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Abstract: We in this paper exploit time series algorithm based deep learning in 
forecasting damage mechanics problems. The methodologies that are able to work 
accurately for less computational and resolving attempts are a significant demand 
nowadays. Relied on learning an amount of information from given data, the long 
short-term memory (LSTM) method and multi-layer neural networks (MNN) method are 
applied to predict solutions. Numerical examples are implemented for predicting fracture 
growth rates of L-shape concrete specimen under load ratio, single-edge-notched beam 
forced by 4-point shear and hydraulic fracturing in permeable porous media problems 
such as storage-toughness fracture regime and fracture-height growth in Marcellus shale. 
The predicted results by deep learning algorithms are well-agreed with experimental data. 
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1 Introduction 
Damage mechanics has been considered as an important method for estimating the 
behaviour of materials and structures. The causes of most damages are human errors 
during design, construction or operation the structures, impact of nature, chemical action, 
use inappropriate materials and errors in stress analysis, etc. Damage induces the 
degradation of strength and stiffness that can be the cause of fracture of the structures 
[Lemaitre (1992); Valliappan, Murti and Wohua (1990)]. The damage mechanics can 
represent initiation and propagation phases. This theory has been proposed to study the 
behaviour of brittle fracture, ductile fracture, creepy fracture and fatigue failure. Lemaitre 
[Lemaitre (1984)] defined a damage variable in continuum mechanics and derived an 
equation that performs the relevance of a damage variable altering ratio to cycle fatigue 
to effective stress. This method has been extended and applied for predicting fatigue 
thresholds of connected joints by Abdel Wahab et al. [Abdel Wahab, Ashcroft, Crocombe 
et al. (2001)]. Johnson [Johnson (1992)] proposed the continuum damage mechanics 
based cell structure approach for investigation of fracture in plates. Tang et al. [Tang, 
Tham, Lee et al. (2002)] combined flow, stress and damage to analyse the fluid flow and 
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damage evolution in rock subjected to hydraulic fracturing.  
It can be said that in damage mechanics fracture growth and life failures are complicated 
to accurately measure. A number of numerical methods have been employed in damage 
evolution problems such as phase-field, extended finite element method (X-FEM), 
extended isogeometric analysis (X-IGA), meshfree method, particle method, singular 
edge-based smoothed finite element method (sES-FEM), scaled boundary finite element 
methods [Besson (2009); Jing (2003)]. Nguyen-Thanh et al. [Nguyen-Thanh, Valizadeh, 
Nguyen et al. (2015)] provided X-IGA to cover the singular field appeared nearby the 
crack tip of thin shell structures. Nguyen-Xuan et al. [Nguyen-Xuan, Liu, Bordas et al. 
(2013)] proposed the adaptive singular ES-FEM to improve solutions that just use a 
number of nodes. Huynh et al. [Huynh, Tran, Zhuang et al. (2019)] investigated the use 
of X-FEM combined polygonal mesh to simulate large strain damage for hyper-elastic 
materials. The other approaches have been studied [Ambati, Gerasimov and De Lorenzis 
(2014); Natarajan, Wang, Song et al. (2015); Rao and Rahman (2000)]. Each one has its 
own limitation, and generally, the primary drawback of them is rather expensive in 
computation that requires thousands of resolving attempts. The success of numerical 
models for damage mechanics mostly depends on aspects of fracture geometry, physical 
features of the individual fracture paths and fractured interfaces. Nowadays, numerical 
methods can address equation systems that are complicated and large-scale, but the 
physical quantitative representation of fractures in solid and hydraulic fracturing is still 
unsatisfactory [Jing(2003)]. 
For significantly reducing the cost of computation while conserving the accuracy, we 
propose time series forecasting based machine learning to predict damage behaviour in 
structures. In artificial intelligence area, machine learning is one of its subfields, which 
has been developing rapidly for recent five years. The definition of machine learning by 
Mitchell [Mitchell (1997)] is simply a computer program to learn to do a class of tasks 
via experience, respecting to performance measure if utilising its performance at tasks to 
measure program improving with experience. In other words, machine learning is 
strongly related to mathematical statistics models that use given sample data to efficiently 
solve a specific task without employing explicit methods. Most machine learning 
algorithms have many settings called hyper-parameters to control the behaviour of that 
algorithm. Based on data type to classify machine learning algorithms, mainly, three 
kinds are as follows: supervised learning, unsupervised learning and reinforcement 
learning. The space of applications artificial neural networks (ANN) and machine 
learning are in several sectors of computer vision, self-driving car, natural language 
processing, medical diagnosis, video game playing and so on. In 1989, the application of 
handwritten digits recognition successfully employed convolutional neural networks and 
backpropagation by LeCun et al. [LeCun, Boser, Denker et al. (1989)]. From that, the US 
Postal Service automatically read the zip codes on mail envelopes in the 1990s. Bohn et 
al. [Bohn, Garcke, Iza-Teran et al. (2013)] analysed car smash simulation database by 
non-linear machine learning approaches that used principal manifold learning to reduce 
dimensions. This method is effective to nonlinear structure than principal component 
analysis because the full simulation execution in FEM has over one-million-node and 
hundreds of time steps that generate pretty high dimension. Voyant et al. [Voyant, Notton, 
Kalogirou et al. (2017)] reviewed support vector regression method, nearest neighbour 
neural network, decision tree learning, boosting, and random forests to forecast solar 
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radiation. For predicting fracture growth, Younis et al. [Younis, Kamal, Sheikh et al. 
(2018)] used radial basic function neural network, Wang et al. [Wang, Zhang, Sun et al. 
(2017)] used extreme learning machine and genetic algorithms backpropagation networks, 
Mohanty et al. [Mohanty, Verma, Parhi et al. (2009)] forecasted fatigue lifetime of 2024 
T3 and 7020 T7 aluminum alloys by ANN. Schwarzer et al. [Schwarzer, Rogan, Ruan et 
al. (2019)] used recurrent convolutional neural networks to predict fracture growth in 
brittle material. There are numerous applications of time series forecasting in 
computational mechanics. Jia et al. [Jia, Xu and Wang (2010)] studied the track geometry 
status forecast for developing track maintenance and repair plan. Kulkarni et al. [Kulkarni, 
Dhoble and Padole (2018)] applied this method into the wind speed forecast and turbine 
blade fatigue analysis. 
In this study, we use deep learning approach to model behaviour of damage evolution. 
This approach is one of subfields of machine learning supported by ANN that has ability 
to train on and learn from data. The models of deep learning are long series of linear or 
non-linear functions applied sequentially. These operations are arranged into blocks 
called layers. The feature of layers are weights which learned and updated during the 
training process. We can refer the deep learning overview in Schmidhuber [Schmidhuber 
(2015)]. Sirignano and Spiliopoulos [Sirignano and Spiliopoulos (2018)] merged deep 
learning into Galerkin method to solve partial differential equations. Anitescu et al. 
[Anitescu, Atroshchenko, Alajlan et al. (2019)] presented the use of ANN and adaptive 
collocation method for solving second order boundary value problems. Many 
applications have been provided in [Lenz, Lee and Saxena (2015); Ling, Kurzawski and 
Templeton (2016); Shen, Wu and Suk (2017)]. We apply supervised learning algorithms 
in this study. A supervised learning is an algorithm learn to associate input values with 
output values, training data set contains both observed input and label or target output. 
Observing examples of vector  and associated value or vector , algorithm learns how 
to predict  from  by estimating a probability distribution . Through iterative 
optimization of a loss function, supervised learning algorithm finds out a function 
depended on parameters that would be employed to predict the output related to new 
input values. To correctly calculate the output values for inputs that are not included in 
the training dataset, an optimal function will be taken into account of the algorithm. 
Therefore, an algorithm that boosts the precision of its outputs or forecast over time is 
said to already have learned to perform that task. Two advanced methods, multi-layer 
neural networks and long short-term memory, will be applied to predict damage 
evolution in solid and hydraulic fracturing in porous media. 
We divide this paper into five sections. The first one here is Section 1 for introduction. 
The damage models in mechanics are described in Section 2. They are the constitutive 
model for concrete, cohesive zone model, hydraulic fracturing in porous media and 
fracture-mapping technologies. Section 3 introduces the deep learning methods based 
multi-layer neural networks and long short-term memory. We implement, in Section 4, 
four numerical simulations of damage evolution problems by deep learning models which 
have been proposed as above, then compare the predicted results with experimental 
dataset in the references. There are some conclusions and future work in Section 5.  
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2 Damage models 

2.1 Concrete constitutive model 
Concrete is a composite material has a nonlinear inelastic property under multi-axial 
stress states. This is a favourite material in construction and is usually reinforced with 
other strong tension materials because it has the quite high compression, but weak tension. 
At low stress levels, the elasticity feature of concrete is intact, but gradual reducing as 
stress decreases. Based on plasticity theory forced by biaxial stress states to establish the 
constitutive model of concrete. It is extended by coupling tensile and compressive failure 
for unloading and reloading damage model. 
We study a solid mechanics problem in domain  split into two parts by an arbitrary 
discontinuity cutting [Nguyen-Xuan, Liu, Bordas et al. (2013)]. The governing equations 
in the reference configuration can be defined by  

  (1) 

where domain ,  is traction on boundary , Cauchy stress , 
displacement  is on boundary , crack surface , traction  
on ,  is outward normal vectors,  and  are normal vectors of crack surfaces.  
Assuming small strain, the constitutive law and kinematic equations is as follows [Naderi, 
Jung and Yang (2016)]  

                                                       (2) 

where  is constitutive tensor or material tensor.  

2.2 Cohesive zone model 
The schemes of the cohesive zone can represent the mixed mode crack behaviour. Two 
new surfaces are created in fracture process and singular stress appears at crack tip. The 
stress singularity can be removed by applying cohesive failure models, which have been 
originally introduced by Dugdale [Dugdale (1960)] and Barenblatt [Barenblatt (1962)]. 
The cohesive zone model is presented in concrete and cement [Elices, Guinea, Gómez et 
al. (2002)] and applied to other materials such as polymers, metals, geomaterials 
[Hillerborg, Modéer and Petersson (1976)]. The intrinsic method or initially elastic 
cohesive law and extrinsic method or rigid one are two fundamental methods to carry out 
cohesive crack models [Kubair and Geubelle (2003); Xu and Needleman (1993)]. 
The first approach consists of a traction-separation curve beginning at the original point 
with a hardening part, which shows the cohesive surface’s rising opposition to be 
discontinuous. The cohesive traction is up to the greatest range with respect to a point 
where the material is failed at as the discontinuity is adequately obtained. After that, the 
traction-separation curve acts in accordance with a decreasing part which is related to the 
failure progress. We suppose that the cohesive traction is eliminated when the separation 
is at a critical condition. The region below the exponential curve is in respect of a fracture 
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energy. The implementation of intrinsic cohesive law in FEM is simple due to the fixed 
geometry in the simulation process. However, this approach has some disadvantages. The 
predetermination of crack location is expected when applying this method. Thus, 
delamination problems are clear to predict, but dynamic fragmentations are impossible. 
The intrinsic cohesive laws need nonzero opening displacements to produce nonzero 
tractions; therefore, they are changing the material stiffness. 
The extrinsic approach has been proposed to overwhelm the restrictions of the intrinsic 
one. This method only bases on the decreasing section of the cohesive law. Respestively,  
the cohesive traction is given by a material’s failure strength. In this case, the 
unloading-reloading phase is also elastic and the region below the curve respects to a 
fracture energy as well. This approach model requires the alternative of its geometry in the 
simulation process, so many crack growths can be reproduced in arbitrary direction. The 
complicated implementation of rigid cohesive law is a significant drawback of this method.  

2.3 Hydraulic fracture 
The equation of the momentum in porous media domain  is given as follows  

                                                        (3) 
where  is total stress tensor,  is density of porous media and  is body force. 
The conservation fluid mass equation is defined by 

                                                        (4) 

where  is fluid density,  is fracture aperture depends on  and time ,  is 
coordinate in the longitudinal direction of fracturing pattern and  denotes the 
flow-rate of mass which is described according to the cubic law as  

                                              (5) 

where  is fluid viscosity,  is the fluid pressure in the fracture,  is the gravity 
acceleration and  is the altitude. Using Poiseuille equation for the model of two smooth 
parallel plates to derive the cubic law. This was validated by experiments in fluid flow 
through open fracture roughness [Witherspoon, Wang, Iwai et al. (1980)]. 
Deriving the lubrication equation by inserting Eq. (5) without gravity into Eq. (4)  

      (6)                                                 

According to Tenzaghi [Terzaghi (1943)], the effective stress tensor is determined by  
                                                        (7) 

where  is the Biot’s coefficient which bases on the constituents compressibility 
,  stands for bulk modulus porous media,  stands for soil grains’ 

bulk modulus and  is identity tensor. 
By applying poromechanics [Coussy (2004); Schrefler (2002)] to study the behaviour 
of surrounding fluid-saturated porous media, we obtain the hydro-mechanical equations 
as follows  
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                                                     (8) 

                                                     (9) 

  (10) 

where  denotes the intrinsic permeability,  denotes hydraulic head or piezometric 
head,  is the initial density,  and  are the Lagrangian formulation of porosity in 
the actual and reference configuration, respectively,  stands for volumetric strain,  
is for Biot modulus,  is the pore fluid compressibility and  is the pressure field in 
the porous media. 

2.4 Fracture mapping 
The technologies of microseismic and microdeformation are used to constraint hydraulic 
fracture. Each method exploits difference information of the underground processes, but 
then they are used to verify and complementary for fracture-height growth data. 
The use of microseismic is for post-fracture progress evaluation. Microseismic events are 
defined as very weak magnitude earthquakes recorded in very small areas. The microseismic 
mechanism is based on the alteration of location of reservoir when fracture movements 
occur [Warpinski (2009)]. These movements are induced by changes to pressure and 
stress-strain conditions due to injecting fluid into or extracting fluid from wellbore. There 
are a number of sensors located along depth wells where the shale is fractured nearby. The 
two factors are compressional wave and shear wave which detected by sensors are attributes 
of miscroseisms. By using migration methods and grid search, the entry times and 
polarizations of wave are analysed to find out where the microseismic events initiated. The 
accurate velocity model is a principle part in measurement that can be provided by the 
monopole sonic log [Jones, Kendall, Bastow et al. (2014)]. Besides, noise issues impact 
significantly to microseismic monitoring results, by small numbers of noise can decay 
fracture mapping. The geophones are set at depth to minimize the noise and enhance 
observed microseismic signal amplitudes. The downhole monitoring method requires close 
adequate wells to grant sufficiently the coverage of microseismic event location. 
Microdeformation is the technology use sensitive tiltmeters to measure the very small 
displacement field on the ground and in the borehole as well cause by hydraulic fracture 
[Wright, Davis, Golich et al. (1998)]. Tiltmeters have a variety of applications in 
construction and volcano monitoring. The principle of most of these instruments is using 
air bubble in a tube filled with liquid like a carpenter’s level, but is embedded electronic 
sensors in to detect the tiniest changes in tilt. A number of tiltmeters are set up on the 
ground or observation wells to measure the rock surrounding deformation caused by 
hydraulic fracturing and to specify the fracture direction elements that are azimuth and 
dip. The tilt magnitudes combine with deformed zone width to determine the fracture 
depth and volume. In downhole tiltmeter, a few observation points are placed along the 
vertical well advance to the height of fracture than the deformation field [Sepehri, 
Agarwal and Davis (2015)]. 
The microseismic and microdeformation monitoring techniques, however, have some 
drawbacks. One is the operational expense is quite costly due to several source-receiver pairs 
requirement [Council (1996)]. There  is about    of the hydraulic fracture stages on 
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shales in US that were monitored by microseismic in comparison with other methods 
[Duncan and Eisner (2010); Yousefzadeh, Li and Aguilera (2015)]. Another one is that 
the data which fracture parts involve in gas-flow to the well is not provided, just fracture 
dimensions [Ghaderi and Clarkson (2016)]. 

3 Deep learning 
Deep learning is among the finest common methods of machine learning. Deep learning 
algorithms are mostly based on optimization funtions like stochastic gradient descent, 
Adam, Adagrad, RMSprop and Adadelta [Goodfellow, Bengio and Courville (2016)]. 
Moreover, the loss function, neural network model and dataset are essential components 
to construct deep learning algorithms. 

3.1 Multi-layer neural network (MNN) 
Deep learning is specifically powered by neural networks. Actually, the neural network has 
a long history since the 1870s was originally proposed by Alexander Bain and William 
James. In the late 1950s, an American psychologist - Frank Rosenblatt, tried to develop a 
kind of machine which can possess human being characteristics in senses and remembering 
ability, and that machine is called “perceptron”. Single-layer perceptron combined with a 
step function is fine for simple linear problems, but it is not good at solving complicated 
ones such as non-linear outputs. Geoffrey Hinton et al. [Rumelhart, Hinton and Williams 
(1986)] introduced hidden layers in neural networks as neuron nodes between input and 
output layers. A hidden layer converts single-layer perceptron to multi-layer perceptron. An 
artificial neuron network in which its architecture includes one or more hidden layers is 
known as multi-layer neural network. Fig. 1, for example, is a multi-layer neural network 
that has one input layer, two hidden layers and one output layer.  
 

 
 

Figure 1: Multi-layer neural network architecture 
 

Let input dataset , weight set to th hidden neuron node 
 and bias parameters , apply the dot produce 

summation plus bias, we have a result  as  
                                             (11) 
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To compute hidden layer values, we feed  into activation function  like sigmoid, 
tanh, rectified linear unit (ReLU), softplus function. The activation functions have a great 
contribution  in neural networks since they make the networks be non-linear, decide 
which nodes will be fired. Tab. 1 shows some common activation functions. The value of 
hidden node th is by  

                                                  (12) 
Table 1: Activation functions 

Function Equation Graph Range Continuity 
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After hidden layers, we have  values of hidden nodes  and weight 
set  and bias set , respectively. Having 
output  is as follows  

                                            (13) 

Loss function (or cost function) is minimized during the training progress to evaluate 
how well the network performs on the training dataset and thus it can navigate itself 
correctly. The most common loss function used is mean square error between  
prediction values  and  target values  by  

                                              (14) 
Since error  depends on weight and bias parameters, so to minimize it, we need 
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functions to modify these parameters called optimizers. Stochastic gradient descent 
(SGD), for instance, directly updates and returns weight and bias values in each training 
step by  

                                                      (15) 
where  are parameters,  is learning rate and  is loss function gradient. 
There are other optimizers alter classical SGD such as adaptive gradient (Adagrad) 
[Duchi, Hazan and Singer (2011)], Adadelta [Zeiler (2012)], root mean square 
propagation (RMSprop) [Tieleman and Hinton (2012)], adaptive moment estimation 
(Adam) [Kingma and Ba (2014)]. These ones have learning rate methods for each 
parameter, which provides a self-study approach, thus, significantly saves the cost in 
adjusting hyper-parameters manually. 

3.2 Long short term memory (LSTM) 
LSTM was firstly presented by Hochreiter and Schmidhuber [Hochreiter and 
Schmidhuber (1997)]. LSTM uses gates in its architecture to control the memorizing 
procedure. The architecture of a LSTM unit is shown as in Fig. 2, where  denotes 
the last LSTM unit output,  denotes memory from the last LSTM unit,  is new 
current output and  is new updated memory. Function  is used in core LSTM 
because it has the sustainable second derivative for a long span before vanishing. 

 function can return the value  or  which corresponds to forget or 
remember information.  

 
Figure 2: Architecture of a LSTM unit 

At the first stage,  and  are input values of sigmoid layer or also called “forget 
gate layer” where decide if the information should be removed from or kept in the cell 
state. Then, a number between 0 and 1 will be written in the cell . We obtain the 
forget function as follows  

                                           (16) 
where  and  are the weights and  is the bias vector. 
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Secondly, a storage mechanism is applied to save new information in the cell state. A 
sigmoid layer in this stage is called “input gate layer” that has a task of selecting which 
values would be upgraded, and a tanh layer produced the new values vector  to save 
in the long-term memory as in equations below, respectively  

                                            (17) 
                                       (18) 

Then, updating the old cell state  into new updated memory  by multiplying  
by  and adding the multiple of  from the first step into. The equation 
describes this process as below 

      (19) 
The final stage is output result calculated through some steps. A sigmoid layer makes a 
decision which information of the cell state should be returned. In addition, a tanh 
function evaluates the cell state to generate possible values. After that, multiplying them 
by the output of the sigmoid layer. This process is illustrated by the following equations  

   (20) 
                                                       (21) 

4 Numerical examples 
This section presents the productiveness of MNN and LSTM method through the four 
damage evolution problems in solid and hydraulic fracturing in porous media. All 
datasets in this study are taken from experiments and reliable measurement tools. A 
dataset is split up three parts: a training set, a test set and a validation set. The future 
values are predicted through learning from the training process. A test set is employed for 
evaluating efficiency of the model on a training dataset and make decision tuning the 
hyper-parameters. A validation set is to measure if the model is really good in reality. 

4.1 Example 1: L-shape concrete specimen damage 
This example is exploiting experimental data reported in Winkler et al. [Winkler, 
Hofstetter and Niederwanger (2001)] that describes the damage behaviour of the plain 
L-shape concrete sample. The inductive sensors are plug in four different points on the 
sample to measure displacements. The material properties are the Young’s modulus 

 GPa and Poisson’s ratio . Let 50% of experimental dataset for 
training, the rest of fracture path will be predicted through two deep learning algorithms 
MNN and LSTM. Fig. 3 depicts the predicted damage evolution and experimental data 
by MNN model uses 30 hidden nodes and optimization function Adam. The error for 
training is 2.406%, error for test is 1.279% and error for predicting compare to expected 
solutions is 3.222%. Forecast fracture path by LSTM algorithm uses the same 
configuration with MNN model, we obtain the training error is 2.333%, the test error is 
1.165% and predicted error is 3.275%. As seen, there is no large difference in errors 
between these two algorithms. 
Applying the model deep learning MNN and LSTM mentioned above to predicted the 
displacements as well. When we take 50% dataset for training, in which, 10% for testing 
– 90% for training, note that the dataset contains 470 records, the validation errors by 
MNN method and LSTM are 8.007% and 2.875%, respectively. In this case, the LSTM 
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works more precisely than MNN, although dataset passes through 100 epochs in LSTM, 
meanwhile, MNN model uses 1000 epochs. Convergence history and plotting difference 
between predicted values and expected ones by MNN are shown in Fig. 4, by LSTM are 
indicated in Fig. 5. The results are noted in Tab. 2.  

 
Figure 3: Predicting fracture growth of the L-shape concrete by MNN algorithm trained 
on 50% of the dataset 

 
(a) Model loss                           (b) Predict 

Figure 4: Convergence history and predictions of L-shape specimen displacement made 
by MNN trained on 50% of dataset compared to experimental data 
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(a) Model loss                        (b) Predict 

Figure 5: Convergence history and predictions of L-shape specimen displacement made 
by LSTM trained on 50% of dataset compared to experimental data 

Table 2: The errors for predicting damage evolution and displacement of L-shape 
specimen using MNN and LSTM model training on 50% of the dataset 

 Fracture growth  Displacement 

MNN  LSTM   MNN  LSTM  

Training  2.406  2.333   6.132  1.071  

Test  1.279  1.165   1.520  0.859  

Validation  3.222  3.275   8.007  2.875  

4.2 Example 2: fracture of a 4-point shear beam 
The experimental results of 4-point shear beam (4PSB) fracture evolution were reported 
in Carpinteri et al. [Carpinteri, Valente, Ferrara et al. (1993); Naderi, Jung and Yang 
(2016)]. The geometry, size (in ), loading and boundary conditions of the test 
specimen is shown in Fig. 6. The notch is created by a circular saw. This concrete beam 
has material properties Young’s modulus  MPa, Poisson ratio , 
ultimate tensile stress  MPa and fracture energy  N/m. 

 
Figure 6: Single-edge-notched beam model forced by 4-point shear 
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In this example, the configuration of MNN and LSTM is one input layer-one hidden layer 
60 units-one output layer, amount of epochs in MNN is 1000 and in LSTM is 100. To 
predict the damage propagation of 4PSB specimen, we let the machine learn on 70% of 
the actual dataset, therein 90% for training and 10% for testing, and optimize by Adam 
optimizer. Fig. 7 plots the prediction from the training set, test set and validation set in 
comparison with the experimental database. Tab. 3 shows the errors of predicting fracture 
growth of 4PSB by two deep learning algorithms. The validation errors are 0.363% for 
MNN and 1.370% for LSTM. 
 

 
Figure 7: Predicting fracture evolution in example 4PSB using MNN model training on 
70% of the dataset 

Table 3: Compare errors for predicting fracture evolution in example 4PSB using MNN 
and LSTM model training on 70% of the dataset 

  MNN  LSTM  
Training  0.637  1.201  
Test  0.098  0.471  
Validation 0.363  1.370  

 
The test continues to use these MNN and LSTM model to predict the displacement. Give 
training on 520 samples, test on 58 ones and validation on 250 ones. Minimizing loss 
function by different adaptive gradient algorithms Adam, Adagrad, Adadelta and 
RMSprop to evaluate which one is the most suitable for this example. The convergence 
history and the graphs of prediction with data from the experiment are depicted in Figs. 8 
and 9. The results are shown in the Tab. 4. It can be seen easily that Adam optimizer 
works more effectively than Adagrad, Adadelta and RMSprop with prediction errors are 
4.480% in LSTM and 12.489% in MNN. The use of MNN method returns the prediction 
errors are 18.168%, 17.051%, 18.169% in algorithms of Adagrad, Adadelta and 
RMSprop, respectively. By LSTM method, the prediction errors are 9.452% in Adagrad, 
13.493% in Adadelta and 10.156% in RMSprop. 
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Overall, the LSTM network using 70% dataset for training combined with Adam optimization 
function is the appropriate model for displacement forecast in 4PSB test example. 

 
(a) Model loss                        (b) Predict 

Figure 8: Convergence history and predictions of displacement made by MNN with 
Adam optimizer compared to the actual data 

 
(a) Model loss                       (b) Predict 

Figure 9: Convergence history and predictions of displacement made by LSTM with 
Adam optimizer compared to the actual data 

Table 4: Comparing errors for predicting of displacement in example 4PSB using MNN 
and LSTM model training on 70% of the dataset with optimizers 

 Adam   Adagrad   Adadelta   RMSprop 
MNN  LSTM    MNN  LSTM    MNN  LSTM    MNN  LSTM 

Training  3.658  1.096    0.789  0.382    3.046  0.836    6.936  0.865 
Test  1.258  1.134    1.308  1.129    0.465  0.642    0.783  1.084 
Validation  12.034  4.480    18.168  9.452    17.051  13.493    18.169  10.156 

4.3 Example 3: Storage-toughness dominated regime 
There were studies the impact of specific permeability around porous media [Adachi and 
Detournay (2008); Bunger, Detournay and Garagash (2005); Garagash (2006)] before. 
This example predicts the fracture aperture and fracture length occur when an 
incompressible fluid is injected into a fracture base on analytical solutions introduced by 
Carrier and Granet [Carrier and Granet (2012)]. We study the plain strain case and 
Kristianovich-Geertsma-de Klerk (KGD) fracture model displayed in Fig. 10. In the 
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figure,  stands for fracture length,  denotes the fracture aperture,  is 
the fluid pressure in the fracture, far-field stress  is perpendicular to the fracture and 

 is injection rate assumed to be constant. The problem is symmetric to  axis, so we 
just compute a half of the space. The material properties are Young’s modulus  
GPa, Poisson’s ratio , Biot coefficient , Biot modulus  MPa, 
injection rate  m s . Give a viscosity  Pa.s, permeability 

 m , leak-off time  s, far-field stress  MPa. We calculate 
the injection of 20 s to ensure the fracture path remains in the storage regime. 

 
Figure 10: KGD hydraulic fracturing model 

Let the training percentage is 30% of the dataset, therein the test part is 10%, we predict the 
fracture aperture in the rest of time interval by MNN and LSTM networks used 60 hidden 
nodes and Adam optimizer. For the convergence of errors and the output from training, test 
and validation tests by MNN model after 100 runnings (epochs) are shown in Fig. 11, and 
for loop over 1000 epochs are depicted in Fig. 13. Fig. 12 and Fig. 14 show the error 
convergences and prediction results from using LSTM model. The Tab. 5 respectively 
shows that validation error for MNN model 100 epochs case is 2.481%, while 1000 ones 
return validation error is 3.460%; model LSTM 100 epochs and 1000 ones give the errors 
are 17.683% and 0.465%. Similarly, we increase the training percentage to be 50%. Fig. 15 
and Fig. 17 illustrate history convergences and output predictions of MNN algorithm 100 
epochs and 1000 ones, while the description of results from LSTM process 100 epochs is in 
Fig. 16, and from 1000 runnings in LSTM is plotted in Fig. 18. All the output errors are 
noted in Tab. 6 where we see that the use of 1000 epochs is better than 100 ones in MNN 
model with mean square error 0.601% and 1.563%. The case of 1000 epochs in LSTM 
model outputs the greatest error value, 2.745%. 
When the epoch number increases, the more weight coefficients are altered in the neural 
network that can make the curve be under-fitting at first, then be optimal, and turn 
over-fitting one. This is the reason why the model of training on 30% of the dataset by 
MNN 1000 epochs is not as good as 100 epochs, and the result of 50% training on of 
dataset by LSTM 100 epochs is better than 1000 epochs. Overall, the ideal model for 
predicting fracture aperture in this example can be the LSTM model with training on 30%, 
loop dataset over 1000 epochs. 
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(a) Model loss                      (b) Predict 

Figure 11: Convergence history and predictions of fracture aperture made by MNN with 
30% dataset for training loop 100 epochs compared to experimental data 

 
(a) Model loss                     (b) Predict 

Figure 12: Convergence history and predictions of fracture aperture made by LSTM with 
30% dataset for training loop 100 epochs compared to experimental data 

 
(a) Model loss                       (b) Predict 

Figure 13: Convergence history and predictions of fracture aperture made by MNN with 
30% dataset for training loop 1000 epochs compared to experimental data 
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(a) Model loss                   (b) Predict 

Figure 14: Convergence history and predictions of fracture aperture made by LSTM with 
30% dataset for training loop 1000 epochs compared to experimental data 

Table 5: The errors for predicting fracture aperture implemented by MNN and LSTM 
with training on 30% of the dataset, loop over 100 and 1000 epochs 

  100 epochs   1000 epochs 
MNN LSTM   MNN LSTM 

Training  8.705 9.541   3.293 3.889 

Test  2.213 5.722   1.168 0.728 

Validation  2.481 17.683   3.460 0.465 

 

 
(a) Model loss                      (b) Predict 

Figure 15: Convergence history and predictions of fracture aperture made by MNN with 
50% dataset for training loop 100 epochs compared to experimental data 
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(a) Model loss                   (b) Predict 

Figure 16: Convergence history and predictions of fracture aperture made by LSTM with 
50% dataset for training loop 100 epochs compared to experimental data 

 
(a) Model loss                     (b) Predict 

Figure 17: Convergence history and predictions of fracture aperture made by MNN with 
50% dataset for training loop 1000 epochs compared to experimental data 

 
(a) Model loss                     (b) Predict 

Figure 18: Convergence history and predictions of fracture aperture made by LSTM with 
50% dataset for training loop 1000 epochs compared to experimental data 
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Table 6: The errors of predicting fracture aperture implemented by MNN and LSTM 
with training on 50% of the dataset, loop over 100 and 1000 epochs 

 100 epochs   1000 epochs 
MNN LSTM   MNN LSTM 

Training  3.702 6.482   1.360 11.444 

Test  1.117 0.269   0.539 1.481 

Validation  1.563 1.276   0.601 2.745 

 
It is done similarly to fracture length prediction. Firstly, 30% of the input data is taken as 
training. The mean squared error convergence and output plots after 100 epochs in MNN 
model are shown in Fig. 19, after 1000 epochs are in Fig. 21. The graphs of Fig. 20 and 
Fig. 22 depict error convergences and prediction results by using LSTM model after 100 
epochs and 1000 ones, respectively. The forecast errors by first training on 30% of the 
dataset are in Tab. 7. Secondly, the set of training is on 50% of input data. For MNN 
method, the plots of history convergences and predictions from training, test and 
validation after 100 epochs and 1000 epochs are illustrated in Fig. 23 and Fig. 25, for 
LSTM method, are shown in Fig. 24 and Fig. 26. We can see all results in the Tab. 8 that 
when loop over 100 runnings in MNN model returns validation error is 1.273% and 1000 
epochs is 0.258%; in LSTM model, the validation errors are 1.875% for 100 epochs and 
1.246% for 1000 ones. 
The model of training on 50% of the input set by using MNN, 60 hidden units and loop 
over 1000 epochs is the choice for predicting fracture length in this example. 

 
(a) Model loss                        (b) Predict 

Figure 19: Convergence history and predictions of fracture length made by MNN with 
30% dataset for training loop 100 epochs compared to experimental data 
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(a) Model loss                     (b) Predict 

Figure 20: Convergence history and predictions of fracture length made by LSTM with 
30% dataset for training loop 100 epochs compared to experimental data 

 
(a) Model loss                      (b) Predict 

Figure 21: Convergence history and predictions of fracture length made by MNN with 
30% dataset for training loop 1000 epochs compared to experimental data 

 
(a) Model loss                      (b) Predict 

Figure 22: Convergence history and predictions of fracture length made by LSTM with 
30% dataset for training loop 1000 epochs compared to experimental data 
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Table 7: The errors of predicting fracture length using MNN and LSTM training on 30% 
of the dataset, loop over 100 and 1000 epochs 

 100 epochs   1000 epochs 
MNN LSTM   MNN LSTM 

Training  5.172 3.685   3.059 2.108 

Test  0.619 2.006   0.604 0.964 

Validation  4.484 11.037   0.783 4.578 

 

 
(a) Model loss                      (b) Predict 

Figure 23: Convergence history and predictions of fracture length made by MNN with 
50% dataset for training loop 100 epochs compared to experimental data 

 
(a) Model loss                     (b) Predict 

Figure 24: Convergence history and predictions of fracture length made by LSTM with 
50% dataset for training loop 100 epochs compared to experimental data 
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(a) Model loss                 (b) Predict 

Figure 25: Convergence history and predictions of fracture length made by MNN with 
50% dataset for training loop 1000 epochs compared to experimental data 

 
(a) Model loss                   (b) Predict 

Figure 26: Convergence history and predictions of fracture length made by LSTM with 
50% dataset for training loop 1000 epochs compared to experimental data 

Table 8: The errors of predicting fracture length using MNN and LSTM training on 50% 
of the dataset, loop over 100 and 1000 epochs 

 100 epochs   1000 epochs 
MNN LSTM   MNN LSTM 

Training  8.086 1.867   1.118 6.054 

Test  1.739 0.473   0.335 0.974 

Validation  1.273 1.875   0.258 1.246 

4.4 Example 4: damage evolution of Marcellus shale 
Fisher et al. [Fisher and Warpinski (2012)] indicated the real data of hydraulic fracture 
height evolution for Barnett, Woodford, Marcellus and Eagle Ford shale in North America. 
These values were collected in each reservoir in ten years from 2001 to 2010 by using 
microseismic and microdeformation fracture-mapping methods. Hydraulic fractures can get 
tall in hundreds of feet in vertical axis and lengthen in thousands of feet horizontally. 
In this example, we consider the crack database of Marcellus shale in the Northeastern 
USA located in the depth from 5500 feet to around 8500 feet (1 foot  0.3048 m) 
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underground to predict the propagation of fracture tops and bottoms in hundreds of 
hydraulic fracturing stages. This shale layer has permeability in range 100-450 nanodarcy 
and very small pore size of tens nanometer. By reason of no permissive access to the 
main fracture-mapping data, the fracture height measurements in this study are obtained 
by digitising published figures. Using the model of MNN and LSTM network with 60 
hidden neural nodes, Adam optimization function and dataset of first 150 fracture stages 
for training through 100 epochs to predict damage growth of next 200 stages cause by 
hydraulic fracture. In Fig. 27, all depths are in true vertical depth, from 0 to 1000 ft is 
underground water layer, the shallowest fracture tops are approximately 4800 ft. 
Therefore, the fracturing of the Marcellus cannot impact to the aquifer. The errors of the 
forecast from the training set by MNN and LSTM model are 2.683% and 1.918%, test 
error is 1.413% for using MNN and 1.294% for LSTM. The fracture growth prediction in 
the rest of the stages gives the errors are 1.239% and 0.978% for algorithms MNN and 
LSTM, respectively. All results are recorded in Tab. 9.  

 
Figure 27: Predictions of hydraulic fracture propagation in Marcellus shale using LSTM 
model compared to fracture mapping data 

Table 9: The errors of fracture growth predictions in Marcellus shale using MNN and 
LSTM model 

  Training Test Validation 

MNN 2.683 1.413 1.239 

LSTM 1.918 1.294 0.978 

5 Conclusions 
Deep learning approach using time series forecasting to solve fracture propagation 
problems applied deep learning methods has been addressed. Two state-of-the-art MNN 
and LSTM model were investigated for predicting damage evolution in solid and hydraulic 
fracturing in porous media. The fracture growths in three-dimensional and hydraulic 
fracturing problems were precisely and rapidly predicted. The roles of optimization 
functions, epoch numbers and size of training data sets are important in the development of 
accurate prediction models. LSTM is more powerful, but also more expensive than MNN. 
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Many problems in optimization neural network that should be studied are how to choose 
the right number of epochs for each type of dataset. The quality of the forecast would be 
improved by intergrating the solutions from different training methods with calibrated 
hyper-parameters. Moreover, a simulation results database of boundary and initial 
conditions patterns would be created to reproduce the most relevant cases of a particular 
problem. Afterward, machine learning algorithms would base on this database to 
automatically predict more general scenarios in future work. 
 
Acknowledgment: The author would like to thank European Commission 
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