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Structural Damage Detection using Spatial Fourier
Coefficients of Mode Shapes of Beams Simply Supported

at Both Ends
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Abstract: In this paper, the effect of damage on mode shape related parameters
of a beam is investigated. The damage is represented by a localized reduction in
beam stiffness. The damage location and amount is varied using a finite element
model of the beam to obtain the mode shapes. A beam which is simply supported
at both ends is used for the numerical results. The periodic nature of the beam is
exploited to obtain spatial Fourier coefficients of the mode shapes. As the damage
location and size are varied, it is found that the Fourier coefficients also change
and are found to be sensitive to damage location and size. Even in the presence of
noise, Fourier coefficients are found to be effective in indicating the damage.
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Nomenclature

ai,b j = Fourier coefficients

D = Continuum damage variable

E = Young’s modulus

I = Area moment of inertia of the beam cross-section

K = Stiffness matrix
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L = Length of the beam

m = Mass per unit length of the beam

M = Mass matrix

n = Number of dof in FE model

p = Period in spatial domain

q = Vector of nodal dofs

w = w(x, t) = Transverse displacement of the beam

W = Modal transverse displacement

x = Length measured along the axis of the beam

βi = ith root of frequency equation

Φ = Mode shape vector

η = Linear transformation = 2πx
L

ρ = Uniform mass density

ω = Natural frequency

α = Noise level parameter.

1 Introduction

Structural damage detection is a widely researched area(Yana, Cheng, Wu, Yam
(2007), Carden, Fanning (2004), Zou, Tong, Steven (2000) and Doebling, Far-
rar, Prime (1998)). Many damage detection techniques have been developed to
monitor the changes in the structure’s characteristics caused by factors such as en-
vironmental effects, repetitive loading and aging of the structure etc. At present,
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Nondestructive Damage Detection (NDD) is the widely used method. Techniques
like ultrasonics, radiography, CT scanning and eddy current are used for detecting
local damage in structures. These methods can be applied effectively for small and
accessible portions of a large structure. Hence these methods are called “local"
NDD methods (Yoon, Heider, Gillespie, Ratcliffe and Crane (2005)). However,
for large and complicated structures, these methods cannot be applied to detect
damage. Therefore, the limited application of local NDD methods led to the devel-
opment of global damage detection techniques based on vibration analysis. These
methods can be applied to the large and complex structures. The basic principle
in these vibration analysis methods is as follows. The dynamic characteristics of
a structure such as natural frequency and mode shapes are effected by the changes
in the structural parameters like mass, stiffness and damping. These variations in
dynamic characteristics are obtained using different methods and often subjected
to signal processing or a transformation before being used for detecting the damage
in the structure.

The vibration based damage detection methods are mainly based on two dynamic
characteristics: natural frequency and mode shapes. The ease of measuring and its
accuracy makes the methods which use changes in natural frequency very advan-
tageous. A few recent studies on the use of natural frequency in damage detection
are discussed next. Zhong, Oyadiji and Ding (2008) used the response time history
of beam like structures and auxiliary mass space probing to enhance the effects
of damage in the beam. As the auxiliary mass travels along the beam, the nat-
ural frequency of the beam changes due to change in the inertia and variation in
the flexibility of the beam. It was shown that it is difficult to locate the crack di-
rectly from the curves drawn between modal frequencies obtained by the spectral
centre correction method (SCCM) versus the location of auxiliary mass. So, they
proposed a method which uses derivatives of natural frequency curves for damage
detection. Wang and He (2007) performed simulation and experiments on a hy-
pothetical concrete dam for crack detection by monitoring the reduction in natural
frequencies. They proposed a statistical neural network which detects changes in
the natural frequencies. Despite its advantages in terms of simplicity, the frequency
based method often fails to be sensitive to initial and small damage. Zhao, Tang
and Wang (2007) tried to overcome this problem by using the tunable piezoelec-
tric transducer circuitry which enhances the frequency changes under uncertainty
and noise. They formulated a statistical damage identification algorithm which can
identify both the mean and variance of the elemental property change.

The variation in mode shapes caused by damage is the key for many works done
in the field of non-destructive damage detection. These works use different kinds
of methodology to enhance the changes in mode shapes due to a localized damage.
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Pandey, Biswas and Samman (1991) used curvature of mode shapes as a potential
damage indicator. Ratcliffe (1997) used the Laplacian of the mode shape of a dam-
aged beam. These curvature based methods involve numerical differentiation of
the measured data, but are more effective in finding small defects in beams. How-
ever, Hong, Kim, Lee and Lee (2002) point out that numerical derivatives are prone
to errors when measured data are noisy. However, newer instrumentation such as
laser doppler vibrometers (LDV) permit a very high degree of sampling and high
precision measurement of mode shapes (Sazonov, Klinkhachorn (2005)). Also,
digital imaging methods are now available, making the spatial resolution of mode
shapes better (Poudel, Fu and Ye (2005)). Therefore, mode shape based methods
are becoming a more realistic choice in damage detection. In fact, some recent
research advocates the use of third and fourth order derivatives of the mode shapes
for damage detection (Whalen (2008)).

Research continues on the creation of new methods to amplify the effect of dam-
age on the mode shapes. Reddy and Ganguli (2007) found that for a fixed-fixed
beam, the spatial Fourier coefficients vary considerably with the damage location
and size. Fang and Perera (2009) used power mode shapes instead of conventional
mode shapes which are developed from the root mean square property of the re-
sponse signal. Park, Kim, Hong, Ho and Yi (2009) used time-modal features and
artificial neural networks. In this work, they used mode shapes and modal strain en-
ergies to design a modal feature-based neural networks (MBNN) algorithm which
can estimate the location and severity of damage in the structure. Gokdag and Kop-
maz (2009) proposed a damage detection technique based on the combination of
continuous and discrete wavelet transforms. They also used mode shapes for dam-
age detection purpose. Chandrashekhar and Ganguli (2009) proposed a method for
damage detection in structures with uncertainty based on the mode-shape curvature
and fuzzy logic. They used curvature damage factor (CDF) as damage indicator
and Monte carlo simulations were used to study the changes in CDF. The research
discussed above is a very small sample of the work done on damage detection us-
ing modal parameters. Yana, Cheng, Wu and Yam (2007) have reviewed the recent
developments in vibration based damage detection techniques.

Several researchers have also looked at wavelet analysis of the mode shapes for
damage detection. The wavelet transformation uses the special sets of basis which
are localized both in the time and frequency domains (Poudel, Fu and Ye (2005)).
Therefore, it has been argued that the local change in mode shapes are better am-
plified using wavelet transform. Though wavelet based approaches have been suc-
cessfully demonstrated, the literature shows that the appropriate choice of wavelets
is critical for successful damage detection. For instance, the Haar wavelet was
used by Quek, Wang, Zhang and Ang (2001), the Mexican hat wavelet along with
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the Lipschitz exponent as damage indicator by Hong, Kim, Lee and Lee (2002), a
“symmetrical 4” wavelet by Douka, Louridis and Trochidis (2003), complex Gaus-
sian wavelet by Poudel, Fu and Ye (2005), among others. The importance of the
selection of appropriate wavelets adds complexity to the process of mode shape
based spatial damage detection by these methods. It is thus interesting to study
if the classical and well understood Fourier approach can be used for structural
damage detection.

In this paper, we illustrate the use of spatial Fourier coefficients for the damage de-
tection of periodic structures. The effect of localized damage on an Euler-Bernoulli
beam which is simply supported at both ends (Fig. 1) is studied using spatial
Fourier analysis. A finite element model of the beam is created and used to nu-
merically simulate the effect of damage size and location on the mode shapes of
the beam.

Figure 1: Typical simply supported beam discretized into 20 elements

2 Modeling of Beam

An Euler-Bernoulli beam structure is considered for damage detection in this study.
The governing equation of motion for the beam is given by

∂ 2

∂x2

(
EI(x)

∂ 2w(x, t)
∂x2

)
+m(x)

∂ 2w(x, t)
∂ t2 = f (x, t) (1)

Now considering the beam as uniform ( EI(x) = EI, m(x) = m ), one can get
the exact solution by setting f (x, t) = 0 for free vibration and assume w(x, t) =
W (x)eiωt . Then Eq. 1 transforms into

d4W (x)
dx4 −ω

2 mW
EI

= 0 (2)

The solution for the above 4th order ordinary differential equation is given by

W (x) = C1 cos(λx)+C2 sin(λx)+C3 cosh(λx)+C4 sinh(λx) (3)
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where λ is given by

λ =
(

mω2

EI

) 1
4

(4)

and ω is the natural frequency.

By applying the appropriate boundary conditions and solving Eq. 3, one can get
the frequency equation. There are four boundary conditions for this problem, and
putting them in Eq. 3 also yields the mode shapes of the beam. Substituting the

roots of this frequency equation, (β )i,(i = 1,2, .....n), in λ =
(

mω2

EI

) 1
4

where λ =
β

L , we obtain the ith frequency. Substituting λ in Eq. 3 gives the mode shape
corresponding to the ith mode.

The damage reduces the stiffness at a local level making the beam non-uniform.
Using continuum damage mechanics, damage can be modeled as a localized re-
duction in E (Sawyer and Rao (2000)). Also, it could be considered as a reduction
in I due to a localized change in geometry of the beam (Morlier, Bos and Castera
(2006)). In general, a local reduction in EI(x) is simple and effective approach
to model damage in a beam. Numerical methods need to be used to model such
non-uniform beams.

For analyzing non-uniform beams with finite element analysis, the beam is dis-
cretized into a number of elements ( Fig. 1 ). The equation of motion for an n
degree freedom system in discrete form after the assembly of the element matrices
and application of the boundary conditions is given by

Mq̈+Kq = 0 (5)

Here M is the n× n mass matrix of the system, K is the n× n stiffness matrix of
the system and q is the n×1 vector of nodal degrees of freedom. The solution for
this problem is of the form q = Φeiωt , which results in the eigenvalue problem.

KΦ = ω
2MΦ (6)

Solving this eigenvalue problem one can get n eigenvalues which represent the n
natural frequencies of the system. The associated eigenvectors along with shape
functions give the mode shape corresponding to that mode.

Now for a simply supported beam the boundary conditions are given by

W (0) = 0,W (L) = 0,
d2W (0)

dx2 = 0,
d2W (L)

dx2 = 0 (7)
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By substituting these boundary conditions in Eq. 3, and solving, one can get the
frequency equation as

sin(λL) = 0 (8)
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Figure 2: First Five mode shapes for an undamaged simply supported beam

The first Five roots of above equation are π , 2π , 3π , 4π , 5π respectively. Substi-
tuting these in Eq. 8 gives the corresponding mode shapes as shown in Fig. 2.

W (x) = sin
(

βx
L

)
(9)

From the Eq. 9 one can observe that mode shapes are periodic with p = L. A
periodic function can be represented using a Fourier series. So, we can express the
mode shapes in the form of Fourier series as in Eq. 10, taking the linear transfor-
mation η = 2πx

L which transforms the problem from x ∈ [0,L] to η ∈ [0,2π]
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W (η) = a0 +
k

∑
i=1
{ai cos(iη)+b j sin(iη)} (10)

where ai,(i = 1,2, ....k) and b j, j = (1,2, ....k) are Fourier coefficients. Then the
mode shapes are uniformly sampled at a number of discrete points and normalized
with respect to highest value. Now by fitting a curve similar to that in Eq. 9 one
can get the Fourier coefficients of the mode shapes. Note that in contrast to the
widespread application of Fourier analysis in the time domain, we are applying it
here in the spatial domain.

3 Modeling of damage

When a damage occurs in a structure, the structural parameters are altered. This
damage is usually represented by a decrease in the stiffness of the structure locally.
This damage in an element is modeled with a damage parameter D which represents
a reduction in flexural rigidity of the element and is defined as

D =
(EI)u− (EI)d

(EI)u
×100 (11)

where subscripts u,d represent the undamaged and damaged states of the beam
elements, respectively.

For numerical studies, the damage is varied from 0% to 50% and the location of
damage is also varied along the length of the beam.

4 Results and Discussion

The beam analyzed here has the following properties: E = 200 GPa, I = 2000 mm4,
A = 240 mm, ρ = 7800 kg/m3 and L = 1 m. The natural frequencies and mode
shapes are computed using the methodology described in the previous section. Fig.
2 shows the first five mode shapes for the beam considered here. The finite element
analysis of the beam is done by dividing it into 20 finite elements of equal length
and these results are validated with the exact solutions for a uniform beam.

4.1 Spatial Fourier Analysis of Undamaged Beam

The undamaged beam is analyzed using the analytical and FEM methods and the
Fourier coefficients are obtained for the first five modes. The non-zero Fourier
coefficients are presented in Tab. 1 through Tab. 5, respectively. Here it is observed
that the analytical or exact solution matches exactly with the FEM solution up to
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the 5th decimal. Hence the mode shapes can be represented by the finite element
model with good accuracy. It is found that for the 1st , 3rd and 5th modes, all b j,
( j = 1,2,3, ...) are zeros and non-zero coefficients for each mode are given in Tab.
1, Tab. 3 and Tab. 5 respectively. For the 2nd mode, it is observed that all ai,b j ,(i =
1,2,3, ..., j = 2,3, ...) are zeros which leaves only a non-zero b1 which is equal to
unity and is shown in Tab. 2. For the 4th mode, all ai, b j are zero except for b2 which
is unity (Tab. 4) . Further modes can be used to draw some general conclusions.
The trend in all odd number modes is same with all b j,( j = 1,2,3, ...) being zero.
For the even number modes, all ai,b j are zero except for the b n

2
coefficient for

mode n. For the 2nd mode, b1 is unity. For the 4th mode, b2 is unity. For the
6th mode, b3 is unity and so on. Physically, this shows that the even modes are
pure sine components as can also be seen from Fig. 2. The odd modes consists
of a constant part and cosine components. It is also observed that the steady and
fundamental harmonics are dominant and other harmonics show a rapid decrease
for higher harmonics.

Table 1: Non-zero Fourier coefficients for first mode of an undamaged simply sup-
ported beam

Coefficient Analytical value Normalized value FE value
a0 0.6366 1.00000 0.6366
a1 -0.4245 -0.66682 -0.4245
a2 -0.08502 -0.13335 -0.08502
a3 -0.03651 -0.05735 -0.03651
a4 -0.02035 -0.03196 -0.02035
a5 -0.01301 -0.02043 -0.01301
a6 -0.00906 -0.01423 -0.00906
a7 -0.00669 -0.01052 -0.00669
a8 -0.00517 -0.00081 -0.00517
a9 -0.00414 -0.00065 -0.00414
a10 -0.00326 -0.00051 -0.00326

Table 2: Non-zero Fourier coefficients for second mode of an undamaged simply
supported beam

Coefficient Analytical value Normalized value FE value
b1 1.00000 1.00000 1.00000
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Table 3: Non-zero Fourier coefficients for third mode of an undamaged simply
supported beam

Coefficient Analytical value Normalized value FE value
a0 0.21200 0.27766 0.21200
a1 0.76350 1.00000 0.76350
a2 -0.54600 -0.71512 -0.54600
a3 -0.14190 -0.18585 -0.14190
a4 -0.06987 -0.09151 -0.06987
a5 -0.04242 -0.05555 -0.04242
a6 -0.02877 -0.03768 -0.02877
a7 -0.02093 -0.02741 -0.02093
a8 -0.01602 -0.02098 -0.01602
a9 -0.01274 -0.01668 -0.01274
a10 -0.00999 -0.01308 -0.00999

Table 4: Non-zero Fourier coefficients for fourth mode of an undamaged simply
supported beam

Coefficient Analytical value Normalized value FE value
b2 1.00000 1.00000 1.00000

Table 5: Non-zero Fourier coefficients for fifth mode of an undamaged simply
supported beam

Coefficient Analytical value Normalized value FE value
a0 0.12690 -0.17966 0.12690
a1 0.30230 -0.42800 0.30230
a2 -0.70630 1.00000 -0.70630
a3 -0.57920 0.82004 -0.57920
a4 -0.16390 0.23205 -0.16390
a5 -0.08560 0.12119 -0.08560
a6 -0.05427 0.07683 -0.05427
a7 -0.03807 0.05390 -0.03807
a8 -0.02849 0.04033 -0.02849
a9 -0.02234 0.03162 -0.02234
a10 -0.01734 0.02455 -0.01734
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4.2 Spatial Fourier Analysis of Damaged Beam

In this section the effect of damage on the Fourier coefficients of mode shapes
is discussed. The developed finite element model is used to find out the Fourier
coefficient for first three modes and at various damage levels ranging from 0% to
50% and for the elements 1,5 and 10 (see Fig. 1). The variation in the constant and
first five harmonic Fourier coefficients is shown in Fig. 3 through Fig. 8. In these
figures, a35 represents the a3 Fourier coefficient for damage in element 5, as an
example. These graphs show that the Fourier coefficients are sensitive to damage.
There is an increase in the Fourier coefficients as compared to the undamaged mode
as the damage increases from 0 to 50 percentage. Also, it can be observed that the
coefficients b j, ( j = 1,2,3, ...) for 1st and 3rd modes and ai,b j, (i = 1,2,3, ...),
( j = 2,3, ...) for the 2nd mode now possess non-zero values due to the presence of
damage. These values increase monotonically with damage. Hence, the occurrence
of above mentioned coefficients in the modes denotes the presence of damage.

Further, the b j, ( j = 1,2,3, ...) coefficients in 1st , 3rd modes and ai, (i = 1,2,3, ...)
coefficients in 2nd mode are antisymmetric with respect to damage location. These
antisymmetric coefficients are useful for detecting damage in the symmetric loca-
tions of the beam like 5th and 16th elements. In these locations, the symmetric coef-
ficients show same value. In general, for all odd number of modes ai are symmetric
and b j are antisymmetric and for all even number of modes b j are symmetric and
ai are antisymmetric. Therefore, it is observed that for unique representation of the
damage at any location at least one set of symmetric and antisymmetric coefficients
are needed.

The spatial Fourier coefficients can therefore serve as damage indicators for beams
which are simply supported at both ends.
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Figure 3: Variation of Constant and Cosine Fourier coefficients for 1st mode in
different elements
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Figure 4: Variation of Sine Fourier coefficients for 1st mode in different elements
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Figure 5: Variation of Constant and Cosine Fourier coefficients for 2nd mode in
different elements
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Figure 6: Variation of Sine Fourier coefficients for 2nd mode in different elements
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Figure 7: Variation of Constant and Cosine Fourier coefficients for 3rd mode in
different elements
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Figure 8: Variation of Sine Fourier coefficients for 3rd mode in different elements
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4.2.1 Noisy Data

The output of mathematical model and that of the test always differ because of the
experimental noise and measurement errors. Use of modern instruments reduces
the measurement errors but they can never be eliminated. To simulate this noise we
shall assume that 1% noise is present in the mode shape. The noisy mode shape
vector is given by the Eq. 12

Φnoisy(i) = Φideal(i)+α ∗ rand() (12)

Here α is the noise level which is 0.01 and the function rand() generates random
numbers varying from−1 to+1. Here Φ is the vector containing the mode shapes.
For analyzing the effect of damage on mode shapes in presence of noise, 20 noisy
sample are created using the Eq. 12. Fig. 9 gives a sample ideal and noisy mode
shape for the first three modes. The corresponding Fourier coefficients are plotted
for the first, fifth and tenth elements (Fig. 10 to Fig. 27).

From these figures, the Fourier coefficients which are least affected by the presence
of noise and sensitive to damage size and location are identified.
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Figure 9: First Three Noisy modes of an undamaged beam
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Fig. 10 and 11 show the Fourier coefficients for the 1st mode with increasing dam-
age levels in the 1st element. It can be seen that the noise leads to considerable
scatter in the coefficients. Fig. 12 and 13 show the Fourier coefficients for the
noisy 1st mode for the 5th element. Here we can see the coefficients a2 in Fig. 12
and b1 in Fig. 13 show relatively low effect of noise and also show considerable
change due to damage level. Thus, a2 and b1 for the 1st mode can serve as good in-
dicators of damage in the 5th element. Tab. 6 lists the selected Fourier coefficients
for different elements and different modes. Fig. 14 and 15 show the Fourier coeffi-
cients for the noisy 1st mode for the 10th element. Here we see that a0 and a2 are
good damage indicators showing low scatter and considerable monotonic variation
with damage.

We now study the 2nd mode coefficients. Fig. 16 and 17 show the Fourier coeffi-
cients for the noisy 2nd mode with damage in the first element. We see considerable
scatter in all the Fourier coefficients here. Fig. 18 and 19 show the Fourier coeffi-
cients for the noisy 2nd mode with damage in the 5th element. From Fig. 18, it is
clear that a1 and a2 show low scatter and good monotonic change with damage size.
From Fig. 19, we can see that b1 is a good damage indicator for the 5th element.
Fig. 20 and 21 give the Fourier coefficients for the noisy 2nd mode with damage
in the 10th element. Here we choose a2 and b1 are the coefficients with low scatter
and considerable change due to damage size.

Finally, we study the 3rd mode coefficients. Fig. 22 and 23 show the Fourier
coefficients for the noisy 3rd mode with damage in the 1st element. Here, a2 and
b2 show low scatter and high sensitivity to damage size. Fig. 24 and 25 show the
Fourier coefficients for the noisy 3rd mode with damage in the 5th element. Here,
a0, a1, a4, b1 and b2 show low scatter and considerable change with damage size.
Fig. 26 and 27 show the Fourier coefficients for the noisy 3rd mode with damage
in the 10th element. Here, a1, a3, b2 show very low sensitivity to noise and a
significant change due to size of damage.
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Figure 10: Variation of Constant and Cosine Fourier coefficients for Noisy 1st mode
in 1st element ( 20 noisy samples )
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Figure 11: Variation of Sine Fourier coefficients for Noisy 1st mode in 1st element
( 20 noisy samples )
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Figure 12: Variation of Constant and Cosine Fourier coefficients for Noisy 1st mode
in 5th element ( 20 noisy samples )
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Figure 13: Variation of Sine Fourier coefficients for Noisy 1st mode in 5th element
( 20 noisy samples )
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Figure 14: Variation of Constant and Cosine Fourier coefficients for Noisy 1st mode
in 10th element ( 20 noisy samples )
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Figure 15: Variation of Sine Fourier coefficients for Noisy 1st mode in 10th element
( 20 noisy samples )
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Figure 16: Variation of Constant and Cosine Fourier coefficients for Noisy 2nd

mode in 1st element ( 20 noisy samples )
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Figure 17: Variation of Sine Fourier coefficients for Noisy 2nd mode in 1st element
( 20 noisy samples )
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Figure 18: Variation of Constant and Cosine Fourier coefficients for Noisy 2nd

mode in 5th element ( 20 noisy samples )
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Figure 19: Variation of Sine Fourier coefficients for Noisy 2nd mode in 5th element
( 20 noisy samples )
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Figure 20: Variation of Constant and Cosine Fourier coefficients for Noisy 2nd

mode in 10th element ( 20 noisy samples )
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Figure 21: Variation of Sine Fourier coefficients for Noisy 2nd mode in 10th element
( 20 noisy samples )
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Figure 22: Variation of Constant and Cosine Fourier coefficients for Noisy 3rd

mode in 1st element ( 20 noisy samples )
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Figure 23: Variation of Sine Fourier coefficients for Noisy 3rd mode in 1st element
( 20 noisy samples )
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Figure 25: Variation of Sine Fourier coefficients for Noisy 3rd mode in 5th element
( 20 noisy samples )



58 Copyright © 2011 Tech Science Press SDHM, vol.7, no.1, pp.23-64, 2011

0 10 20 30 40 50
0.202

0.204

0.206

0.208

0.21

0.212

0.214

0.216

Percentage of damage

F
ou

rie
r 

co
ef

fic
en

t

 

 

 a
0

Ideal data
Noisy data

0 10 20 30 40 50
0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

Percentage of damage

F
ou

rie
r 

co
ef

fic
en

t

 

 
 a

1
Ideal data
Noisy data

0 10 20 30 40 50
−0.548

−0.546

−0.544

−0.542

−0.54

−0.538

−0.536

−0.534

Percentage of damage

F
ou

rie
r 

co
ef

fic
en

t

 

 

 a
2

Ideal data
Noisy data

0 10 20 30 40 50
−0.15

−0.14

−0.13

−0.12

−0.11

Percentage of damage

F
ou

rie
r 

co
ef

fic
en

t

 

 

 a
3

Ideal data
Noisy data

0 10 20 30 40 50
−0.074

−0.073

−0.072

−0.071

−0.07

−0.069

−0.068

Percentage of damage

F
ou

rie
r 

co
ef

fic
en

t

 

 

 a
4

Ideal data
Noisy data

0 10 20 30 40 50
−0.045

−0.04

−0.035

−0.03

Percentage of damage

F
ou

rie
r 

co
ef

fic
en

t

 

 
 a

5
Ideal data
Noisy data

Figure 26: Variation of Constant and Cosine Fourier coefficients for Noisy 3rd

mode in 10th element ( 20 noisy samples )
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Figure 27: Variation of Sine Fourier coefficients for Noisy 3rd mode in 10th element
( 20 noisy samples )
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Table 6: Selected Fourier coefficients which indicate damage in presence of noise

Damage location Mode 1 Mode 2 Mode 3
1 a2,b2

5 a2,b1 a1,a2,b1 a0,a1,a4,b1,b2

10 a0,a2 a2,b1 a1,a3,b2

11 a0,a2 −a2,b1 a1,a3,−b2

16 a2,−b1 −a1,−a2,b1 a0,a1,a4,−b1,−b2

20 a2,−b2

Note that damage in element 20 also causes changes in coefficient a2. Now, for
representing the damage in element 20, we use the antisymmetric coefficient b2
which is represented as −b2 in the Tab. 6. The negative sign points to the opposite
pattern of variation relative to the element 1. So, for every damage size and location
pair there is a unique set of sensitive Fourier coefficients which can be used as
unique and effective damage indicators for that particular damage location and size.

The numerical results of this paper show that spatial Fourier coefficients amplify
the effect of damage in mode shapes and some of the coefficients are robust to
the presence of noise and grow significantly and monotonically with damage size.
They constitute an attractive damage indicator for beams simply supported at both
ends.

5 Conclusions

Spatial Fourier analysis of mode shapes for a beam simply supported at both ends
is done. A finite element model of the beam is used to analyze the effect of damage
location and size on the mode shapes of the beam. The effect on mode shapes
is amplified by the variation in the Fourier coefficients. It is found that damage
location and size affects Fourier coefficients. The Fourier coefficients of the first
three modes can be used to detect damage in the beam. It is also found that some
Fourier coefficients are effective damage indicators even in the presence of noise.
Hence, the proposed method can be used for detecting the damage in the beams
simply supported at both ends with good accuracy.
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