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Random Loads Fatigue and Dynamic Simulation: a New
Procedure to Evaluate the Behaviour of Non-Linear

Systems

C. Braccesi1 and F. Cianetti1,2

Abstract: In this paper the problem of the correct evaluation of the stress state of
mechanical components of non linear systems in the frequency domain was anal-
ysed. This is one of the most important steps in the frequency domain evaluation of
the fatigue behaviour of components submitted to random loads. A new method-
ology to obtain an accurate representation in frequency domain of the non-linear
behaviour of the system as well as of the stress state of the components both in
terms of power spectral density (PSD) function and of frequency response function
(FRF) was proposed and validated. This methodology is useful in multibody sim-
ulation and modelling environment (MBS) and fits well into a damage evaluation
scenario that also involves the non Gaussianity of the process.

Nomenclature

σ Universe standard deviation
σc Generic sample standard deviation
n Generic sample numerousness
dt Time sampling interval
d f Frequency discretization interval
ω Angular frequency
j Imaginary unit
x System state variable (state space model)
ẋ First derivative of system state variable (state space model)
u Input variable (state space model)
y Output variable (state space model)
A State to state matrix (state space model)
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B Input to state matrix (state space model)
C State to output matrix (state space model)
D Input to output matrix (state space model)
I Identity matrix
q Generalised or Lagrangian coordinate of the generic flexible body
Hq Matrix of the frequency response functions obtained starting with generic

inputs and with outputs being the Lagrangian coordinates
Gx Power spectral density matrix of inputs
X Reconstructed set of input time processes
Gq Power spectral density matrix of the Lagrangian coordinates
ΦΦΦσ Modal matrix of the i-th element or node of the model, expressed

in terms of stress
S Power spectral density matrix of the stress tensor of the i-th element

or node of the model
N Numerousness of the state space matrices sample
Ḡq Output PSD matrix of the proposed procedure. Lagrangian coordinates
S̄ Output PSD matrix of the proposed procedure. Stress state of the i-th

element or node of the model
H̄q Output matrix of the frequency response functions. Lagrangian coordinates
m Mass
M Mass
k Linear stiffness
K Non linear stiffness
c Linear damping
C Non linear damping
r Relative displacement
ṙ Relative velocity
λng Corrective factor of damage obtained in the hypothesis of Gaussianity
Dg Damage obtained in the hypothesis of Gaussianity

1 Introduction

The virtual evaluation of the fatigue behaviour of mechanical components is typ-
ically conducted using multibody models (MB) of the system [Schiehlen (1997);
Braccesi and Cianetti (2005); Braccesi et al. (2006); Bel Knani et al. (2007)]
(which allow complete simulation of the dynamic behaviour), flexible models of
the components (for example finite element or modal models [Bishop and Sherratt
(2000); Preumont and Piefort (1994)]) and tools for the stress recovery and the
evaluation of the fatigue behaviour [Braccesi and Cianetti (2005); Braccesi et al.
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(2006); Bel Knani et al. (2007); Bishop and Sherratt (2000); Preumont and Piefort
(1994); Dirlik (1985)].

Such a procedure can be conducted both in the classical time domain and in the fre-
quency domain. In the latter it is possible both to conduct the dynamic analysis and
the evaluation of the stress state and to obtain the load spectra and the consequent
evaluation of the damage.

In particular, this activity falls under the sector of research concerned with the anal-
ysis of the fatigue behaviour of mechanical components subject to random loads
and which has as its objective the development of the potential of the so-called
frequency domain approach; this approach calls for obtaining the stress state (rep-
resented using the matrix of the power spectral density functions of the stress tensor
components) through the dynamic frequency analysis of the system [Braccesi and
Cianetti (2003); Braccesi et al. (2005a)] (i.e. MB simulation and modelling en-
vironment) and the evaluation either of the load spectrum or directly of the fatigue
damage of the component through reconstruction techniques, also developed in the
frequency domain, beginning either with the power spectral density (PSD) matrix
[Braccesi et al. (2005b)] or with a single spectral density function representing
the stress tensor [Preumont and Piefort (1994); Pitoiset et al. (1998); Pitoiset and
Preumont (2000); Pitoiset et al. (2001)].

This type of approach, which can be adopted in random loads conditions, typically
Gaussian and stationary, has proven to be much more robust and rapid than the
classic time domain approach [Lori (2005)], allowing a response on the reliability
of a component to be obtained as quickly as the designer needs in the phase of
defining and evaluating the various design solutions.

The restrictive hypotheses, or in any event those subject to criticism on the part of
a significant sector of the scientific community, regard the linear behaviour of the
mechanical system and the Gaussianity of the stress state of the component.

The first hypothesis concerns the methods followed to perform the system fre-
quency analysis and therefore the correct reconstruction of the stress state, while
the second is related to the methods used to evaluate the load spectra and/or the
fatigue damage.

The two aspects, non linearity and non Gaussianity, are intrinsically connected [Be-
nasciutti and Tovo (2003, 2005); Braccesi et al. (2005c, 2009)]. In fact one can
safely assume as a frequent origin of non Gaussianity any non-linear transformation
between input (ex. road unevenness) and output (ex. body input loads generated by
the suspension). A typical example would be the transfer of road loads, understood
as the unevenness of the ground, which can be considered Gaussian and which,
“passing” through the suspension (example of a non-linear system) assume, as in-
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put to the chassis, non Gaussian characteristics. It has been amply demonstrated
[Braccesi et al. (2005c, 2009)] that, at least in proximity of the interface zones be-
tween the flexible components and the system, the stress state shows a greater non
Gaussian behaviour proportional to the non-linear behaviour of the system, that is,
the inputs to the component are more non Gaussian.

The research activity conducted to date by the authors has intentionally separated
the two aspects, always seeking solutions to the two problems separately in a sce-
nario of simulation and analysis that calls for their integration in the final phase of
the evaluation process of fatigue behaviour and/or damage.

However, the authors wish to stress in this document that the contribution of these
“errors” in the evaluation of fatigue behaviour is not yet clear nor has it yet been
systematically analysed and, therefore, how great an effect they can have on a de-
sign process in which such techniques are involved in the initial phases of product
development.

In this work in particular a methodological solution is proposed for the correct eval-
uation of the stress state (psd matrix of the stress tensor) of a component integrated
into a system with non-linear behaviour. The solution for non-gaussianity, formu-
lated in previous works [Braccesi et al. (2005c, 2009)], will also be illustrated
using a flow chart representation.

2 Non Linearity and Current Simulation Techniques

To date, faced with a clearly non-liner system behaviour, one is lead to adopt dy-
namic transient analysis in the evaluation of dynamic or fatigue behaviour.

Obviously, starting from results obtained in the time domain, it is possible to then
conduct an analysis of fatigue behaviour not necessarily directly in time domain
(ex. Rainflow counting, multiaxial fatigue methods, . . . ) but reconstructing a rep-
resentation nonetheless in frequency domain of the stress state, through signal anal-
ysis, and adopting the consolidated techniques for the evaluation of damage and/or
for the recovery of the load spectra [Braccesi et al. (2005b)]. This calculation
method is a compromise solution which accepts the dependence of the refinement
level of the spectra (PSD) on the parameters of signal integration and analysis; this
determines a considerable irregularity of the spectra (unless one conducts analy-
ses that are extremely onerous from a computational viewpoint) while maintaining
constant and “unfillable” the gap, in terms of computation time and quality of re-
sults, existing between the evaluation in time domain (when the fatigue damage per
loading cycle reaches a stabilized value [Lori (2005); Benasciutti and Tovo (2003,
2005); Braccesi et al. (2005c, 2009, 2004)]) of the load spectrum and of the dam-
age (ex. “Rainflow” counting and the law of Palmgren-Miner) and that conducted
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in frequency domain (ex. formula of Dirlik [Braccesi et al. (2005b)] and law of
Palmgren-Miner).

According to the authors, the reason for the existence and development of the fre-
quency domain approach to the evaluation of fatigue damage lies in the possibility
of obtaining an estimation of fatigue behaviour by adopting as input the repre-
sentation in frequency domain of the stress state evaluated in an extremely short
computational time through the dynamic frequency analysis of the system. Having
to abandon this possibility or being able to obtain such a representation in a way
that cannot be compared with the continuity of the results obtainable through the
classic frequency approach was the main motivation that lead the authors to seek
a methodological solution that preserved the representation of the non-linear be-
haviour of the system, obtaining a frequency domain representation of the stress
state in that is not dependent on the typical parameters of time domain dynamic
analysis.

2.1 Analysis in the time domain

Transient analysis can be used both to generate the sample of the time process
associated with the stress state and necessary and sufficient to lead the entire fatigue
behaviour evaluation process into the time domain, and, as previously mentioned,
to obtain instead its representation in frequency domain.

It should nevertheless be remembered [Braccesi et al. (2004)] that any statistical
parameter (ex. mean value, standard deviation, kurtosis and skewness) evaluated
starting from time histories belonging to a random stationary Gaussian process is
characterised by a convergence with the expected value that increases with propor-
tionality k like the square root of the dimension T of the time histories k/T 0.5. This
property is a direct consequence of the theory of sample survey [Ross (2000)],
whose standard deviation σc is, as is well known, tied to that of the universe σ by
the following relation:

σC =
σ√

n
(1)

in which n indicate the numerousness of the sample.

This attests that transient analysis, although it is the simulation which best guaran-
tees the representation of the non-linear behaviour of the system, must nevertheless
offer in terms of simulation time and sampling characteristics, as well as integra-
tion, a sufficient level of statistical representativeness to allow itself to fully be an
image of the non-linear process.

The evaluation of fatigue behaviour totally conducted in the time domain (the for-
mer of the two mentioned approaches) has a greater potential to correspond with
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the real behaviour but at the same time a higher level of onerousness as far as com-
putations are concerned. It is well known in literature and the subject of previous
works by the authors that a correct evaluation of damage, or rather the stabilization
of its value as a function of time, can be reached by adopting a time sample of the
process with a numerousness of the sample equal to 4·105 cycles [Braccesi et al.
(2004)]. This result is both fruit of the relationship illustrated earlier, connected
with the stabilization of the statistical parameters of the process, and of the “filter”
constituted by the strength curve of the material which amplifies its needs in terms
of simulation time. This proposed value demonstrates the onerousness of dynamic
transient analyses suitable for obtaining such a database; this appears even more
evident if we think of a typical example of the application of damage evaluation
techniques for random processes such as the evaluation of the fatigue behaviour of
a vehicle chassis, an application that calls for the adoption of complex multibody
non-linear models and chassis modal models with a high number of Lagrangian co-
ordinates obtained from finite element models of as notable dimensions [Braccesi
and Cianetti (2005); Bel Knani et al. (2007)].

In the second case the time analysis aims at obtaining stress time histories that
allow a sufficiently detailed representation of the PSD matrix of the stress state
from which to reconstruct with frequency methods the load spectrum or damage,
in the hypothesis of the Gaussianity of the process, or as an alternative, to adopt
damage evaluation methods which allow one to consider the non-Gaussian nature
of the time processes [Benasciutti and Tovo (2003, 2005); Braccesi et al. (2005c,
2009)].

This approach considerably reduces the onerousness of the dynamic analysis com-
putation compared to the previous one. In fact the stabilization of the PSD of a time
process requires significantly inferior acquisition times than those required by dam-
age evaluation, which can be establish in the order of 100 s [Lori (2005); Braccesi
et al. (2004)], considering usual input conditions and typical sampling frequencies.
Obviously the characteristics of the PSD function that can be obtained by the acqui-
sition and mean process is a function of the sampling time step (dt), of the window
size (time and number of samples) and of the type of windowing (ex. hanning)
used for the buffering. These parameters determine the size of the frequency range
that can be obtained by the analysis of the signal as well as its sampling (d f ). In
turn these values allow one to obtain, or not, a detailed reconstruction of the “real”
power spectral density function and the correct representation of any peaks [Ben-
dat and Piersol (2000); Ewins (1984)]. The advantage of this second approach
in terms of computational time is certainly considerable but it must be emphasised
that the analyses must in any event guarantee a simulation time that will allow a
sufficient number of means and, therefore, of acquisitions to properly represent the
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frequency content of the signal with the most detailed frequency resolution (the
ability to identify peaks and their correct representation).

The purpose of the methodology developed is, by adopting this second approach,
to minimise the computational burden guaranteeing a more refined response, inde-
pendent of the typical parameters of signal analysis.

2.2 Analysis in the frequency domain

The classical procedure for the frequency evaluation of the PSD matrix of the stress
state calls for the linearization of the non-linear system in an arbitrary equilibrium
configuration determining a representation of the behaviour of the system charac-
terised by constant parameters (ex. damping, stiffness, . . . ).

The technique developed to date by the authors [Braccesi and Cianetti (2003);
Braccesi et al. (2005a)] in particular calls for the representation of the system by
means of a state space approach using as input those to the system and as output the
Lagrangian coordinates of the flexible component modelled into the multibody sim-
ulation environment with modal approach [Braccesi and Cianetti (2005)]. There-
fore from here on reference will be made to this method of component modelling,
assuming with the expression “modal model” the modal representation developed
by Craig and Bampton [Craig and Bampton (1968)].

The state-space representation is the following, expressed in terms of state variable
x and defined by the classic matrix A(state to state), B (input to state), C (state to
output), D (input to output) in the hypothesis of a system with multiple inputs u
and multiple outputs y:

ẋ(t) = A ·x(t)+B ·u(t)
y(t) = C ·x(t)+D ·u(t)

(2)

A substantial peculiarity of the method is the choice of the generalised coordinates
q of the generic flexible body as the output variables of the system. In this way it is
possible to define the matrix Hq(ω) (m×n) of the frequency response functions ob-
tained starting with n generic inputs and with outputs being the m Lagrangian coor-
dinates; Hq(ω) represents the frequency contribution of the individual Lagrangian
coordinates to the deformation of the flexible component.

Hq(ω) = C · ( jω · I−A)−1B (3)

Therefore by defining the generic Power Spectral Density matrix of n inputs in gen-
eral partially correlated Gx(ω) it is possible to obtain the Power Spectral Density
matrix S(ω) of the stress tensor (generally of dimensions 6×6) of the i-th element
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or node of the model through the following relationship [Braccesi and Cianetti
(2003); Braccesi et al. (2005a)]:

S = ΦΦΦ
σ ·

[
Hq ·Gx ·H′tq

]
·ΦΦΦσ t (4)

in which ΦΦΦσ is the modal matrix of the i-th element or node of the model, ex-
pressed in terms of stress (6×m), the apex

′
means the complex conjugate, the apex

t is used to indicate the transposed matrix and the term between parentheses repre-
sents the PSD matrix Gq(ω) (m×m) of the Lagrangian coordinates (matrix defined
Hermitian).

Gq = Hq ·Gx ·H′tq (5)

Unlike the time approach, the accuracy of the output PSD is extreme and exclu-
sively a function of the resolution of the frequency vector used to obtain the fre-
quency response function matrix of the Lagrangian coordinates and from which,
through simple matrix operations, the PSD matrix of the stress state of the generic
element of the flexible component can be evaluated.

Despite this positive aspect of the frequency reconstruction procedure the arbitrari-
ness should be noted of the choice to consider one configuration rather than another
to represent the behaviour of the system. Effectively, according to the authors, the
linearization is the most delicate step of the entire damage valuation procedure es-
pecially if the system, as almost always happens, assumes a non-linear behaviour.
This can happen because of the intrinsic characteristics of certain components (ex.
springs, shock absorbers) or of the overall characteristics of the behaviour of the
entire system (ex. large displacements, contacts). What is “serious” is that the er-
ror that inevitably is committed in linearising a non-linear system translates into a
wrong evaluation of the stress state (that is, of the Lagrangian coordinates) and con-
sequently in the wrong evaluation of the load spectrum and a wrong evaluation of
the damage. In this way the ulterior steps to correct the results, that are intended to
take into consideration the non-Gaussianity of the process and which are based on
the premise of having a “correct” evaluation of the stress PSD function [Benasciutti
and Tovo (2003, 2005); Braccesi et al. (2005c, 2009)], are vanified .

3 Proposed Procedure

The objective of this paper has been to develop and verify a technique for obtaining
the PSD matrix of any physical parameters of a non linear system and the PSD
matrix of the Lagrangian coordinates of each flexible components and, therefore,
of the stress state of each i-th element of the j-th flexible component. The aim of the
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procedure is to obtain a PSD matrix that is representative of the nonlinear behaviour
of the system/component and furthermore that is time invariant, maintaining intact
the characteristics of continuity and a detail of the power spectral density function
that can be obtained using the classical frequency approach. Another aim is to
obtain it by minimizing the time domain analysis computational onerousness.

The proposed procedure especially turns itself on multibody simulation environ-
ment in which the flexible behaviour of components is modelled by using modal
approach that is by using Lagrangian coordinates.

 

 Figure 1: Flow chart of the proposed procedure

This procedure (fig. 1) is based on the statistical consideration that the linearization
of a system in an arbitrary instant is like the extraction of a single sample from a
population of a stochastic variable and that, therefore, the attempt to represent such
a population with a sample composed of a single sample is the most mistaken thing
it is possible to do. A consequence of this consideration is the desire to extract, from
the population, a significant sample through which to give a better representation
of the process. As a random variable we have chosen the state-space representation
of the system (that is, the matrices A, B, C, D) and as a statistically significant base
a subset of states extracted from a transient simulation of a time length suitable
for stabilizing the PSD matrix of the physical parameters and/or of the Lagrangian
coordinates and the statistical parameters of the signal.
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definition of the input PSD matrix Gx(ω) that represents the load conditions the
designer would apply to the system.

generation of a set of time processes X(t) starting from the input PSD matrix Gx(ω);
the generation performs a fast and exact simulation of stationary zero mean Gaus-
sian process from spectrum through circulant embedding of the covariance matrix
or by summation of sinus functions with random amplitudes and random phase
angle [Brodtkorb et al. (2000)];

dynamic transient analysis and contextual extraction, through step by step lineariza-
tion, of the state matrices A, B, C, D characteristic of the state space representation
of the system.

The dynamic transient analysis could be performed by using a symbolic, numeric or
multibody code. The choice depends on type of model used: analytical, numerical
or multibody model.

Extraction can be made for each instant of the analysis steps or for an arbitrary sub-
set of these having as objective that of gathering the sample (with numerousness N)
representative of the non-linear behaviour of the system. The state space system is
characterised by having the Lagrangian coordinates of the component, or other
physical parameters of the system, as output and therefore by being able to supply
a square matrix of the PSD functions of output characterised by self-correlation
or cross-correlation terms. Faced with a single degree of freedom model, charac-
terised by a non-linear stiffness k and by a non-linear damping c and by a simple
analytical state space representation (see table 2), in collecting a sample of these
representations one performs an operation that can be compared to that of collect-
ing, for each simulation step, couples of stiffness and damping values. The random
variable in this case coincides in fact with the couple of stiffness and damping val-
ues from which the state space matrices are easily obtainable.

The extraction step is easy if the state space matrices are previously defined (see
table 2), that is for analytical models. As concerns multibody models, all commer-
cial MB codes can linearize the system on fly and export the state space matrices
in various forms (i.e. ASCII, MATLAB, etc.).

for each element of the sample, composed of a set of matrices A, B, C, D, a fre-
quency domain calculation is made following the formulas presented previously
which can be carried out simultaneously with or after the transient analysis starting
from matrix Gx(ω) of the input in order to generate another sample of a random
variable composed of N PSD matrices of the Lagrangian coordinates Gq(ω) or of
the others physical parameters;

the final and fundamental step of the procedure is that of a simple average of the
PSD in perfect analogy to what is commonly done in experimental acquisitions
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when time signals are stored under the form of power spectral density function.
The average extended to each element of the matrix, whether this be a term of
self-correlation or cross-correlation, supplies the PSD matrix of output (i.e. of
the Lagrangian coordinates Ḡq) which best represents the response of the compo-
nent/system, a response to which to associate a probability of approximately 50 %
, given the definition of mean value. This representation is time invariant, that is,
unaffected by the time discretisation of the input signal or by its output sampling
frequency.

For the generic element of the PSD matrix of the Lagrangian coordinates Ḡq we
have

Ḡqrs(ω) =
1
N

N

∑
i=1

Gqrs(ω) (6)

And as a consequence the stress PSD matrix will be:

S̄ = ΦΦΦ
σ · Ḡq ·ΦΦΦσ t (7)

It must also be pointed out that this operation can be done using as a random vari-
able not only the instantaneous matrix Gq but also the matrix of the frequency
response function Hq. This leads to obtaining not only the non-linear response of
the system (matrix of PSD functions) but also the input/output frequency response
functions representing non-linear behaviour, that is, the mean of the states col-
lected when sampling the state matrices. For the generic element of the matrix H̄q

we have:

H̄qrs(ω) =
1
N

N

∑
i=1

Hqrs(ω) (8)

So with this proposal we have joined the time domain and the frequency domain
approach, in particular joining the potential of both and we have obtained: fully
ability to simulate the non-linear behaviour of whatever mechanical system, time
histories length and computational time extremely short, high accuracy of the result
on all the frequency range with whatever detail (free choose of the user), character-
istics of continuity and detail of the power spectral density function typical of the
classical frequency approach, extremely short post processing time for the evalu-
ation in frequency domain of the load spectrum (i.e. by using Dirlik formula) or
directly of the fatigue damage. The only need is a Transient analyses time to have
a sufficient length suitable for storing of a significant sample of states.
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4 Validation of the Developed Methodology

The validity of the proposed procedure was verified by means of a statistically
significant sample of transient analyses (classified by length and records numer-
ousness) which by definition ought to be representative of real behaviour. Results
obtained by time domain analysis will be referred as "real" in the next sections.

Starting directly from results obtained in time domain by transient analyses and
subsequent signal analysis, the output “real” PSD matrices were obtained. These
were compared with those obtained by the proposed procedure and using the same
analyses. The transformation step from time domain to frequency domain, that is
from the time history to its power spectral density function is based on fast Fourier
transform (FFT) signal analysis.

In order to avoid the complexity of typical multi-body models and therefore to de-
velop a basic research we have chosen to develop and verify the reconstruction
methodology using simple lumped parameters non-linear models, developed ana-
lytically and then numerically in a reference mathematical code such as MATLAB;
subsequently these models were translated into a multibody simulation code envi-
ronment (ADAMS) in order to verify the transferability of the procedure into an
industrial application environment. In this simulation scenario simple lumped pa-
rameters models were enriched with equally simple modal models coming from
the finite element modelling environment in order to fully reproduce the problems
of the simulation of a generic multibody model with flexible components up to the
recovery of the stress state.

4.1 Description of the models used

Having as application reference the behaviour of an automobile suspension, analyt-
ical and numerical models were created (figures 2 and 3) which could reproduce on
various levels of complexity the behaviour of the dynamic behaviour of a typical
spring damper system.

To be brief only two of the various analytical models developed will be described:
a model with one degree of freedom (1 dof ) and one with two degrees of freedom
(2 dof ). They are lumped parameters models. In figures 2, 3, 4 and in table 1 the
functional diagrams are indicated as well as the values assumed by the parameters
themselves and the non-linear characteristics considered for the various analyses.

Although developed to be able to consider input expressed also in terms of force,
only the results obtained with base motion conditions will be analysed.

The analytical models were developed in a numerical code (MATLAB) adopting a
state-space representation in analogy with what is done in multibody dynamic sim-
ulation when the non-linear model is linearized. The classic equations necessary
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1 dof 2 dof

Figure 2: Representation of the developed two analytical models (1 dof and 2 dof )

for the definition of the two analytical models are indicated in table 2.

The non-linearity connected with the spring and damper elements indicated with
K and C are considered thanks to the development of special routines that work
together with the numerical code solver used for the solution of ordinary differential
equations (ODE45) and which step by step up-date the parameters in function of
reference variables (in this case respectively r and ṙ indicating with r the relative
displacement and with ṙ the relative velocity).

The values of the mass, stiffness and damping parameters respond to the charac-
teristics requested by a typical “quarter-car” model. The non-linear characteristics
(fig. 4) were considered in the first place to exalt the problem analysed, that is,
the difference in behaviour in terms of the PSD function of the output which can
be found between the non-linear model and its generic linearized representation
(K1(r), C1(ṙ)), and in the second place to simulate as faithfully as possible the real
behaviour and the non-linearity of an automobile suspension (K2(r), C2(ṙ)) [Brac-
cesi and Cianetti (2005)].

As far as the multibody model is concerned, this has been developed using the
commercial multibody code ADAMS/View. The model simulates the behaviour
of a semi-car, modelling the couple of the left or right anterior and posterior sus-
pensions with two systems with two degrees of freedom whose parameters are the
same as those used for the quarter-car models and introducing the chassis through
a modal model synthesised in the finite elements code ANSYS represented by a
shell structure modelled with shell elements characterised by a negligible mass and
by stiffness characteristics defining a dynamic behaviour similar to that of a real
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 Figure 3: Schematic representation (upper) of the developed multibody model
(MBS) and image of the MBS model realised in ADAMS/View (lower left). Brief
description of the modal model of the flexible component (lower right)

chassis. The frequencies of the first free-free normal modes are indicated in figure
3 with a representation of the associated mode shapes. The modal model (charac-
terised by 17 modal degrees of freedom) was realised using the modal synthesis of
Craig and Bampton [Craig and Bampton (1968)] considering 12 static correction
modes at the extremis and 5 constrained normal modes (the boundary areas were
previously stiffened through constraint equations that define a rigid region and two
reference masters). The model scheme and its representation within the code are
shown in the figure. To allow the recovery of the stress state for all the elements
the normal modes ΦΦΦσ expressed in terms of stress have been exported.
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Figure 4: Representation of the non-linear characteristics of damping (left column) and 
stiffness (right column) K1( r ), C1( r ), K2( r ), C2( r ) used in the realisation of the models 

represented in table 1 
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Figure 4: Representation of the non-linear characteristics of damping (left column)
and stiffness (right column) K1(r), C1(ṙ), K2(r), C2(ṙ) used in the realisation of the
models represented in table 1

4.2 Description of the analyses conducted and of the results obtained

The analyses that are reported in this paper are only a part of those carried out in
the research activity and will be used to point out the positive and negative aspects
of the classic procedure and of that proposed by the authors.

Only the analyses with inputs in the form of base motion (displacements) w and,
in the case of the multibody model, perfectly correlated have been considered. The
matrix Gx degenerates therefore into a single PSD function Gx.

The analysed results are the time histories and the PSD functions of some signifi-
cant outputs (i.e. displacement, velocity or acceleration of the mass of model 1dof,
the stress state of one of the most stressed element of the flexible body belonging
to the MBS model). The root mean square (rms) value of the signal and of the PSD
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function was chosen as quantitative parameter of the result.

Transient analyses characterised by various lengths (a significant number of analy-
ses for each length) were conducted with the aim to highlight the statistical disper-
sion of the result reachable both by using the classical time domain approach and
the proposed procedure.

This choice allows and it has allowed to show how much the result of the classical
procedure is dispersed for a homogeneous analyses sample (i.e. results obtained
from same length time histories) and, moreover, how much the numerousness of
the records has an impact on the result dispersion (i.e. results obtained from time
histories with different length). This result allows to define an absolute reference
with which to compare the result reachable by the proposed procedure and its dis-
persion. As concern the proposed approach the result dispersion, depending on
the numerousness of the states extracted from the single analysis (sampling), was
analysed.

In table 3 the summary of the analyses and of their characteristics is shown. Anal-
yses ID 1−6 referred to 1 dof d model and analysis ID 7 to MBS model.

The power spectral density function considered for the definition of the load condi-
tions (characterised by a d f equal to 0.1 Hz for analyses 1-6 and 0.5 Hz for analysis
7) is that described in figure 5a. To emphasise the behaviour at medium-high fre-
quencies, not sufficiently amplified by the typical road inputs [Robson (1979)], the
PSD considered extends the constant amplitude excitation region to 70 Hz assum-
ing the appearance of a flat excitation spectrum. The rms value of this input is 9.55
10−4 m (see “Reference Input” column of table 4).

Figure 6: PSD function of output Z of the model 1 dofd obtained by signal analysis of the 
Z time history (black curve), compared with some of those obtained by frequency domain 

analysis from instantaneous linearization of the system (blue curves) 

Figure 5: PSD function of design input (a) (black curve) compared with that obtained 
using the reconstructed input time history (b) (green curve obtained by 230 averages and 

red curve obtained by 60 averages) 
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Figure 5: PSD function of design input (a) (black curve) compared with that ob-
tained using the reconstructed input time history (b) (green curve obtained by 230
averages and red curve obtained by 60 averages)
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Figure 6: PSD function of output Z of the model 1 dofd obtained by signal analysis of the 
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analysis from instantaneous linearization of the system (blue curves) 

Figure 5: PSD function of design input (a) (black curve) compared with that obtained 
using the reconstructed input time history (b) (green curve obtained by 230 averages and 

red curve obtained by 60 averages) 
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Figure 6: PSD function of output Z of the model 1 dof d obtained by signal anal-
ysis of the Z time history (black curve), compared with some of those obtained
by frequency domain analysis from instantaneous linearization of the system (blue
curves)

4.2.1 Description of the steps followed for one of the analysis type conducted
(analysis ID n.1)

Taking the example of analysis ID n.1 of table 3, in this paragraph the steps fol-
lowed performing the analysis and obtaining the results are described.

The first phase of the analysis and of the proposed procedure calls for the recon-
struction, from the PSD function Gx(ω), of the time processes X(t) with which to
conduct the transient dynamic analysis, in this case one hundred time histories. The
sampling time step used for the present analysis type (analysis ID n.1) was 5.0·10−3

s. The length of the time history considered as a reference was 600 s. This length,
associated with the sampling time step adopted, exceeds the values indicated as the
sample length and numerousness sufficient to guarantee the stabilisation of the PSD
and of the statistical parameters of the output signal (120832 records). By adopting
a window size of 2048 points, the discretisation step d f of the frequency vector
is established at approximately 0.1 Hz (0.0977 Hz) and the minimum number of
averages equal to 60.

Despite this, the PSD function of the single time process (fig. 5b) shows that the
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exiguous input dynamics do not allow us to obtain and therefore to use, even with
such a high numerousness of the sample, an input that responds to the intentions of
the analyst (red curve of figure 5b). Moreover each time histories shows a variation
of the statistical parameters of the signal and on its frequency content.

In table 4 as in table 5 the variation of the statistical characteristics of the process
reconstructed starting from the reference PSD input is evident both as synthetic
parameter rms and as frequency content. In table 5 a statistical representation of
input signals in frequency domain is reported. In this table, for three value of the
frequency range, the PSD value of the input time histories is statically analysed
evaluating mean value, standard deviation (std) and coefficient of variation (cov) at
0.5, 1 and 2 Hz.

Only great numerousnesses, so great that they would not permit us to obtain results
in a reasonable amount of time, would allow a better representation of input. This is
certainly one of the positive aspects of the proposed procedure which by definition
adopts as input that designed in the first step of the procedure without dispersion
(see table 5 “Proposed approach input signal”). One can obtain a better represen-
tation of the PSD if, decreasing the size of the sampling window (512 points) and
increasing the averages (230 averages), one accepts a greater d f (in this case 0.4
Hz) with a poor output resolution as a result (green curve of figure 5b).

As it is possible to see in table 4 all the generated one hundred time inputs of anal-
ysis ID n.1 show however a little statistical dispersion of rms value. The coefficient
of variation of rms is 2.60 10−3.

On analysing the results obtained in one of the one hundred analyses conducted on
model 1 dof d the problem which lead us to develop this activity emerges immedi-
ately. Figure 6 shows the instantaneous PSD functions (frequency domain analysis)
of displacement Z of the mass Mand the “real” one obtained using the output ob-
tained by time domain analysis (black curve). The sample of matrices A, B, C,
D used and whose results are shown in the figure has a numerousness N equal to
1209 (with a frequency sampling of 0.5 s) in comparison to the numerousness of
the entire history of 120832 points (see table 3).

As can be seen, the PSD function obtained by analysing the displacement time
history does not correspond with any of those sampled in the various instants of the
simulation. The sensation is that there is a modulation of the system behaviour in
function of the variability of the parameters, in this case K and C.

If we now (figures 7a and 7b) represent the “real” PSD function, comparing it with
the averaged one obtained by the proposed method (red curve) and with some of
the instantaneous ones representative of extreme conditions of linearization, that we
could find if we arbitrarily linearized the system, it can be seen that the proposed
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methodology responds well to the objectives set in this work.

From an analysis of the representation in linear scale of the comparison (fig. 7b) the
error committed by arbitrarily linearizing and therefore the validity of the method
proposed is evident.

Figure 7: In figures (a) and (b) the “real” PSD function (black curve) of the output Z is compared with the 
averaged one obtained by the proposed method (red curve) and with some instantaneous ones (grey 

curves). In figure (c) the “real” PSD function (black curve) is compared with the averaged one obtained 
by the proposed method starting with the input PSD obtained from the time process (red curve). In figure 
(d) the ”real” frequency response function (black curve) is compared with the averaged one obtained by 

the proposed method (red curve) and with some instantaneous ones (grey curves). 
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Figure 7: In figures (a) and (b) the “real” PSD function (black curve) of the output
Z is compared with the averaged one obtained by the proposed method (red curve)
and with some instantaneous ones (grey curves). In figure (c) the “real” PSD func-
tion (black curve) is compared with the averaged one obtained by the proposed
method starting with the input PSD obtained from the time process (red curve). In
figure (d) the ”real” frequency response function (black curve) is compared with
the averaged one obtained by the proposed method (red curve) and with some in-
stantaneous ones (grey curves).

To further demonstrate how the result obtained in time domain is sensitive to the
input frequency content, which we have previously shown to be not perfectly su-
perimposable on the designed one, we could obtain the Ḡq by adopting as input the
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Figure 8: The representation of the range of variability that the non-linear param-
eters damping (C) and stiffness (K) have assumed is shown in figures (a) and (c).
The representation of the respective distributions is shown in figures (b) and (d).

PSD obtained from the excitation time history (fig. 7c). The result demonstrates
that the small differences that can be found in the two trends obtained earlier have
been reduced even further. This confirms that the adoption of the proposed method
is independent of time regarding both the definition of the input and of the output.

The good results obtained in the PSD analysis can be verified even in terms of
the frequency response function H̄q (fig. 7d) which demonstrates the possibility
of also obtaining a characterisation in frequency of the non-linear behaviour of the
system with the same method, which would be useful in generating results without
necessarily solving the model but simply using the well-know relations that connect
input and output through the operator FRF.

Figure 8 shows an entire series of accessory results which illustrate the range that
the non-linear parameters of damping and stiffness have assumed and the charac-
teristics of their distributions.
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Figure 9: In figure (a) a comparison of the PSD functions of output Z obtained with a sample of 1200 system 
states (linearising the system every 0.5 s) (red curve) and one of 120 states (linearising the system every 5 s) 
(blue curve) is shown. In figure (b) a representation of the sample of 1200 system states (red points) and of 

that of 120 system states (blue points) of the previous PSD functions is shown. In figure (c) a comparison of 
the PSD functions obtained using a sample of 1200 system states (red curve) and one of 120 states (green 
curve) extracted from the time window of 5 s (d) by linearising the system every 0.05 s is shown. In figure 

(d) a time window of the output Z of 5 s (in red) adopted to reconstruct the PSD function of the output 
(green curve in (c)) is shown. 
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Figure 9: In figure (a) a comparison of the PSD functions of output Z obtained with
a sample of 1200 system states (linearising the system every 0.5 s) (red curve) and
one of 120 states (linearising the system every 5 s) (blue curve) is shown. In figure
(b) a representation of the sample of 1200 system states (red points) and of that of
120 system states (blue points) of the previous PSD functions is shown. In figure (c)
a comparison of the PSD functions obtained using a sample of 1200 system states
(red curve) and one of 120 states (green curve) extracted from the time window of
5 s (d) by linearising the system every 0.05 s is shown. In figure (d) a time window
of the output Z of 5 s (in red) adopted to reconstruct the PSD function of the output
(green curve in (c)) is shown.

If now all the one hundred output time histories (classical time domain approach)
and all the one hundred output PSD functions (proposed approach) are analysed
we could evaluate (in table n. 4 and n.6) how much is the dispersion of the results,
that could be obtained with the two approaches, both from a global point of view
(rms) and from a frequency content point of view. The mean values of rms are very
close (as figure 7 confirms) but the dispersion of the rms (rms cov, coefficient of
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variation) obtained using the proposed approach is one or two order of magnitude
less than that obtained using the classical one.

As observed in figure 6, table 7 illustrates how much the linearization of the system
in an arbitrary configuration of equilibrium with subsequent dynamic frequency
analysis is source of extreme variability in the results both in terms of the maximum
output values and in terms of rms. In this table the dispersion on the result (in term
of PSD rms) obtainable using the classical frequency domain approach is compared
with the result obtainable using the proposed one, that is with the “real” result.

The standard deviation (rms std), the coefficient of variation (rms cov), the maxi-
mum (max rms) and the minimum (min rms) value of rms demonstrate, for example
for analysis ID n.1, how much great is the error we could accept if we arbitrarily
linearise the system in all the 1209 instants of the 100 transient analysis.

But the potential of the method is demonstrated even better by the fact that if,
instead of adopting a sample of 1209 system states (one every 0.5 s) (fig. 9b, red
points), we were to consider a sample of 120 states (linearizing the system every
5 s) (fig. 9b, blue points); this would not make any appreciable difference in the
results as demonstrated in figure 9a, where the two PSDs obtained with the two
statistical bases considered are not distinguishable.

This leads to the conclusion that if to obtain a stabilized PSD of a generic time
process a transient analysis of, say, 600 s must be conducted and therefore a set
of 120832 sampling points handled, to obtain the same results with the proposed
method, moreover not affected by irregularities in the generation of input and much
more detailed in terms of frequency resolution, one needs a sample of several orders
of magnitude smaller (in the case examined reduced to 120).

If therefore one considers a window of 5 seconds (fig. 9d) arbitrarily extracted from
a reference window of 600 seconds (in this case from 50 to 55 s) and proceeds to
identify 100 system states (one every 0.05 s) it emerges that even in this case the
PSD perfectly superimposes that obtained from the sub-sampling of the reference
simulation using 1209 samples (figure 9c).

This is the definitive demonstration that through the proposed method the objective
of obtaining a detailed representation of the frequency response of a non-linear
system can be reached thanks to the adoption of a sufficiently limited sample of
states with the need to conduct a transient analysis that is extremely “light” from a
computational viewpoint (i.e. 5 s with an output time step equal to 5·10−3 s); the
analysis is “light” even on complex multibody models (i.e. vehicle with flexible
chassis and subject to pavè type load condition). A similar analysis could never
be used in the classic approach which calls for obtaining a stabilized PSD starting
from a time process which, to permit all of this, would have to have a length on the
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Figure 10: In figure (a) the term 11 of the “real” PSD matrix of lagrangian coordinates (black curve) is 
shown with the same term of the averaged matrix obtained by the proposed method (red curve) and with the 

term (1,1) of some of the instantaneous matrices (gray curves), representative of extreme conditions of 
linearization that we could find if we arbitrarily linearise the system. The right figure (b) is a zoom of the 
previous one (a). In figure (c) the term 11 of the “real” FRF matrix (black curve) is shown with the same 
term of the averaged one obtained by the proposed method (red curve) and with term (1,1) of some of the 

instantaneous matrices (gray curves). The lower right figure (d) is a zoom of the previous one (c). 
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Figure 10: In figure (a) the term 11 of the “real” PSD matrix of lagrangian coor-
dinates (black curve) is shown with the same term of the averaged matrix obtained
by the proposed method (red curve) and with the term (1,1) of some of the instanta-
neous matrices (gray curves), representative of extreme conditions of linearization
that we could find if we arbitrarily linearise the system. The right figure (b) is a
zoom of the previous one (a). In figure (c) the term 11 of the “real” FRF matrix
(black curve) is shown with the same term of the averaged one obtained by the pro-
posed method (red curve) and with term (1,1) of some of the instantaneous matrices
(gray curves). The lower right figure (d) is a zoom of the previous one (c).

order of 100 s.

All the results and the conclusions reached for the analysis ID n.1 are comparable
with those reachable and reached for the other analysis types as we can read in
tables 3-7.

In conclusion the time domain approach needs a very long transient analysis or a
lot of transient analyses to obtain a significant sample from which evaluate a PSD
function representative of the non linear process. The proposed approach needs a



106 Copyright © 2011 Tech Science Press SDHM, vol.7, no.2, pp.83-116, 2011

Figure 11: Comparison between the self-correlation terms of matrix S  (stresses σx, σy and τxy) 
(respectively the red, blue and green curves) of element no. 40 obtained with a sample of 120 states and 
those of the matrix that can be obtained directly from the time recovery of the stress state starting from 

the reference transient analysis (black curves) 

Figure 12: Comparison of the term (1,1) (σx) of the “real” PSD matrix of the stress tensor of element no. 
40 (black curve), the same term of the averaged matrix S (red curve), obtained using the proposed 
procedure and method with a sample of 120 states, and the term (1,1) of some of the instantaneous 

matrices (grey curves). The representations are in logarithmic (left) and in linear scale (right). 
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Figure 11: Comparison between the self-correlation terms of matrix S̄ (stresses σ x,
σ y and τxy) (respectively the red, blue and green curves) of element no. 40 obtained
with a sample of 120 states and those of the matrix that can be obtained directly
from the time recovery of the stress state starting from the reference transient anal-
ysis (black curves)

single short transient analysis that is extremely “light” from a computational view-
point to reach the same result.

4.2.2 Description of the results obtained using the MBS model (analysis ID n.7)

To verify the reached conclusions and to demonstrate the possibility to translate this
approach into multibody simulation environment, a multibody commercial code as
solver (ADAMS/Solver) and a previously shown multibody model (developed in
ADAMS/View and similar to that of a vehicle but surely less complex) were used
(see paragraph 4.1). A procedure was implemented for the automatic extraction of
the state-space matrices during the execution of a transient analysis and the simul-
taneous calculation (in co-simulation) of the PSD matrix Ḡq, of the FRF matrix H̄q

and of the stress matrix S̄of each element, utilising equations (2-8).

As a reference a transient analysis of 60 s was conducted (analsys ID n.7), with
sampling frequency of 1000 Hz (60417 records), integration time step of 1.0·10−4

s, buffering window of 2048 points, establishing in approximately 0.5 Hz (0.488
Hz) the step resolution d f of the frequency vector and a minimum number of av-
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Figure 11: Comparison between the self-correlation terms of matrix S  (stresses σx, σy and τxy) 
(respectively the red, blue and green curves) of element no. 40 obtained with a sample of 120 states and 
those of the matrix that can be obtained directly from the time recovery of the stress state starting from 

the reference transient analysis (black curves) 

Figure 12: Comparison of the term (1,1) (σx) of the “real” PSD matrix of the stress tensor of element no. 
40 (black curve), the same term of the averaged matrix S (red curve), obtained using the proposed 
procedure and method with a sample of 120 states, and the term (1,1) of some of the instantaneous 

matrices (grey curves). The representations are in logarithmic (left) and in linear scale (right). 
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Figure 12: Comparison of the term (1,1) (σ x) of the “real” PSD matrix of the stress
tensor of element no. 40 (black curve), the same term of the averaged matrix S̄(red
curve), obtained using the proposed procedure and method with a sample of 120
states, and the term (1,1) of some of the instantaneous matrices (grey curves). The
representations are in logarithmic (left) and in linear scale (right).

 

 Figure 13: Flow chart of the evaluation scenario that considers non-Gaussianity of
the stress state

erages equal to approximately 300. The adoption of an smaller sampling time step
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has allowed us to extend the observable frequency range and therefore any amplifi-
cations associated with the flexible behaviour of the “chassis”.

The sample of matrices A, B, C, D initially used has a numerousness N equal to
120 (with a frequency sampling of 0.5 s) in comparison to the numerousness of the
entire history of 60417 points (see table 3). In table 3, 4 and 7 the analogous results
and conclusions evaluated and reached for the analysis ID n.1 are shown starting
from a single transient analysis and from the previous sample.

Table 1: Parameters of the models developedTable 1: Parameters of the models developed 

Indicating with r  the relative displacement and r&  the relative velocity. 

Considering then a time window of the same length as that adopted previously (5
s) and extracting 100 system states (one every 0.05 s) equally positive results were
obtained as those illustrated earlier and reachable in table 4 and totally analogous
to them.

In figure 10 the “real” PSD function, term 11 of PSD matrix of lagrangian coordi-
nates, (black curve) is shown together with the averaged one obtained by the pro-
posed method (red curve) and with some of the instantaneous ones (gray curves),
representative of extreme conditions of linearization that we could find if we ar-
bitrarily linearised the system. In the same the term 11 of the “real” FRF matrix
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Table 2: Characteristic relationships of the state space models (1 dof and 2 dof
models)

Table 2: Characteristic relationships of the state space models (1 dof and 2 dof models) 
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Table 3: Analyses characteristics and dynamic simulation parameters

 

Table 4: Statistical representation of input and output signals. Comparison between
results obtained by classical approach and the proposed one 

(black curve) is shown with the averaged one obtained by the proposed method
(red curve) and with some of the instantaneous ones (gray curves). The compari-
son fully demonstrates the validity of the method developed.

The comparison between the self-correlation terms of the matrixS̄ related to the
stresses σx, σy e τxy of element no. 40 chosen in correspondence to the fixed joint
of the shell structure (verified as the most damageable zone) and those of the matrix
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Table 5: Statistical representation of input signals in frequency domain. Compari-
son between classical and proposed approach

 

that can be obtained directly by the time reconstruction of the stress starting with
the reference transient analysis is illustrated in figure 11. The stress recovery takes
place by modal superimposition according to what has been described in [Braccesi
and Cianetti (2005)]. Even in this case, the comparison fully demonstrates the
validity of the method developed. However, in order to evaluate the error that could
be made in the evaluation of fatigue behaviour by linearising the system exclusively
in an arbitrary instant, in figure 12 the trend of the term (1,1) (σx) of the “real” PSD
of the stress tensor of element no. 40 is indicated, comparing it with the same
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Table 6: Statistical representation of output signals in frequency domain. Compar-
ison between classical and proposed approach

 

term of the averaged S̄ obtained with the proposed procedure and method and with
some of the instantaneous ones, which are representative of the extreme conditions
of linearization. An analysis of the curves represented in logarithmic and linear
scale highlight the considerable and “serious” error that could be committed in
considering the “wrong” instants for linearising the system. Table 7 illustrates how
much the linearization of the system in an arbitrary configuration of equilibrium
with subsequent dynamic frequency analysis is source of extreme variability in the
results both in terms of the maximum stress values and in terms of rms. In particular
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Table 7: Result summary. Proposed approach vs classical frequency domain one

 

we could observe a ratio of 2 or 0.5 between the “real” value of stress rms and its
minimum or the maximum value.

With the present proposed approach the scenario for the analyst is that of a symbio-
sis between transient analysis and frequency analysis of the system that minimises
the burden of computational time of time domain simulation and guarantees a high
level of refinement of the stress state evaluation exclusively as a function of the dis-
cretisation of the frequency vector and of the numerousness of the sample of states
considered for the averaging operation.

Therefore, after one has obtained a correct representation of the non-linear fre-
quency response, one must face the problem of the hypothesis of the Gaussianity
of the process made by the majority of the methods of fatigue damage evaluation
developed in the frequency domain (i.e. Dirlik). With reference to what has been
obtained by the authors in previous works ([Braccesi et al. (2005c, 2009)]), and
that is to an approach through corrective factors, one can foreshadow a scenario
which adopts transient simulation, necessary for the correct representation of the
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non-linear behaviour of the system, as a tool to obtain the statistical properties of
the Lagrangian coordinates, which, associated with the modal shapes, permit us to
predict the characteristics of non-Gaussianity of the stress state (kurtosis and skew-
ness) without reconstructing its tensor in the time domain. Thanks to the evaluation
of the two parameters it is then possible to arrive at a corrective factor (λng) of the
damage, a function of the parameters mentioned earlier and of the slope of the fa-
tigue strength curve, with which to correct the damage obtained in the hypothesis
of Gaussianity (Dg). The flow chart of this scenario is shown in figure 13. It should
also be pointed out that the transient analysis necessary to contextually reach the
two objectives must, however, respond to the need for stabilization of the statistical
parameters as already discussed in paragraph 2.1 of this paper.

5 Conclusions

The results reached in this research, of which those illustrated in this paper are
only an exiguous testimony, have demonstrated that it is indispensable to obtain a
correct and accurate evaluation in frequency of the stress state to be able to correctly
estimate fatigue damage using the classic frequency approach. The linearization of
the system in an arbitrary configuration of equilibrium with subsequent dynamic
frequency analysis has proven to be the source of extreme variability in the results
both in terms of the maximum stress values and in terms of rms. At the same time,
transient analysis does not appear to be sufficiently accurate and adequately rapid
in obtaining the matrix of the PSD functions of the stress tensor.

The methodology developed and object of this paper has proven to be a valid re-
sponse to the need for accuracy and speed in analysis. The correct representation
in frequency of the behaviour of the system and of the component is guaranteed
on a statistical basis by a limited sample of system states obtained from a transient
analysis nevertheless necessary when faced with a non-linear behaviour of the sys-
tem; the exiguousness of the sample requested reduces the need to conduct dynamic
analyses of significant length and therefore of great computational time.

The proposed method also fits well into the scenario of the evaluation of fatigue
behaviour prefigured by the authors which calls for, after the transient dynamic
analysis, the evaluation of the parameters of non Gaussianity of the component
stress state (obtained exclusively through the opportune combination of the stress
modal shapes and of the spectral moments of the Lagrangian coordinates) and the
evaluation of a corrective coefficient which, element by element, allows one to
correct the damage obtained in the case of the Gaussianity of the process with the
classic frequency methods starting with the PSD matrix evaluated using the method
proposed in this work.
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