CPU, and that the highest speedup ratio to the traditional algorithm is more than 26 
times. It raises the possibility of applying reconstruction algorithms in actual workplaces.  
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1 Introduction 
Diffusion Weighted Imaging (DWI) is a special imaging method based on Magnetic 
Resonance Imaging (MRI) by modifying the main orientation of the MRI magnetic field to 
acquire multiple diffusion orientation images. DWI utilizes multiple 3-dimensional 
diffusion-weighted images to probe the water diffusivity along various directions to 
provide important structural information or functional features about the underlying tissue.  
[Hasan, Walimuni, Abid et al. (2011); Johansen-Berg and Behrens (2013); Yao and 
Troupis (2016)]. Its importance has been proven in clinical settings for investigating 
several brain disorders and tumors, such as Alzheimer’s disease, schizophrenia, breast 
tumor, liver and neck cancer [Minosse, Marzi, Piludu et al. (2017); Aribal, Asadov, 
Ramazan et al. (2016); Ciccarone, Gulino, Esposito et al. (2016); Hejduk, Jedrzejewska, 
Billewicz-Bobek et al. (2011)].  
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In spite of all DWI advantages, the use of this technique is still very limited because an 
important characteristic of DWI is the low spatial resolution and the low signal-to-noise 
ratio. On the other hand, the acquisition of a set of high-resolution images is constrained by 
scanning costs, scanning time, scanner availability and patient comfort. In the clinical 
practice, DWI is usually acquired at a low-resolution. It can provide a better sensitivity for 
the analysis of brain structure and clinical disease by the improvement of DWI spatial 
resolution and high SNR [Mori and van Zijl (2002); Zeineh, Holdsworth, Skare et al. 
(2012); Coupé, Manjón, Chamberland et al. (2013)]. Among the post-processing processes 
that improve the resolution of images, the Super-Resolution (SR) appears as an efficient 
tool to enhance the information resolution [Vemulapalli, Nguyen and Zhou et al. (2015)]. 
With the development of SR, its methods can be explored from two stages: constrained 
reconstruction method and learning based method [Yue, Shen, Li et al. (2016)]. The former 
is based on sampling theory for image registered multimodal pairs, and the latter focuses 
on leaning the end-to-end mapping function of LR/HR image pairs. In the pioneer work, 
example-based SR methods was widely used. These methods focus on learning a compact 
dictionary or manifold space to relate LR/HR image pairs and presume the high-frequency 
(HF) details of LR images [Wang, Qiao, Li et al. (2014)]. Trinh et al. [Trinh, Luong and 
Dibos et al. (2014)] utilized a non-negative sparse linear representation of the input patch 
over the LR patches to estimate an HR image. Roy et al. [Roy, Carass, Prince (2013)] 
proposed an image restoration technique called MR image example-based contrast 
synthesis (MIMECS), which relied on sparse reconstruction from image patches. 
This type of non-local approach has high complexity and long computation time due to the 
patch-based image traversal, and it cannot be used in actual scenes. In recent years, the 
functions of GPU have been gradually extended from specialized graphics processing core 
to high-performance computing in computer systems. In the operation of SR algorithm, 
there is no interdependent relationship between data computation and, therefore, it has 
good parallelism and is suitable for processing on GPU [Eklund, Dufort, Forsberg et al. 
(2013)]. Medical image processing technology on GPU makes it possible to apply more 
advanced algorithms and perform computationally intensive tasks quickly in a clinical 
environment. Hence, medical image processing on GPU has become a very popular 
technology [Pratx and Xing (2011)].  
In this paper, we propose a super-resolution method based on Non-Local Mean (NLM) using 
collaborative joint information to solve the SR problem in DWI dataset. Simultaneously, in 
order to improve the computational efficiency, the algorithm proposed in this paper is 
transplanted from CPU to GPU, which is implementation through CUDA language. 

2 Related work 
2.1 Super reconstruction with non-local mean  
Image SR can be regarded as an ill-posed inverse problem, which requires to build an 
appropriate model for the low-resolution (LR) image Y and the high-resolution (HR) 
image X. The general model can be expressed as follows: 
Y = DHX + η                                                              (1) 
where D is the decimation operator, H is the degradation operator, and η is acquisition 
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noise. The SR reconstruction problem is to estimate the underlying HR version X from Y 
as follows: 
Based on this model, the SR image can be estimated by minimizing a least square cost 
function as follows: 
X� = arg min

𝑥𝑥
{‖Y − DHX‖+ λR(𝑥𝑥)}                                         (2) 

where  X �  is a likelihood estimate value of HR image Y, ‖Y − DHX‖ is a fidelity term, 
R(x) is the regularization term, and 𝜆𝜆 is a parameter that balances the regularization term 
and the fidelity term. 
The non-local mean method can be used into an SR reconstruction, the NLM expression 
was defined as 
X�𝑝𝑝 = ∑ w𝑞𝑞 �X𝑝𝑝, X𝑞𝑞�X𝑞𝑞                                                   (3) 
where X𝑝𝑝  and X𝑞𝑞  are the voxels at location 𝑝𝑝  and q, w  is a searching window, w 
weighs the similarity between patch S(X𝑝𝑝) and S(X𝑞𝑞) below: 

w�X𝑝𝑝, X𝑞𝑞� = 1
𝑍𝑍𝑝𝑝
𝑒𝑒−

�S(X𝑝𝑝)−S(X𝑞𝑞)�2

ℎ2                                              (4) 

In which h is the decay parameter, 𝑍𝑍𝑝𝑝 is a normalization factor and is defined as the sum of 
all the weights below: 

𝑍𝑍𝑝𝑝 = ∑𝑒𝑒−
�S(X𝑝𝑝)−S(X𝑞𝑞)�2

ℎ2                                                     (5) 
As shown in Manjón et al. [Manjón, Coupé, Buades et al. (2010); Zhou, Qiu, Li et al. 
(2018)], after computing this regularization term, the fidelity term is then applied for 
subsampling consistency [Banerjee and Jawahar (2008)]: 

Y𝑝𝑝 −
1
𝐿𝐿
∑X�𝑝𝑝 = 0,∀P ∈ Y                                                  (6) 

Finally, this non-local interpolation framework is implemented iteratively until 
convergence, and the two-step iteration can be defined as: 

X�𝑝𝑝𝑡𝑡+1 = 1
𝑍𝑍𝑝𝑝
∑ 𝑒𝑒−

�S(X𝑝𝑝)−S(X𝑞𝑞)�2

ℎ2 X𝑞𝑞𝑡𝑡𝑞𝑞∈𝑤𝑤                                            (7) 

X�𝑡𝑡+1 = X�𝑡𝑡+1 − NN(DHX�𝑡𝑡+1 − Y)                                           (8) 
where NN is the nearest neighbor interpolation, and t is the iteration number. Eqs. (7) and 
(8) correspond to the non-local reconstruction and mean correction, respectively.   
This non-local SR method was proposed primarily for 3D MRI, and was then adapted for 
DWI application, which uses b0 information as the HR reference to guide the 
reconstruction [Coupé, Manjón, Chamberland et al. (2013)]. 
On the other hand, joint information, as indicated before, gathers the information from all 
correlated gradient images, providing extra redundancy, which is beneficial for SR reconstruction. 
Let X𝑝𝑝𝑁𝑁 and X𝑞𝑞𝑁𝑁 denote the DWI patches; and N corresponds to the Nth gradient direction. 
As shown in Manjón et al. [Manjón, Coupé, Buades et al. (2012); Chang, El-Araby, Dang et 
al. (2014)], a more efficient non-local estimation can be acquired through a more accurate 

http://dict.cnki.net/dict_result.aspx?searchword=%e6%ad%a3%e5%88%99%e5%8c%96&tjType=sentence&style=&t=regularization
http://dict.cnki.net/dict_result.aspx?searchword=%e6%ad%a3%e5%88%99%e5%8c%96&tjType=sentence&style=&t=regularization
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weighting scheme. Intuitively, it is possible for joint information from correlation gradient 
directions to improve weighting accuracy, which leads to better SR reconstruction: 
(X�𝑝𝑝𝑁𝑁)𝑡𝑡+1 = ∑ w((𝑋𝑋𝑝𝑝𝑁𝑁𝑞𝑞∈𝑤𝑤 )𝑡𝑡 , (𝑋𝑋𝑞𝑞𝑁𝑁)𝑡𝑡)(𝑋𝑋𝑞𝑞𝑁𝑁)𝑡𝑡                                    (9) 

w ��X�𝑝𝑝𝑁𝑁�
𝑡𝑡, �𝑋𝑋𝑞𝑞𝑁𝑁�

𝑡𝑡� = 1
𝑍𝑍𝑝𝑝
𝑒𝑒−(

�S�X𝑝𝑝
𝑁𝑁−𝑘𝑘�−𝑆𝑆�X𝑞𝑞

𝑁𝑁−𝑘𝑘��
2

ℎ2
+⋯+

�S(X𝑝𝑝𝑁𝑁)−S(X𝑞𝑞𝑁𝑁)�
2

ℎ2 +⋯+
�S�X𝑝𝑝

𝑁𝑁+𝑘𝑘�−𝑆𝑆�X𝑞𝑞
𝑁𝑁+𝑘𝑘��

2

ℎ2   (10) 

where 𝑘𝑘 = round(𝑛𝑛−1
2

) , n is a constant that means the number of gradient directions. 

It should be noted that, the similarity measure in Eq. (10) is not rotationally invariant. As 
pointed out in Manjón et al. [Manjón, Coupé, Buades et al. (2012)], the rotationally 
invariant measure can be applied to the proposed SR method for further improvement of 
the high-resolution image reconstruction. Manjon et al. [Manjón, Coupé, Buades et al. 
(2012)] proposed a simple but effective rotationally invariant measure, which is based on 
voxel intensity and the corresponding patch means. In this work, we adapted this 
rotationally invariant measure into our non-local SR method with joint information of DWI 
and, therefore, the similarity measure in Eq. (10) can be rewritten as: 

w ��X�𝑝𝑝𝑁𝑁�
𝑡𝑡, �𝑋𝑋𝑞𝑞𝑁𝑁�

𝑡𝑡� = 1
𝑍𝑍𝑝𝑝
𝑒𝑒−(

�S�X𝑝𝑝𝑁𝑁�−S�X𝑞𝑞
𝑁𝑁��

2
+3�𝜇𝜇((X𝑝𝑝𝑁𝑁)𝑛𝑛)−𝜇𝜇((X𝑞𝑞𝑁𝑁)𝑛𝑛)�

2

ℎ2 )                    (11) 

where μ is the mean of the patches around voxel X𝑝𝑝𝑁𝑁 (or X𝑞𝑞𝑁𝑁) and its corresponding n 
nearby gradient directions. 
As shown in (8), the mean correction step in order to ensure that the reconstructed 
high-resolution image will be consistent with the original low-resolution image can be 
represented as:  

(X�𝑁𝑁)𝑡𝑡+1 = (X�𝑁𝑁)𝑡𝑡+1 − 𝑁𝑁𝑁𝑁(𝐷𝐷𝐷𝐷�X�𝑁𝑁�𝑡𝑡+1 − Y)                                 (12) 
where NN is the nearest neighbor interpolation, H is the degradation operator, D is the 
decimation operator and X�𝑁𝑁is the reconstructed high-resolution image. 

2.2 Implementation based on GPU acceleration 
With the rapid development of Graphics Processing Unit (GPU), the computational 
performance of the algorithm has been greatly improved. GPU is very suitable for big data 
and parallel computing tasks. Compute Unified Device Architecture (CUDA) is a parallel 
programming development model running on GPU, which is an extension of the C language. 
In the CUDA paradigm, a parallel task is executed by launching a multi-threaded program 
called a kernel. The kernel in the host is executed on the hardware according to the thread 
grid, which contains multiple thread blocks, which in turn contain multiple threads. When 
the kernel function starts on the host, its execution migrates to the device. The computation 
of a kernel is distributed to many threads, which are grouped into a grid of blocks (Fig. 1). 
GPU acceleration of medical image reconstruction algorithms has become much more 
common during recent years. Many research teams are interested in using GPU to visualize 
medical datasets in real-time, taking advantage of GPU’s inherent graphics capabilities. 
GPU computing is also used in medical image reconstruction. Optical imaging and 
microscopy have also started to take advantage of GPUs, mainly for acceleration of 
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demanding reconstruction algorithms [Chang, El-Araby, Dang et al. (2014)]. The SR 
algorithm has a large amount of computing tasks and requires repeated calculation of a 
large amount of data. In addition, the various data computation tasks necessary to be 
performed during the execution of the algorithm do not depend on each other, which makes 
the algorithm suitable for transplanting to GPU platforms. 

 

Figure 1: It is a two-layer thread hierarchy consisting of thread blocks and thread block 
grids. All threads in the same grid share the same global memory space. Thread 
collaboration within the same thread block can be achieved through synchronization and 
shared memory 

It can be seen from the above formula that the SRNLM algorithm has a huge amount of 
calculation and a high time complexity. Considering the ability of multithreading parallel 
computing from GPU, the repetitive computing needs to be mapped to the GPU platform 
for parallel processing. The flow (Fig. 2) of parallelization using CUDA for SRNLM in 
this article is as follows. 
On CPU, it needs to initialize and load low-resolution image. Afterwards, when GPU 
allocates memory space, it copies the data into its display memory space. 
On the device, it firstly gets texture memory and allocates array memory in CUDA. It 
defines the kernel function (SRNLM Kernel) on the device and calls it to map the image to 
each thread in pixels. According to the ability of graphics card computing, blocks and grids 
are set up so that GPU can carry out the SRNLM algorithm in parallel on several pixel 
points simultaneously according to the thread block. It needs to loop through the kernel 
function until all image reconstruction is done. 
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At last, it returns the reconstruction result from display memory to the CPU. The result is 
integrated and normalized on the CPU, and then the final reconstruction image is obtained. 

 

Figure 2: The Serial code is executed on CPU of the host, and the parallel code is 
executed on GPU of the device 

3 Experiments and results 
3.1 Experiments based on SRNLM 
A high field in vivo DWI dataset is selected as the experimental data. In addition, B-spline 
interpolation, which was introduced for DWI resolution enhancement in the literature 
[Raffelt, Tournier, Rose et al. (2012)] is used. 
The in vivo DWI dataset was acquired by a 7T Philips Achieva whole body scanner 
(Philips Healthcare, Cleveland, OH) with a volume head coil for transmission and 
32-channels. A DW dual spin-echo, SENSE accelerated msh-EPI was used to acquire the 
DWI data (b-value: 700 s/mm2; 15 diffusion directions); FOV=210×30×21 mm3; matrix 
size=300×300 with 15 slices and a spatial resolution of 0.7×0.7×2 mm3. A gold standard 
image was constructed based on this in vivo HR DWI dataset to quantitatively and 
qualitatively validate the proposed approach. To do that, we averaged 10 acquisitions of 
high-resolution DW images in the image space (0.7×0.7×2 mm3). Then the LR images 
used for the experiment were simulated by down-sampling our gold standard by a factor of 
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2 using the nearest-neighbor interpolation along each axis, which resulted in simulated LR 
images of 1.4×1.4×4 mm3. Both HR and LR data were filtered using the UNLM3D filter to 
remove random noise before high-resolution reconstruction. Two objective measure 
matrixes, namely the Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) 
were used to quantitatively evaluate the super-resolved DWI dataset. The PSNR measures 
the differences between each images and image quality and SSIM measures the structure 
and perceptual similarities between the original and reconstructed images. 

SSIM(𝑥𝑥,𝑦𝑦) = (2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦)(2𝜎𝜎𝑥𝑥𝑦𝑦+𝑐𝑐2)
�𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝑐𝑐1�+(𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝑐𝑐2)

                                        (13) 

where 𝜇𝜇𝑥𝑥  and 𝜇𝜇𝑦𝑦 are the mean value of images x and y, σ𝑥𝑥and σ𝑦𝑦are standard deviation 
of x and y, respectively, 𝜎𝜎𝑥𝑥𝑦𝑦 is the covariance between them, and constants 𝑐𝑐1 and 𝑐𝑐2 are 
chosen as suggested in Wang et al. [Wang, Bovik, Sheikh et al. (2004)]. 
For the in vivo dataset, the DWI reconstruction results were compared quantitatively and 
qualitatively in Fig. 3 and Fig. 4. For our proposed method, the super-resolution using joint 
information enhanced the reconstructed image quantitatively for every DWI image with 
different directions. In addition, both PSNR and SSIM improved with the increasing 
involvement of nearby DWI images. Fig. 4 shows the visual comparison of the 
reconstructed DWI images. Reconstructed image (Fig. 4(b)) has the blurriest result of all; 
the proposed method using seven nearby gradient images (Fig. 4(e)) achieved the image 
most similar to the golden standard (Fig. 4(a)). The crack in the enlarged region is still clear 
in the image using the proposed method (Fig. 4(e)) compared with other method without 
any involvement of joint information. 

 

Figure 3: PSNR and SSIM estimated between the gold standard and the images 
reconstructed from the simulated LR image. (a) Plots show the PNSR for the methods 
compared. (b) Plots show the SSIM for the methods compared 
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Figure 4: Tests of diffusion weighted image reconstruction obtained for different 
methods. Top: (a) The gold standard. (b-e) Result of B-spline reconstruction, Non-Local 
upsampling, Proposed-5 grad and Proposed-RI-5 grad. Bottom: (f-j) The enlarged details 
of the gold standard, B-spline reconstruction, Non-Local upsampling, Proposed-5 grad 
and Proposed-RI-5 grad. The red ROIs indicate the detailed reconstruction 

Therefore, the impact of misalignments on the quality of results using the proposed method 
was studied. First, the displacements between b0 and DW images were obtained with an 
FSL eddy current correction [Smith, Jenkinson and Woolrich (2004)] and the mean 
displacements estimated from the reconstruction results are proposed in Fig. 5(a). Next, 
Fig. 5(b) demonstrates the correlation between image quality in terms of PSNR and the 
estimated mean displacements. It can be seen that there is no significant linear relationship 
between the results from the proposed method and the estimated mean displacements, 
which demonstrates the robustness of the proposed method to the limited misalignment. 

 

Figure 5: Test of misalignments on the quality of results (a) Estimated mean 
displacement in mm using FSL eddy current correction. (b) PSNR obtained with 
proposed-RI-5 grad according to estimated mean displacement. No significant linear 
relation was found (p-value=0.51) 
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3.2 Experiments based on GPU  
In this section, the device parameters of CPU and GPU are respectively as follows. The 
CPU is Intel core i7-4600 U with 8 computing cores, and the main frequency is 2.9 GHz. 
The GPU is NVIDIA Tesla M40 based on Maxwell architecture, which has 3,072 
computing cores and 12 GB storage capacity. The SRNLM algorithm was respectively run 
on CPU and GPU, which should reconstruct five times of super resolution.  
The experimental results show that the parallel SRNLM algorithm can get a speed ratio of 
26 times as fast as the serial algorithm on the basis of maintaining the algorithm 
performance. The results of different image processing for a matrix size of 128×128, 60 
slices and a single direction are shown in Tab. 1.  

Table 1: The calculating time for a single direction from CPU and GPU 

DWI size Different styles Time from CPU(s) Time from CPU(s) Speedup ratio 

64×64 non-local upsampling 193.561 7.388 26.2 
64×64 proposed-5 grad 839.782 43.154 19.46 
64×64 proposed-RI-5 grad 248.26 11.321 21.93 
128×128 non-local upsampling 456.25 19.227 23.73 
128×128 proposed-5 grad 1748.698 114.145 15.32 
128×128 proposed-RI-5 grad 582.354 36.015 16.17 

where the speedup ratio is defined as 
S = 𝑇𝑇𝑐𝑐

𝑇𝑇𝑃𝑃
                                                                      (14) 

In which 𝑇𝑇𝐶𝐶  is the calculating time from CPU, and 𝑇𝑇𝑃𝑃 is the calculating time from GPU. 
And then, we did experiments for the same matrix with 32 directions. The results are 
presented in Tab. 2. 

Table 2: The Calculating Time for 32 Directions from CPU and GPU 

DWI size Different Styles Time from CPU(s) Time from CPU(s) Speedup Ratio 

64×64 non-local upsampling 8264.861 339.848 24.319 
64×64 proposed-5 grad 36850.953 1769.315 20.828 
64×64 proposed-RI-5 grad 10253.192 473.671 21.646 
128×128 non-local upsampling 19874.252 885.474 22.444 
128×128 proposed-5 grad 70472.529 4717.017 14.94 
128×128 proposed-RI-5 grad 23235.925 144.202 16.113 

It can be seen from Tab. 1 and Tab. 2 that the processing time on GPU is significantly lower 
than on CPU, and the highest speedup ratio to the traditional algorithm is more than 26 times. 
It raises the possibility of applying reconstruction algorithms in actual workplaces. 

4 Discussion and conclusion 
Firstly, compared with the traditional interpolation algorithm, the proposed framework 
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introduced joint information to improve the weighting scheme yet with a better image 
reconstruction. Meanwhile, the reconstruction of high-resolution image was further improved 
by introducing rotationally invariant similarity measure, which ensures a more accurate 
regularization procedure exists in SR while effectively reducing the computational burden. 
Secondly, GPU has the advantage of fast computing speed. Considering the high 
computational complexity of SRNLM reconstruction algorithm, it is transplanted from 
CPU to GPU. The experimental results show that the parallel SRNLM algorithm can 
achieve a speed of 19 times faster than the serial algorithm. 
Finally, our next goal is to conduct research on multi-GPU parallel computing to improve 
the processing efficiency of massive data with the popularization of general GPU and the 
appearance of massive data.  
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