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Crack Growth Modeling for Mixed-mode Problems

A.P.Cisilino1 and M.H. Aliabadi2

Abstract: This paper presents a review of the dual boundary element method
for modeling crack growth in two-dimensional and three-dimensional mixed mode
problems. The modeling strategy for crack coalescence using the DBEM is pre-
sented and comparisons are made with alternative solutions where available. Also
presented are three-dimensional multiple crack growth and microcrack growth prob-
lems.
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1 Introduction

Crack growth processes in the context of linear elastic fracture mechanics are nor-
mally modeled with an incremental crack-extension analysis. For each increment
of crack-extension stress intensity factors are evaluated as the key fracture param-
eter. The direction of the crack growth, and in the case of fatigue, the amount of
crack extension per load cycle, are directly linked to the value of the stress intensity
factors. For general mixed-mode conditions, numerical methods must be used for
the evaluation of the stress intensity factors as well as modeling the often complex
continuously changing geometry due to the extension of the crack.

Early attempts to model crack growth using the Finite Element Method (FEM) can
be traced back to works of Shephard et al (1985), Valliappan and Marti (1985),
Swenson and Ingraffea (1988), Remiz and Blackburn (1990) and O’Donoghue et
al (1995). More recent advances in the finite element method can be found in the
work of Theilig et al (1997,1999) for two-dimensional mixed-mode crack prob-
lems, and, Schoellman et al (2002), Buchholz and Richard (2004a, 200b), Cittarella
and Buchholz (2007) and Li et al (2010) for three–dimensional mixed-mode prob-
lems. Another recent successful application of the FEM to mixed-model crack
growth modeling is due to the development of eXtended Finite Element Method
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(XFEM). The XFEM as developed by Black and Belytscho (1999) and Rethore et
al (2005) is inspired by the enriched finite elements originally proposed by Ben-
zely (1974) and Foschi and Barrett(1976) (see Aliabadi and Rooke (1991) for an
overview of enriched FEM).

A robust method for modeling crack growth in general mixed-mode problems was
developed by Portela, et al (1993). The method was an extension of the Dual
Boundary Element Method earlier proposed by Portela, Aliabadi and Rooke (1992)
as an effective way of modeling crack problems using the boundary integral equa-
tion. The DBEM for the first time allowed modeling mixed-mode crack problems
without a need for continuous remeshing and user interferences. The crack ex-
tension was modeled with new boundary elements without having to remesh the
previous crack geometry. The extension of the DBEM to different linear, transient
and nonlinear problems can be found in Letião, et al (1995), Aliabadi and Sollero
(1998), Saleh and Aliabadi (1995), Prasad et al (1996), Dell Erba and Aliabadi
(2000) and Wen et al (2004).

Another interesting development in 3D crack growth modeling is the coupled sym-
metric Galerkin boundary element method formulation with FEM alternating method
as presented by Nishikov et al (2001), Han and Atluri (2002) and Atluri (2005).

In this paper the DBEM method is reviewed for two and three dimensional mixed
mode crack problems. Next, the extension of the method to modeling crack coa-
lescence is presented. The application of the DBEM to microcrack modeling and
mixed modeling are also presented and comparisons are made with alternative so-
lutions where possible.

2 The Dual Boundary Element Method

The Dual Boundary Element Method (DBEM) overcomes the mathematical degen-
eration of the classical BEM formulation when applied to crack problems where the
two crack surfaces are coplanar. The DBEM uses two independent boundary inte-
gral equations, with the displacement equation applied for collocation on one of the
crack surfaces and the traction equation on the other. Upon the model discretiza-
tion and the application of the boundary conditions, the traction and displacement
boundary integral equations are used to set up a system of equations to solve the
boundary unknowns (Portela et al, 1992 and Mi and Aliabadi, 1992)).

The application of the classical DBEM formulation as introduced by Portela et al
(1992) and Mi and Aliabadi (1992) required discretization of both crack surfaces.
The continuity requirements for the displacement and traction fields makes neces-
sary to use the so-called “discontinuous elements” on the crack surfaces. Discontin-
uous elements use two set of nodes: the geometric nodes which define which define
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the geometry of the model, and the collocation nodes which are used to interpolate
the field variables (displacement and tractions). For problems requiring large num-
ber of elements on the crack surfaces or involving many cracks the above approach
can lead to more degrees of freedom than absolutely necessary. An alternative
approach to mitigate this problem is to formulate the displacement and the trac-
tion boundary integral equations in terms of the relative displacements between the
crack surfaces. In this way, the number of nodes associated to the crack discretiza-
tion is halved, since only one of the cracks surfaces is discretized (see for instance
Cisilino and Aliabadi, 2004). The crack surface displacements are obtained after
the problem solution by postprocessing the boundary data. Figure 1 illustrates the
details of the crack discretization strategy for two and three-dimensional problems.
The change required to the classical DBEM formulation (and the corresponding
software) to include the crack displacement discontinuity instead of crack surface
displacements is trivial. Recently, Benedetti et al (2008) have made significant
speed up of the solution process for the DBEM by implementing a fast solver.

For the details of the mathematical formulation of the DBEM and its implementa-
tion for two and three-dimensional problems the reader is referred to the works by
Portela et al (1993) and Mi and Aliabadi (1995), respectively.

 
 

                 

 

3 Fatigue crack propagation analysis 
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Figure 1:  Crack discretization for the DBEM for (a) two dimensional and (b) three-
dimensional problems. 
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Figure 1: Crack discretization for the DBEM for (a) two dimensional and (b) three-
dimensional problems.
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3 Fatigue crack propagation analysis

3.1 Stress Intensity Factor computation

Accurate evaluation of crack tip stress intensity factors, K, is of most importance
for the effective analysis of crack propagation problems. Stress intensity factors
are computed in this work by using the so-called one-point displacement formula,
in which the relative displacements of the crack surfaces, ∆u, calculated from the
DBEM model are used in the near-crack-tip stress field equations to obtain the lo-
cal mixed-mode K values (see Aliabadi and Rooke, 1991). This technique was
preferred to path and domain integral methodologies, which although very accu-
rate and efficient (see Portela et al, 1992 and Cisilino et al, 1998) cannot be easily
adapted to solve close interacting cracks due to the difficulties to define the integra-
tion paths or domains.

The expressions for the computation of stress intensity factors using a one-point
formula for the case of a general three-dimensional mixed-mode problem are
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where E is the Young’s modulus, ν the Poisson’s ratio and r is the distance from the
crack front to the collocation node, P, where the relative displacements between the
crack surfaces are computed. The terms ∆un, ∆ub, ∆ut and are the projections of
the relative displacements on the local coordinate directions (i.e. normal, binormal
and tangential) at the crack front (see Figure 1).

The efficiency of the one-point displacement formula strongly depends on the ac-
curacy of the displacements calculated on the crack surface. This is ensured in this
work by using special crack-tip elements that exhibit the correct

√
r variation for

the displacement field. Details of its implementation and performance can be found
in Aliabadi and Rooke (1991) and Ortiz et al (2001b).

The application of the one-point formula is straight forward for two-dimensional
problems (note that only KI and KII are computed). In this case the relative dis-
placements ∆un and ∆ub in Eq. (1) are those of the collocation nodes closer to
the crack tip. On the other hand, a more elaborated procedure is necessary for the
three dimensional problems: the relative displacements of the second-closer line
of collocation nodes to the crack front are used for the evaluation of Eq. (1); and
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the distances r from the collocation points to the crack front are measured in direc-
tions perpendicular to the crack front (see Figure 1b). The resulting stress intensity
factors are assigned to the points Q, which are located at the intersections of the
distance vectors r with the crack front. Finally, the K-results at the geometrical
nodes are calculated by extrapolating the K-values assigned to the Q points.

4 Crack extension

The crack extension is modeled incrementally, assuming a piece-wise linear dis-
cretization of the unknown crack path. The magnitude and direction of crack incre-
ments are computed from the K results.

Figure 2 depicts the typical fatigue crack growth behavior in metals (Sih, 1991).
The schematic log-log plot presents the rate of crack growth per load cycle, da/dN,
as a function of the applied stress intensity factor range, ∆K = Kmax−Kmin. The
sigmoidal curve contains three distinct regions. In Region I, crack growth goes
asymptotically to zero as ∆K approaches a threshold value, ∆Kth. This means that
for stress intensity factors below ∆Kth there is no crack growth, i.e. there is a fa-
tigue limit. The threshold effect is believed to be caused by a number of different
processes, which lead to crack blocking. In Region II, the log da/dN tends to vary
linearly with respect to the log of ∆K, what results in a stable crack growth. Finally,
the crack propagation rate accelerates dramatically in Region III as ∆K approaches
the material fracture toughness Kc.

 
Figure 2: Typical fatigue crack growth
behavior in metals fatigue crack growth
behaviour in metals.

 
Figure 3: Definition of the stress inten-
sity factor range.
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The study cases presented in this work are devoted to model crack growth in the
near-threshold (Region I) and stable crack (Region II) regimes. Crack growth is
Region II can be predicted using the well-known formula developed by Paris et al
(1961)

da
dN

= C∆Kn, (2)

where C and n are empirical material constants which may also depend on load
frequency, environment and the mean load R = Kmin/Kmax (see Figure 3). The
R is considered via the closure effect (Elber, 1970). Crack closure decreases the
fatigue crack growth rate by reducing the effective stress intensity range. Due to a
number of causes, like plasticity, crack roughness or material transformations (see
Figure 4) the crack faces are in contact bellow Kop (see Figure 3) and the crack does
not propagate. Following Elber (1970) an effective stress intensity factor range is
defined:

∆Ke f f = Kmax−Kop (3)

together with an effective stress intensity ratio:

U =
∆Keff

∆K
=

Kmax−Kop

Kmax−Kmin
. (4)

Crack growth is Region I is modeled using the formula by Klesnil and Lucas
(1972), which is a variation of the Paris’ law introduced in Eq. (2) which accounts
for the near-threshold regime:

da
dN

= C (∆Km−∆Km
th) , (5)

where C and m are material constants. The effect of closure can be introduced
in Eq. (5) by replacing the term ∆Km by ∆Km

eff. For multiple crack fatigue crack
growth problems Salgado and Aliabadi (1998) presented a formula where the rela-
tive magnitude of the stress intensity factors at different crack tips in linked to the
amount of crack extension.

The length of the crack extension is computed using Eq. (2) or (5) incrementally,
this is by approximating da/dN ≈ ∆a/∆N. In this way, the crack extension ∆K
is calculated for each propagation step after setting a number of load cycles ∆N.
It is worth noting that in order to use Eq. (2) or (5) it is necessary to compute
an equivalent stress intensity factor range which combines the effects of the three
crack-modes into a single ∆K value. This is done using the formula proposed by
Gerstle (1986):

∆K = (∆KI+B |∆KIII|)2 +2∆K2
II. (6)
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The constant B takes values between zero and unity. Dirgantara and Aliabadi
(2000) proposed linking the constant B to a formula which included relative values
of the stress intensity factors for bending and membrane for thin wall structures.

Among the several available criteria for computing the local direction of crack
growth, the minimum strain energy criterion due to Sih (1991) is used in this work.
This criterion states that the direction of crack growth at any point along the crack
front is towards the region with the minimum value of the strain density factor S.
The strain density factor S can be written in terms of the stress intensity factors as
follows:

S = a11K2
I +2a12KIKII +a22K2

II +a33K2
III (7)

where a11, a12, a22 and a33 are trigonometric polynomials of sin(θ ) and cos(θ )
being θ the direction of the crack extension in the local coordinate system (see
Figure 1). The propagation angle θ is obtained by replacing the computed mixed-
mode K values in Eq. (7) and comparing the values of S(θ) at stationary points
d2S(θ)/d2θ > 0. This is done numerically by using the bisection method.

The results for the propagation length and direction are used to compute the prop-
agation vectors along the crack front (or at the crack tip for the two-dimensional
case). The crack surface is extended by adding new elements along the crack front.
The dimensions and spatial orientation of these new elements are those given by
the propagation vectors. It is worth to note that this procedure does not need
of the model remeshing when dealing with two-dimensional problems or three-
dimensional embedded cracks. Some local remeshing is needed only when dealing
with surface cracks in three-dimensional analyses or with crack coalescence prob-
lems. The full details about the model update procedure including the strategy for
reassembling of the BEM system of equations for the new geometry can be found
in the works by Portela et al (1993) and Cisilino and Aliabadi (2004) for the two-
and three-dimensional cases respectively.

5 Crack coalescence

In order to complete an assessment of crack propagation, it is necessary to define a
criterion for the coalescence of fatigue cracks from adjacent damage sites. The sim-
plest possible coalescence criterion would be to assume that ligament failure occurs
only when the physical crack tips meet. This condition does not take into account
the plasticity developing between the crack tips. Collins and Cartwright (1996)
showed that a prediction based on the elastic criterion is in reasonable agreement
with the experimental evidence for the early stages of crack growth only. The pre-
dictions become increasingly inaccurate in the later stages where plastic flow at the
crack tips would be more prevalent.
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Figure 4: Fatigue crack closure mechanisms.

Among the models reported in the literature that due to Swift (1992) is used in this
work to account for the effect of plasticity. (a comprehensive review and discussion
of those models can be found in Caballero Pinto, 2006). Swift’s criterion states that
a ligament between two adjacent cracks will fail if the sum of the radius of crack-tip
plastic zones equals the ligament size. This is:

rp (a)+ rp (b) = L (8)

where rp (a) and rp (b) are the radius of the plastic zones in front of each crack-tip
and L is the ligament size (see Figure 5).

Various models and formulas have been used to estimate the plastic zone radius.
Following Swift (1992) the Irwin’s formula is used in this work:

rp =
1

2π

(
K
σY

)2

(9)

where σY is the material yield stress. In Equation (10) sometimes a local link-up
stress defined as σ0 = (σUT +σy)/2 is used in place of σY .



Crack Growth Modeling for Mixed-mode Problems 221

 
 

                                                       L 
                       
 
  
                 2a                                                       2b             
 
 
 
 
                                                 

Figure 5: Touching plastic zones as a criterion for ligament failure.

A similar criterion can be used to detect a crack touching a free boundary. In this
sense, Silva et al (2000) considered that a link-up between the crack and the free
surface takes place when the distance between the crack tip and the free boundary
is equal to the crack plastic zone radius.

In the present implementation the distances from each crack tip to the free bound-
aries, crack paths and other crack tips are checked in every crack extension in-
crement. These distances are compared to the radius of the crack-tip plastic zone
computed using Equation (10). In the case that the plastic zones touch each other
or a free boundary, a model remeshing is performed in order to update the problem
geometry. For the details of the remeshing procedure see Caballero Pinto (2006).

6 Study cases

6.1 Micromechanics of fatigue crack growth in austempered ductile iron

The ADI (Austempered Ductile Iron) belongs to the family of spheroidal graphite
cast irons. ADI combines good elongation and toughness with high tensile strength;
combination that increases the resistance to wear and fatigue when compared to
other ductile irons. The material has a wide range of industrial applications, as
is the case of chain wheels, lines of cement mills, railroad wheels, gears and au-
tomotive crankshafts. The prominent properties of ADI are consequence of its
matrix microstructure, obtained by a thermal treatment called austempering. ADI
microconstituents are reacted austenite (enriched in carbon), retained austenite (un-
reacted) and acicular ferrite. Minor amounts of martensite and carbides may also
be present. The quantity and size of graphite nodules, matrix phases formed dur-
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ing thermal treatment, and alloy content influence this microstructure, denominated
ausferrite (Gundlach and Janowak, 1991).

The relationship between fatigue crack growth and matrix microstructure is the
focus of previous work by Greno et al (1999). A quantitative study of the mor-
phology of fatigue crack growth proved that the crack path preferentially intersects
graphite nodules, and that a microcracking process takes place in the region of high
stress concentration around the tip of the main crack. Graphite-matrix interfaces
are extremely irregular, with sharp corners that in some cases constitute imminent
microcracks that emanate from the nodules. Ultimately, the main crack advances by
interaction and coalescence of the microcracks, as shown in Figure 6. It is proposed
that as microcracks simultaneously propagate besides the main crack, the available
elastic energy for the propagation of the main crack is lowered mainly because of
the creation of a larger crack surface. This reduces the general rate of advance and
in some cases causes the premature arrest of crack growth. The above-mentioned
mechanism provides evidence to explain the relatively low propagation rates and
high effective propagation threshold values for this material.

 
Figure 6: Enlarged 500 micrograph showing the fatigue crack propagation mecha-
nism in ADI (from Greno et al, 1999).

In what follows two-dimensional DBEM modeling is used to assess the microme-
chanics of fatigue crack growth in ADI in order to study the crack-microcrack in-
teraction mechanism.



Crack Growth Modeling for Mixed-mode Problems 223

Crack closure is a relevant factor when assessing the mechanism of fatigue crack
propagation in ADI as it behaves differently for macrocracks and microcracks. In
this sense it is worth to note that while closure levels can be significant for macro-
cracks, microcracks could be almost closure free (Leis et al, 1986).

A simple model consisting in a large main crack and a microcracked nodule is con-
sidered first. The model geometry and discretization are shown in Figure 7 together
with the resulting propagation paths for three closure levels. The length of the main
crack was initially set to be forty times that of the microcracks. Microcracks were
placed to coincide with the ‘equator’ of the nodule, where the maximum principal
stresses develop. As for all models presented in this work, graphite nodules were
assimilated to circular voids. This assumption implies to consider a material with
100% nodularity, and to neglect the mechanical response of graphite when com-
pared with that of the metal matrix. The metal matrix is assumed to be isotropic
and linear elastic. The propagation law due to Klesnil and Lucas (1972) (see, Eq.
(5)) for the near threshold regime was used. Material constants were taken from
Greno et al (1999) and they were C=4.43.10−10, m=2.85 and ∆Kth=5 MPa

√
m.

Closure levels were selected as U=1 (no closure), U=0.6 and U=0, the last one cor-
responding to a limiting case for which the main crack did not propagate. Loading
configuration was remote tension, with a load level set in such a way that initial ∆K
values for the microcracks were close to the propagation threshold ∆Kth.

 

Figure 7: Effect of the closure level on the crack-microcrack interaction mecha-
nism.

Figure 8 illustrates the evolution of ∆K with load cycles N for the results in Figure
7. Stress intensity factor ranges ∆K are normalized with respect to ∆Kth, in such
a way that values greater than one represent propagating cracks, and values below
one stand for non-propagating cracks. Note that as the main crack approaches the
microcrack emanating from the nodule, interaction effects cause a substantial incre-
ment in ∆K at crack tip A, which propagates in opposite direction to the main crack
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Figure 8: Evolution of ∆K with the number of load cycles.

growth until joining it. As soon as the main crack and the first microcrack coalesce,
microcrack B on the opposite side of the nodule becomes dominant, taking the role
of the main crack. The above mechanism validates the theoretical model proposed
by Greno et al (1999). The effect of closure is of delaying the process, since as
the main crack propagation rate slows down, the coalescence with the microcrack
takes longer.

A more general situation is illustrated in Figure 9, where a main crack propagates
into an array of randomly distributed nodules with equatorial microcracks, labelled
from A to H. Obtained results allow to extend the propagation mechanism of the
previous example, as the tips B, D, F and H successively take the role of main crack
tip. At the same time, microcracks A, C, E and G propagate towards the main crack
tip, to finally become dormant due to load shielding effects. Microcracks I, J, K
and L do not take part in the main propagation path, however they present the same
general behaviour as the other microcracks. In this case more than one microc-
rack propagate simultaneously towards the tip of the dominant crack, justifying the
presence of the ‘bifurcations’ observed by Greno et al (1999).

A complete analysis of the micromechanics of crack propagation in ADI can be
found in the paper by Ortiz et al (2001a) where the DBEM results presented here
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were complemented with a statistical analysis in order to estimate their deviation
bounds. Besides, the shielding effect of microcracking on the main crack was stud-
ied using a continuum mechanics approach. The effects of the microstructure topol-
ogy on the fracture toughness of dual-phase ADI were studied by Basso et al (2010)
by means of finite element modeling and experimental testing.

 

Figure 9: Propagation paths for general a general nodule array.

 

Figure 10: Schematic of lap joint configuration.

Recently Sfantos and Aliabadi (2007) have presented a mutliscale boundary ele-
ment methodology for modeling crack growth. The method takes into account two
different scales of micro and macro and links the process through average volume
theory.
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Figure 11: Lap joint splice with seven small cracks emanating from fastener holes.

6.2 Bonded, riveted lap-joint in a fuselage

The phenomenon of multiple cracks of arbitrary lengths emanating from a row of
fastener holes in a bonded, riveted lap joint in a pressurized fuselage of a class
of airplanes has been the object of a number of studies in assessing the structural
integrity of aging airplanes.

 

Figure 12: A fastener hole with bearing stress distributed along the lower portion
of the boundary.

The problem studied in this example contains two lines of fasteners of radius r=2
mm and pitch p=25.4 mm (see Figure 10). The distance from the fasteners to the
edges of the splices is equal to p/2. Each splice is 1.6 mm thick and is made of
aluminum 2024-T3 with elastic modulus E=73000 MPa, Poison’s ratio ν=0.33 and
yield strength σY =320 MN/m2. The splice 1 contains seven small cracks emanating
from the fastener holes in the upper line as illustrated in Figure 11. Cracks 1, 3, 6
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and 7 have initial sizes r/4 and cracks 2, 4 and 5 have initial sizes r/2.

The joint is loaded in the y-direction with σ=69 MPa. For the local analysis, only
one sheet (splice 1) is modelled. Following Park and Atluri (1993) the forces at the
fastener holes are distributed according to the formula (see Figure 12):

br =
3by

4rh
cos2, (10)

where by= 1400 N is the load carried by each fastener, h is the splice thickness and
ψ is the angle indicating the position along the hole boundary.

Displacement boundary conditions uy=0 are applied at the top of the splice, while
the condition ux=0 is specified along the right and the left edges in order to simulate
a much longer joint. Crack propagation analysis is performed assuming cyclic
loading of constant amplitude with R=0. Paris’ constants are C=0.183×10−11 and
n=3.284.

Figure 13 shows the evolution of the crack paths together with the σ yy stress con-
tours. Results are shown for the initial geometry and after 21 and 22 crack extension
increments. After the 22th extension increment the plastic radius of crack tips 4 and
5 touched, so they merged in a single crack.

Mode I stress intensity factors, normalized with respect to K0 = σ
√

πr are pre-
sented in Figure 14 as a function of the number of loading cycles. Due to the nature
of the applied load (almost perpendicular to the crack directions) the Mode II stress
intensity factor are very low.

6.3 Propagation of three-dimensional multiple surface cracks

Generally speaking, fatigue cracks will almost always be initiated at the surface,
from regions of high-stress concentration due to changes in geometry or geometric
discontinuities created during fabrication. This is for instance the typical situation
of a welded structure, where the small weld defects enhance crack growth even
from the first few stress cycles. It is presented in this section the modeling of the
interaction and propagation of two identical semicircular surface cracks located on
parallel planes. Propagation is modeled in the stable regime (Region II in Figure
2) using the Paris’ Law in Eq. (2). Material constants are set C=3.10×10−10 and
n=2.92.

Figure 15 illustrates the model geometry and load configuration for the parallel
cracks. The model dimensions are scaled to the crack radius a. Figure 16 is a rear
view of the specimen where some of the boundary elements on its lateral face have
been removed to show the cracks more clearly. Crack geometries correspond to
those resulting after five propagation increments with N=500 cycles. Also shown
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 Figure 13:  Evolution of the crack path and the σyy stress with crack propagation: 

(a) initial geometry, (b) 21th increment, and (c) 22th increment.  
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Figure 13: Evolution of the crack path and the by stress with crack propagation: (a)
initial geometry, (b) 21th increment, and (c) 22th increment.
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Figure 14: Normalizes Mode-I stress intensity factors as a function of the loading
cycles.

in Figure 16 are the discontinuous triangular elements introduced to the model
during the automatic remeshing procedure. The sub-figure in the top right-hand
corner shows the crack propagation path on the free surface.

The results obtained are in good agreement with the crack path behaviour observed
in experiments. Soboyejo et al (1990) and the authors also noted a deviation of the
adjacent cracks tips as they approached each other, see Figure 17.

The evolution of the stress intensity factor components ∆KI , ∆KII and ∆KIII along
the crack fronts are plotted for both cracks in Figures 18, 19 and 20. The normalized
position on the crack front is given by the ratio between the distance η , measured
from the crack tips labeled A in Figure 15, and the total crack front length `. The
results in the figures show that the behaviour of ∆KI was almost unaffected by the
presence of the second crack for the first two propagation increments. , However,
after the third increment, when the adjacent tips passed each other, a shielding
effect took place and ∆KI values dramatically decreased. In contrast to ∆KI; ∆KII

values were early influenced by the presence of the second crack. Their absolute
values started at a maximum and they decreased after the second crack extension.
Note that the asymmetric evolution in the values of ∆KII made the cracks grow
towards each other. On the other hand, the absolute value of ∆KIII monotonously
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Figure 15: A prismatic bar with two semicircular offset parallel cracks under re-
mote tension.

 

Figure 16: Evolution of the crack geometry during propagation (The triangular
elements on the model surface were introduced by the automatic remeshing algo-
rithm).
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Figure 16:  Evolution of the crack geometry during propagation (The triangular 
elements on the model surface were introduced by the automatic remeshing 

algorithm). 

                           (a)                                                            (b)  
Figure 17:  Experimental evidence about the deviation of the adjacent crack tips 

during crack propagation: (a) schematic due to Soboyejo et al (1990) and (b) 
experiments by the authors. 

Figure 17: Experimental evidence about the deviation of the adjacent crack tips
during crack propagation: (a) schematic due to Soboyejo et al (1990) and (b) ex-
periments by the authors.

 

Figure 18: Evolution of ∆KI along the crack front with the extension increments.
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Figure 19: Evolution of ∆KII along the crack front with the extension increments.

 

Figure 20: Evolution of ∆KIII along the crack front with the extension increments.
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increased throughout the propagation analysis. However, these values were small
when compared to ∆KI and ∆KII .

Further examples on the modeling of three dimensional cracks with the DBEM can
be found in the works by Cisilino and Aliabadi (1997, 1999, 2004) and Wessel et
al (2001). These papers include comparisons with numerical experiments and also
results for elastoplastic DBEM crack propagation analysis.

7 Conclusions

In this paper the application of the dual boundary element method to crack growth
and coalescence was presented. It was shown that the method can be effectively
used to model multiple site damage for two-dimensional and three-dimensional
problems.
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