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Vibration Analysis of Damaged Circular Arches with Varying Cross-section

E. Viola 1, and F. Tornabene 2

Abstract: In this paper, generalized differential
quadrature techniques are applied to the computation
of the in-plane free vibrations of thin and thick non-
uniform circular arches in undamaged and damaged
configurations, when various boundary conditions are
considered. Structural damage is represented by one
crack in different positions and with various damage
levels. The crack present in a structural member can be
considered as a local stiffness reduction at the fracturing
section, which changes the dynamic behaviour of the
structure. Much effort has been devoted to dealing with
in-plane free vibration analysis of circular arches, but
only a few researchers have studied cracked circular
arch structures. The present analysis refers to the
complete in-plane equations of motion of non-uniform
circular arches, in terms of displacements and rotation.
Shearing and axial deformations as well as rotary
inertia are taken into account. For given geometric
and boundary conditions, the presence of a crack will
cause displacements and rotations of sections along the
arch greater than the corresponding values resulting in
an uncracked structure. In order to evaluate the effect
of cracks, a cracked section is modelled as an elastic
hinge with rotational constant which has to simulate
the local flexibility caused by the cracked section itself.
A crack will produce discontinuities in slope of the
elastic curve of the arch at the fractured cross-section. It
should be noted that in our investigation of the in-plane
dynamic response variation of damaged arches with
variable cross-section, the localized cracks will always
be considered as open.
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1 Introduction

An innovative procedure for the solution of partial differ-
ential equations is the method of differential quadrature
which was originally introduced by Bellman and Casti
(1971) as a simple and highly efficient technique. This
method can be used as a numerical algorithm to over-
come some of the drawbacks of other methods. The
mathematical fundamentals and recent developments of
the generalized differential quadrature (G.D.Q.) method
as well as its major applications in engineering are dis-
cussed in detail in the book by Shu (2000). As shown in
the literature, see Bert and Malik (1996), the G.D.Q. is
a global method which can obtain very accurate numeri-
cal results by using a considerably small number of grid
points. The generalized differential quadrature method is
used in this work to solve the basic governing equations
of thin and thick non-uniform circular arches comprising
radial and tangential as well as rotation displacements as
field variables. This technique is applied to the compu-
tation of the eigenvalues of the equations of motion gov-
erning the in-plane extensional free vibration of circular
arches with variable thickness and with transverse crack
in a generic cross-section. It is well known that the curvi-
linear geometry of the arch produces a coupling between
displacements and rotation in the equations of motion.
However, the problem can be somewhat simplified, in-
troducing certain assumptions on the kinematics assess-
ment of the arch and on its inertial properties. Among
the publications available in the open literature, many au-
thors have used the simplified model with negligible ro-
tary inertia, shearing deformation and axial extensibility
which gives a singular 6th order partial differential equa-
tion of motion. To improve the accuracy of natural fre-
quency, it is suggested that the axial deformation should
be taken into account. Tong, Mrad and Tabarrok (1988)
have used the exact solution of inextensible thin uniform
circular arches to study the in-plane free and forced vi-
bration of circular arches with variable cross-section. As
far as the application of the differential quadrature (D.Q.)
method is concerned, some papers should be mentioned.
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Gutierrez and Laura (1995) have used D.Q. technique in
conjunction with the δ-technique [Bert, Jang and Striz
(1988)] to obtain the fundamental natural frequency of
continuously variable section ring type arches, while De
Rosa and Franciosi (2000) have used a D.Q. method to
study uniform circular arches. More recently, Liu and
Wu (2001) have used the generalized differential quadra-
ture rule to study the free vibrations of inextensible circu-
lar arches. Variable cross-section arches under different
types of classical boundary conditions have been exam-
ined. As an improvement to the classical theory, Karami
and Malekzadeh (2004) removed the commonly used hy-
pothesis of the inextensibility of the central axis and in-
cluded rotary inertia in their formulation. They solved
the model which accounts axial deformability, governed
by two coupled differential equations for the tangential
and radial displacements. The present study differs from
the previous ones due to the fact that here, unlike in previ-
ous cases, the complete model is employed, which takes
the total of these three contributions into account and is
governed by a triplet of coupled second order differential
equations. The unknown rotation ϕ and displacements u,
v have to be determined.

In this work, the in-plane linear free vibrations of non-
uniform circular arches, in undamaged and damaged con-
figurations, taking into account shearing and axial defor-
mations and rotary inertia, are investigated. Numerous
previous studies have focused on the dynamic behaviour
of the arch with variable cross-section in the undamaged
configuration. The purpose of this paper, therefore, is to
provide a contribution in the study of the free harmonic
vibration problem of circular arches with varying cross-
section in damaged configuration, modelling the cracked
cross-section with an elastic hinge. For each arch part be-
tween the crack and the arch end, the equations of motion
have been written with no simplifying hypothesis. Once
the boundary conditions and jump conditions across the
damaged section have been set, the solution of the prob-
lem, in terms of natural frequencies and mode shapes,
has been obtained.

It is worth noting that the G.D.Q. and the G.D.Q. ele-
ment (G.D.Q.E.) methods represent computationally ef-
ficient techniques for the solution of partial differential
equations because they allow us to obtain highly accurate
results. These simple direct techniques can be applied in
a large number of cases to circumvent the difficulties of
programming complex algorithms for the computer, as

well as excessive use of storage and computer time.

2 Motion Equation of the Structural Problem

Let us consider a non-uniform circular arch referred to
a global system O(X ,Y,Z), as shown in figure 1, with
different boundary conditions. Let us suppose that the
system vibrates freely in the O(X ,Y) vertical plane, with
small oscillations around a circular and unstressed con-
figuration of equilibrium. Fig. 1 illustrates a prismatic
isotropic arch having a general cross-section of area A(s),
moment of inertia I(s), radius of curvature r, total length
s0 along the centroidal axis and full amplitude ϑ0. The
Z = 0 plane contains the centroidal axis and is a symme-
try plane for the road. A curvilinear abscissa s spans the
axis line, the points of which are described by X(s) and
Y (s) coordinates in the general system. A local reference
system o′(x(s),y(s)) is defined according to the tangen-
tial and the normal axis at the generic abscissa of the axis
line. The kinematics of the arch is thoroughly defined by
assigning the tangential displacement u(s, t), the normal
displacement v(s, t) and the rotation angle about the bi-
normal axis ϕ(s, t) of the s coordinate cross-section at a
moment of time t.
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Figure 1 : Prismatic circular arch having a general cross-
section

The strain displacement relations of the arch are deter-
mined using the definitions for the strain displacements
in a curvilinear coordinate system. The strain displace-
ment relations can be written as:

ε =
∂u(s, t)

∂s
− v(s, t)

r

γ =
u(s, t)

r
+

∂v(s, t)
∂s

+ϕ(s, t)

χ =
∂ϕ(s, t)

∂s
(1)
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in which ε and γ are the normal and shear strain com-
ponents, respectively, whereas χ denotes curvature. It is
worth noting that the strain-displacement relations (1) are
valid when the displacements are assumed to be small.

Taking into account the effect of shear and axial defor-
mations and rotary inertia, the equations of motion can
be written as follows:

∂N (s, t)
∂s

− T (s, t)
r

= ρA(s)
∂2u(s, t)

∂t2

∂T (s, t)
∂s

+
N (s, t)

r
= ρA(s)

∂2v(s, t)
∂t2

∂M (s, t)
∂s

−T (s, t) = ρI (s)
∂2ϕ(s, t)

∂t2 (2)

for s ∈ [0, s0], and t > 0. In the previous equations,
N(s, t), T (s, t) and M(s, t), denote the stress resultants
specified as axial force, shear force and bending moment,
respectively. Moreover, ρ is the mass density for unit vol-
ume.

For a homogeneous isotropic Hookean material, the in-
ternal forces can be expressed by the constitutive rela-
tions in terms of displacements:

N(s, t) = EA(s)
(

∂u(s, t)
∂s

− v(s, t)
r

)

T (s, t) = GΛ(s)
(

u(s, t)
r

+
∂v(s, t)

∂s
+ϕ(s, t)

)

M(s, t) = EI (s)
∂ϕ(s, t)

∂s
(3)

in which E and G are the well known Young’s and shear
modules and Λ = A

/
k0 where k0 denotes the shear cor-

rection factor.

Substituting relations (3) in (2), the equations of motion
can be written in terms of displacement components as:

∂
∂s

(
EA(s)

(
∂u(s, t)

∂s
− v(s, t)

r

))

− GΛ(s)
r

(
u(s, t)

r
+

∂v(s, t)
∂s

+ϕ(s, t)
)

= ρA(s)
∂2u(s, t)

∂t2

∂
∂s

(
GΛ(s)

(
u(s, t)

r
+

∂v(s, t)
∂s

+ϕ(s, t)
))

+
EA(s)

r

(
∂u(s, t)

∂s
− v(s, t)

r

)

= ρA(s)
∂2v(s, t)

∂t2 (4)

∂
∂s

(
EI (s)

∂ϕ(s, t)
∂s

)

−GΛ(s)
(

u(s, t)
r

+
∂v(s, t)

∂s
+ϕ(s, t)

)

= ρI (s)
∂2ϕ(s, t)

∂t2

In equations (4), it is noted that the effects of axial de-
formation, shear deformation and rotary inertia are con-
sidered. The coupled system of second order differen-
tial equations (4), which represents the equilibrium equa-
tions in terms of displacements u = u(s, t), v = v(s, t)
and ϕ = ϕ(s, t), contains all the three aspects of the
problem of elastic equilibrium, namely equilibrium equa-
tions, strain-displacement and constitutive relations.

Then, assuming non-uniform circular cross-section and
constant material properties through the arch, the equa-
tions (4) can be rewritten as:

EA
∂2u
∂s2 +E

dA
ds

∂u
∂s

− GΛ
r2 u−

(
EA
r

+
GΛ

r

)
∂v
∂s

−E
dA
ds

v
r
− GΛ

r
ϕ = ρA

∂2u
∂t2

GΛ
∂2v
∂s2 +

G
k0

dA
ds

∂v
∂s

− EA
r2 v+

(
EA
r

+
GΛ

r

)
∂u
∂s

+
G
k0

dA
ds

u
r

+GΛ
∂ϕ
∂s

+
G
k0

dA
ds

ϕ = ρA
∂2v
∂t2

EI
∂2ϕ
∂s2 +E

dI
ds

∂ϕ
∂s

−GΛϕ−GΛ
u
r
−GΛ

∂v
∂s

= ρI
∂2ϕ
∂t2 (5)

Equations (5) are the governing equations for the in-
plane free vibrations of arches with varying cross-
section.

Using the separation of variables, it is possible to seek
solutions that are harmonic in time and which have a fre-
quency of ω; then, the axial and radial displacements and
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the rotation angle can be written as follows:

u(s, t) = U(s)eiωt

v(s, t) = V (s)eiωt

ϕ(s, t) = Φ(s)eiωt (6)

where the vibration spatial amplitude values
(U(s),V(s),Φ(s)) fulfil the fundamental differen-
tial system:

EA
d2U
ds2 +E

dA
ds

dU
ds

− GΛ
r2 U −

(
EA
r

+
GΛ

r

)
dV
ds

−E
dA
ds

V
r
− GΛ

r
Φ = −ω2ρAU

GΛ
d2V
ds2

+
G
k0

dA
ds

dV
ds

− EA
r2

V +
(

EA
r

+
GΛ
r

)
dU
ds

+
G
k0

dA
ds

U
r

+GΛ
dΦ
ds

+
G
k0

dA
ds

Φ = −ω2ρAV

EI
d2Φ
ds2 +E

dI
ds

dΦ
ds

−GΛΦ−GΛ
U
r
−GΛ

dV
ds

= −ω2ρIΦ (7)

In this paper, three kinds of boundary conditions are con-
sidered at each end of the arch, namely the fully clamped
edge boundary condition (C), the simply supported edge
boundary condition (S) and the free edge boundary con-
dition (F). The equations describing the boundary condi-
tions can be written as follows:

1. Clamped edge boundary condition (C):

u(s, t) = 0 , v(s, t) = 0 , ϕ(s, t) = 0 at s = 0 or s = s0

(8)

2. Simply supported edge boundary condition (S):

u(s, t)= 0 , v(s, t)= 0 , M (s, t)= 0 at s = 0 or s = s0

(9)

3. Free edge boundary condition (F):

N (s, t)= 0 , T (s, t)= 0 , M (s, t)= 0 at s = 0 or s = s0

(10)

3 G.D.Q.E. Technique

The G.D.Q. method will be used to discretize the deriva-
tives in the governing equations and the boundary condi-
tions. The G.D.Q. approach was developed by Shu and
Richards (1992) to improve the D.Q. technique for the
computation of weighting coefficients. The essence of
the differential quadrature method is that, the partial or
total derivate of a smooth function with respect to a vari-
able is approximated by a weighted sum of function val-
ues at all discrete points in that direction. The weighting
coefficients are not related to any special problem and
only depend on the grid points and the derivate order.
In this methodology, an arbitrary grid distribution can be
chosen without any limitation.

Thus, the nth order derivative of function f (s) with re-
spect to s at a grid points si, can be approximated by the
G.D.Q. approach:

∂n f (s)
∂sn

∣∣∣∣
s=si

=
N

∑
j=1

ς(n)
i j f (s j), i = 1,2, .......,N (11)

where ς(n)
i j are the weighting coefficients of the nth order

derivative at the ith sampling points along the domain. N
is the total number of the sampling points of the grid dis-
tribution and f (s j) are the function values at grid points.

The weighting coefficients can be determined by the
chosen interpolation rule. For the cases treated in the
present paper, Lagrange polynomial functions have been
adopted.

The Lagrange interpolated polynomials can be defined
by the formula:

p j (s) =
L(s)

(s− s j)L (1) (s j)
, j = 1, ....,N (12)

where:

L(s) =
N

∏
i=1

(s− si), L (1)(s j) =
N

∏
i=1,i�= j

(s j − si) (13)

With this choice, some simple recursive formulas are
available for finding weighting coefficients [Shu (1991)].
For the first order derivative, we have:

ς(1)
i j =

L (1)(si)
(si − s j)L (1)(s j)

, i, j = 1,2, ......,N, i �= j (14)
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For higher order derivatives, one gets iteratively:

ς(n)
i j = n

(
ς(n−1)

ii ς(1)
i j − ς(n−1)

i j

si − s j

)
,

i �= j, n = 2,3, ........,N−1, i, j = 1,2, .......,N (15)

N

∑
j=1

ς(n)
i j = 0 ⇒ ς(n)

ii = −
N

∑
j=1, j �=i

ς(n)
i j ,

n = 1,2,3, ........,N−1, i, j = 1,2, .......,N (16)

Civan and Sliepcevich (1985) introduced domain de-
composition technique with D.Q. method for the first
time. The G.D.Q. method may be employed as an ef-
ficient numerical tool for solving the domain problems
which have every form of discontinuity in geometry, ma-
terial or loading and boundary conditions in the form
of sub-domain elements to be called G.D.Q.E. [Chen
(2000)]. As with the finite element method (FEM), in the
G.D.Q.E. method the domain of a problem is first sepa-
rated into a certain number of sub-domains or elements.
Then, the G.D.Q. discretization is carry out on each el-
ement. The governing differential or partial differential
equations defined on each element, the transition condi-
tions on inter-element boundaries and the boundary con-
ditions on the domain boundary are in computable form
after G.D.Q. discretization. Assembling all the discrete
fundamental equations, the overall algebraic system can
be obtained and used to solve the problem. Fig. 2 shows
a generic arch with different constant thicknesses. For
such problems, the vector of boundary degree of free-
dom should be modified to include the displacements at
the common section of each of the two adjacent sub-
domains.

The governing equations of each sub-domain are similar
to those of a single domain obtained before. In addition
to the external boundary conditions, the kinematical and
physical compatibility should be satisfied at the common
section s∗ of the two adjacent sub-domains.

The kinematical compatibility conditions include the
continuity of axial and radial displacements as well as ro-
tation. The physical compatibility conditions can only be
the three continuous conditions for the bending moment,
shear force and axial force at the domain decomposition
point.

The kinematical compatibility at the generic abscissa s∗,

 

eϑ  
r  

Section  ‘ *s ’ 

O  

1eϑ +

Figure 2 : Two adjacent sub-domains ‘e+1’ and ‘e’ at the
common section ‘s∗’

where the discontinuity occurs, may be stated as:

ue+1(s∗, t)−ue(s∗, t) = 0

ve+1(s∗, t)−ve(s∗, t) = 0

ϕe+1(s∗, t)−ϕe(s∗, t) = 0 (17)

and the physical compatibility conditions require that:

N(e+1)(s∗, t)−N(e)(s∗, t) = 0

T (e+1)(s∗, t)−T (1)(s∗, t) = 0

M(e+1)(s∗, t)−M(e)(s∗, t) = 0 (18)

Usually, as in this paper, the same number of sampling
points Ne = N for each sub-domain ‘e’ is used to simplify
the computational program.

With Lagrange interpolating polynomials, the
Chebyshev-Gauss-Lobatto sampling point rule proves
efficient for numerical reasons [Shu, Chen, Xue and Du
(2001)], so that for such a collocation the approximation
error of dependent variable decreases as the number
of nodes increases. For the numerical computations
presented in this paper, the coordinates of grid points are
chosen as:

si =
1−cos

(
i−1

Ne−1

)
π

2
se, i = 1, ....,Ne (19)

where se is the length of each arch element generated by
every form of discontinuity in geometry, material or load-
ing, while Ne is the total number of sampling points used
to discretize each arch element.
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4 Crack Modelling

In the present study, the transverse crack has been con-
sidered as open. A damaged arch is now considered, in
which the damage is localized at a generic section la-
belled by the angle ϑcr ∈ ]0,ϑ0[. A cracked arch can
be viewed as a continuum with a local stiffness reduc-
tion at the fracturing section. A fracture at a particu-
lar cross-section produces a discontinuity in slope of the
elastic curve of the arch at the cross-section itself. In
other words, a crack oriented normally to the axis of the
arch can be assumed to produce only a local change in
slope without altering the overall mode shape substan-
tially from that of the corresponding uncracked arch. The
notched section is modelled as an elastic hinge with a ro-
tational constant Kϕ chosen to simulate the notch effects,
as first proposed by Chondras and Dimarogonas (1980).

0

cr

0

K

r

O

Figure 3 : Notched section modelled as an elastic hinge

If the crack always remains open during the vibration of
the arch, it can be modelled as a massless rotational elas-
tic spring at the damaged cross-section [Viola, Federici
and Nobile (2001), Viola, Nobile and Federici (2002)].
The stiffness Kϕ of the spring can be related in a precise
way to the geometry of damage, as suggested, for exam-
ple, by Rizos, Aspragathos and Dimarogonas (1990). For
the vibration analysis the arch is split into two unnotched
arch elements joined together at the fracturing section by
a rotational spring.

The conditions at the fracturing section s = scr can be
written for the kinematical compatibility as:

u(e+1)(scr, t)−u(e)(scr, t) = 0

v(e+1)(scr, t)−v(e)(scr, t) = 0

Kϕ

(
ϕ(e+1)(scr, t)−ϕ(e)(scr, t)

)
= M(e)(scr, t) (20)

The nodal equilibrium conditions at s = scr are:

N(e+1)(scr, t)−N(e)(scr, t) = 0

T (e+1)(scr, t)−T (e)(scr, t) = 0

M(e+1)(scr, t)−M(e)(scr, t) = 0 (21)

The undamaged arch corresponds to Kϕ → ∞, or, equiva-
lently, to ϕ(e+1)(scr, t)−ϕ(e)(scr, t) = 0. In the following
section the case of an arch with varying cross-section in
undamaged and damaged configurations, having constant
elastic properties in each element, will be investigated.

5 Numerical Implementation

The numerical operations illustrated above enable one to
write the equations of motion in discrete form, transform-
ing every space derivative into a weighted sum of node
values of dependent variables applying the G.D.Q. pro-
cedure. Each triplet of approximated equations is valid
in a single sampling point belonging to one of the arch
segments. For the generic arch element ‘e’ and its in-
terior sampling points, i = 2,3, ...,Ne−1, the governing
equations can be discretized as follows:

EeAe
i

Ne

∑
j=1

ς(2)e
i j Ue

j +Ee
Ne

∑
j=1

ς(1)e
i j Ae

j

Ne

∑
j=1

ς(1)e
i j Ue

j −
GeΛe

i

r2 Ue
i

−
(

EeAe
i

r
+

GeΛe
i

r

) Ne

∑
j=1

ς(1)e
i j V e

j −
Ee

r
V e

i

Ne

∑
j=1

ς(1)e
i j Ae

j

− GeΛe
i

r
Φe

i = − ω2ρeAe
i U

e
i

GeΛe
i

Ne

∑
j=1

ς(2)e
i j V e

j +
Ge

k0

Ne

∑
j=1

ς(1)e
i j Ae

j

Ne

∑
j=1

ς(1)e
i j V e

j −
EeAe

i

r2 V e
i

+
(

EeAe
i

r
+

GeΛe
i

r

) Ne

∑
j=1

ς(1)e
i j Ue

j +
Ge

k0r
Ue

i

Ne

∑
j=1

ς(1)e
i j Ae

j

+GeΛe
i

Ne

∑
j=1

ς(1)e
i j Φe

j +
Ge

k0
Φe

i

Ne

∑
j=1

ς(1)e
i j Ae

j = − ω2ρeAe
iV

e
i

EeIe
i

Ne

∑
j=1

ς(2)e
i j Φe

j +Ee
Ne

∑
j=1

ς(1)e
i j Ie

j

Ne

∑
j=1

ς(1)e
i j Φe

j −GeΛe
i Φe

i

− GeΛe
i

r
Ue

i − GeΛe
i

Ne

∑
j=1

ς(1)e
i j V e

j = − ω2ρeIe
i Φe

i (22)

Applying the G.D.Q. methodology, the discretized forms
of the boundary conditions are given as follows:
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Figure 4 : Stepped arch with two section discontinuities
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Figure 5 : Tapered arch with a linear unsymmetric height
variation

1. Clamped edge boundary condition (C):

Ue
i = 0 , V e

i = 0 , Φe
ι = 0 f or i = 1 or i = Ne

(23)

2. Simply supported edge boundary condition (S):

Ue
i = 0 , V e

i = 0 ,
Ne

∑
j=1

ς(1)e
i j Φe

j = 0 f or i = 1 or i = Ne

(24)

3. Free edge boundary condition (F):

Ne

∑
j=1

ς(1)e
i j Ue

j −
V e

i

r
= 0,

Ne

∑
j=1

ς(1)e
i j V e

j +
Ue

i

r
+Φe

i = 0,

Ne

∑
j=1

ς(1)e
i j Φe

j = 0 for i = 1 or i = Ne (25)

where Ne is the number of sampling points for the
arch element ‘e’.

It should be noted that in correspondence of each discon-
tinuity regarding the properties of the arch, the jump con-
ditions must be imposed by means of the G.D.Q. method:

Ue+1
1 = Ue

Ne

Ne+1

∑
j=1

ς(1)e+1
1 j Ue+1

j − V e+1
i

r
=

Ne

∑
j=1

ς(1)e
Ne j U

e
j −

V e
i

r

V e+1
1 = V e

Ne
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In presence of crack, the jump conditions can be written
in discrete form as:
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Applying the differential quadrature procedure, the
whole system of differential equations can be discretized
and the global assembling leads to the following set of
linear algebraic equations:[

Kbb Kbd

Kdb Kdd

][
δb

δd

]
= ω2

[
0 0
0 Mdd

][
δb

δd

]
(28)

In the above matrices and vector, the partitioning is set
forth by subscripts b and d, referring to the system de-
grees of freedom and standing for boundary and domain,
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respectively. In order to make the computation more effi-
cient, kinematic condensation of non-domain degrees of
freedom is performed:(

Kdd −Kdb (Kbb)
- 1 Kbd

)
δd = ω2Mddδd (29)

The natural frequencies of the structure considered can
be determined by making the following determinant
equal zero:∣∣∣(Kdd −Kdb (Kbb)

- 1 Kbd

)
−ω2Mdd

∣∣∣ = 0 (30)

6 Applications and Results

Based on the above derivations, in the present paragraph
some results and considerations about the free vibration
problem of non-uniform circular arches with different
boundary conditions in damaged and undamaged con-
figurations are presented. The analysis has been carried
out by means of numerical procedures illustrated above.
Various typologies of rectangular cross-section arches,
with constant width b, are considered: the arch with uni-
form cross-section, the stepped arch and the tapered arch.
In particular, for the tapered arch, two kinds of cross-
sectional height variation are examinated.

0
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2

0

0h

r

O

0

2

Figure 6 : Tapered arch with a quadratic symmetric
height variation

The cross-sectional height for these cases varies as:

Linear unsymmetric variation

1) h(s) = h0

(
1−η

s
s0

)
0 ≤ η < 1 (31)

Quadratic symmetric variation

2) h(s) =
h0

s2
0

(
s2

0−2s0s+2s2) (32)

where s0 is the total length of the arch, h0 is the height at
the right end of the arch and η is the taper parameter. The
kinds of variation of arch height are shown in Figs. 5 and
6. The Chebyshev-Gauss-Lobatto grid is employed in all
examples in this work.

The main purpose of this study is to emphasize how the
modal parameters vary with the damage level and crack-
ing location. In the following, numerical results related
to different non-uniform circular arches - the mechanical
characteristics of which are listed in Tab. 1 - are pre-
sented. Different damage locations ϑcr and two damage
levels have been considered. For the two damage levels,
the stiffnesses of the rotational spring are (1) Kϕ = 10EI
and (2) Kϕ = EI, respectively.

Table 1 : Physical parameters used in the analysis of free
vibrations of the arches being considered.

Parameter Value
Density of mass ρ 7860 kg / m3

Young’s modulus E 2.1 ·1011Pa
Poisson coefficient ν 0.3
Shear factor k0 1.2

In order to verify the accuracy, Tab. 2 shows the first
eight eigenfrequencies corresponding to the clamped-
clamped uniform arch. The exact solution is compared to
the G.D.Q.E. solution for the damaged arch with a rota-
tional elastic hinge. It is evident how the G.D.Q.E. tech-
nique produces coincident results, when compared to the
analytical ones, using only a few sampling points along
the two sub-domains. Some new results for non-uniform
arches with different boundary conditions, α0 opening
angle, ϑ0 full amplitude and damage locations ϑcr are
presented in Tabs. 3-6. Tab. 3 shows the first eigen-
frequencies of clamped-clamped and hinged-hinged two
stepped circular arches with two different locations and
severities of the damage.

The second location of the damage is in the same section
where the discontinuity of the cross-sectional height oc-
curs. In this case, the stiffness of the rotational is related
to the shortest thickness of the stepped arch. As shown
on Tab. 3, the frequencies decrease when the damage
level increases. Tabs. 4 and 5 show other typologies of
variable section arch with different end conditions. The
first frequencies for a linearly varying height of the arch
cross-section are listed for different damage positions.
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Table 2 : Frequencies for a uniform clamped-clamped circular arch with centroidal axis radius r = 1m, width b =
0.06m and constant thickness h0 = 0.08m in undamaged and damaged configurations. Stiffnesses of the rotational
spring are respectively: (1) Kϕ = 10EI, (2) Kϕ = EI. The material properties are reported in Table 1.

Mode Undamaged Damaged (1) Damaged (2)
[Hz] Exact G.D.Q. Exact G.D.Q. Exact G.D.Q.
Circular arch with constant thickness: ϑ0 = 100◦, α0 = 40◦

Angular coordinate of the damage: ϑcr = 60◦

1 328.2 328.18 321.4 321.40 295.1 295.06
2 546.6 546.57 540.6 540.58 520.9 520.91
3 854.1 854.14 852.0 851.97 838.8 838.76
4 1078.5 1078.46 1037.1 1037.12 939.8 939.84
5 1642.0 1642.02 1636.0 1635.97 1612.2 1612.22
6 1646.3 1646.32 1642.9 1642.86 1642.6 1642.62
7 2240.2 2240.22 2177.8 2177.81 2047.9 2047.89
8 2813.9 2813.93 2777.2 2777.16 2716.3 2716.28
Angular coordinate of the damage: ϑcr = 80◦

1 328.2 328.18 323.3 323.32 302.7 302.67
2 546.6 546.57 533.7 533.67 493.3 493.29
3 854.1 854.14 842.3 842.33 806.9 806.90
4 1078.5 1078.46 1055.4 1055.42 1010.6 1010.59
5 1642.0 1642.02 1626.2 1626.24 1588.5 1588.45
6 1646.3 1646.32 1644.4 1644.43 1644.3 1644.26
7 2240.2 2240.22 2236.7 2236.73 2225.9 2225.92
8 2813.9 2813.93 2751.4 2751.43 2592.6 2592.64
Angular coordinate of the damage: ϑcr = 90◦

1 328.2 328.18 326.6 326.56 322.0 321.99
2 546.6 546.57 544.6 544.61 539.2 539.19
3 854.1 854.14 853.4 853.35 850.8 850.78
4 1078.5 1078.46 1068.6 1068.61 1039.1 1039.13
5 1642.0 1642.02 1610.0 1609.96 1520.4 1520.37
6 1646.3 1646.32 1646.2 1646.20 1646.2 1646.19
7 2240.2 2240.22 2182.6 2182.59 2063.8 2063.78
8 2813.9 2813.93 2755.8 2755.82 2664.9 2664.87

Finally, Tab. 6 shows the frequencies of the arch with
quadratic varying cross-section for different damage lo-
cations and boundary conditions. The frequencies ap-
pear to be dependent on both crack position and damage
severity, as well as on the boundary conditions, as one
can infer from Tabs. 2-6. As expected, the frequency
decreases with the damage severity, i.e. as the elastic
stiffness of rotational spring decreases. For a fixed value
of the elastic stiffness of rotational spring, the frequency
variations depend on the crack position along the arch.

The convergence and the stability of the first five funda-
mental natural frequencies for non-uniform damaged cir-

cular arch with different boundary conditions are shown
in Figs. 7 and 8. As reported, well converged results for
the first five frequencies can be obtained with N = 17.

Comparing the results, one could conclude that in these
cases using N = 17 yields very accurate values. However,
it is to be noted that, when passing from undamaged con-
figurations to damaged ones, for the first five modes more
grid points are needed, to compute the correct eigenpa-
rameters.

It is shown that the accuracy of the numerical solution
is steady with increasing N and does not decrease due to
numerical instabilities even if N becomes too large.
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Table 3 : Frequencies for two stepped arches with centroidal axis radius r = 1m, width b = 0.1m and different
constant thicknesses h1 = 0.08m and h2 = 0.06m in undamaged and damaged configurations. Stiffnesses of the
rotational spring are respectively: (1) Kϕ = 10EI, (2) Kϕ = EI. The material properties are reported in Table 1.

Mode sequences [Hz]
1 2 3 4 5

Stepped circular arch: ϑ0 = 100◦, α0 = 40◦, ϑ1 = 30◦, ϑ2 = 70◦

Angular coordinate of the damage: ϑcr = 60◦

C-C Undamaged 272.79 496.95 794.69 915.99 1377.42
Damaged (1) 268.58 486.37 793.49 883.24 1377.20
Damaged (2) 251.92 452.59 779.95 817.42 1376.53

Angular coordinate of the damage: ϑcr = 30◦

C-C Undamaged 272.79 496.95 794.69 915.99 1377.42
Damaged (1) 260.71 482.86 781.57 915.61 1343.09
Damaged (2) 225.02 453.78 756.31 914.97 1266.29

Angular coordinate of the damage: ϑcr = 60◦

S-S Undamaged 164.82 399.17 734.42 782.46 1164.71
Damaged (1) 162.92 388.34 712.10 779.86 1162.64
Damaged (2) 154.88 350.52 653.63 777.46 1156.44

Angular coordinate of the damage: ϑcr = 30◦

S-S Undamaged 164.82 399.18 734.43 782.47 1164.71
Damaged (1) 153.69 389.60 734.00 774.78 1118.67
Damaged (2) 118.91 368.20 731.55 755.35 1027.11

Table 4 : Frequencies for the linear tapered arches with centroidal axis radius r = 1m, width b = 0.1m and cross-
sectional height variation (1) with h0 = 0.08m in undamaged and damaged configurations. Stiffnesses of the rota-
tional spring are respectively: (1) Kϕ = 10EI, (2) Kϕ = EI. The material properties are reported in Table 1.

Mode sequences [Hz]
1 2 3 4 5

Linear tapered circular arch: ϑ0 = 140◦, α0 = 20◦, η = 0.75
Angular coordinate of the damage: ϑcr = 120◦

C-C Undamaged 87.74 177.65 324.25 475.29 689.83
Damaged (1) 85.76 172.27 318.032 474.78 686.10
Damaged (2) 78.06 157.27 303.74 473.56 670.37

Angular coordinate of the damage: ϑcr = 60◦

C-C Undamaged 87.74 177.65 324.25 475.29 689.83
Damaged (1) 85.25 177.41 316.89 466.03 689.70
Damaged (2) 74.25 176.43 288.68 441.71 689.08

Angular coordinate of the damage: ϑcr = 120◦

S-S Undamaged 49.38 133.27 258.44 407.31 599.40
Damaged (1) 47.42 129.51 256.12 407.09 588.96
Damaged (2) 39.37 118.63 249.99 406.39 552.21

Angular coordinate of the damage: ϑcr = 60◦

S-S Undamaged 49.38 133.27 258.44 407.31 599.40
Damaged (1) 47.92 133.27 250.62 401.87 596.99
Damaged (2) 40.85 133.08 221.01 386.44 588.03
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Table 5 : Frequencies for the quadratic tapered arch with centroidal axis radius r = 1m, width b = 0.1m and
cross-sectional height variation (2) with h0 = 0.08m in undamaged and damaged configurations. Stiffnesses of the
rotational spring are respectively: (1) Kϕ = 10EI, (2) Kϕ = EI. The material properties are reported in Table 1.

Mode sequences [Hz]
1 2 3 4 5

Linear tapered circular arch: ϑ0 = 70◦, α0 = 0◦, η = 0.8
Angular coordinate of the damage: ϑcr = 30◦

C-F Undamaged 69.80 229.04 543.78 993.71 1492.31
Damaged (1) 66.52 224.89 518.64 993.44 1448.58
Damaged (2) 48.92 208.08 449.27 992.63 1327.23

Angular coordinate of the damage: ϑcr = 50◦

C-F Undamaged 69.80 229.04 543.78 993.71 1492.31
Damaged (1) 68.99 213.29 516.54 992.82 1446.19
Damaged (2) 61.96 150.64 456.50 990.43 1316.92

Angular coordinate of the damage: ϑcr = 30◦

C-S Undamaged 409.27 631.05 954.34 1377.57 2065.16
Damaged (1) 388.15 627.80 944.67 1347.97 1984.56
Damaged (2) 319.05 620.07 917.01 1273.65 1839.79

Angular coordinate of the damage: ϑcr = 60◦

C-S Undamaged 409.27 631.05 954.34 1377.57 2065.16
Damaged (1) 383.33 629.39 923.11 1371.81 2059.98
Damaged (2) 324.83 626.41 872.71 1362.94 2042.82

Table 6 : Frequencies for the linear tapered arch with centroidal axis radius r = 1m, width b = 0.1m and cross-
sectional height variation (1) with h0 = 0.1m in undamaged and damaged configurations. Stiffnesses of the rotational
spring are respectively: (1) Kϕ = 10EI, (2) Kϕ = EI. The material properties are reported in Table 1.

Mode sequences [Hz]
1 2 3 4 5

Quadratic tapered circular arch: ϑ0 = 120◦, α0 = 30◦

Angular coordinate of the damage: ϑcr = 40◦

C-C Undamaged 170.63 309.73 538.37 701.81 883.34
Damaged (1) 165.10 306.64 534.48 686.22 867.63
Damaged (2) 145.65 297.71 519.52 643.87 837.78

Angular coordinate of the damage: ϑcr = 70◦

C-C Undamaged 170.63 309.73 538.37 701.81 883.34
Damaged (1) 167.17 306.76 517.99 701.81 882.79
Damaged (2) 154.70 296.79 468.08 701.81 880.71

Angular coordinate of the damage: ϑcr = 40◦

S-S Undamaged 82.16 217.90 408.36 632.32 814.29
Damaged (1) 78.74 217.16 400.50 610.65 811.36
Damaged (2) 65.58 214.54 372.63 561.34 805.53

Angular coordinate of the damage: ϑcr = 70◦

S-S Undamaged 82.16 217.90 408.36 632.32 814.29
Damaged (1) 80.74 214.71 393.63 632.17 814.28
Damaged (2) 75.12 202.87 355.12 631.76 813.59
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Figure 7 : Convergence characteristics of the first five
frequencies for the clamped-clamped tapered arch with
centroidal axis radius r = 1m, width b = 0.1m, full am-
plitude ϑ0 = 120◦ and quadratic cross-sectional height
variation with h0 = 0.08m, α0 = 30◦ in damaged config-
uration. The stiffness of the rotational spring is Kϕ = EI.
Angular coordinate of the cracked cross-section: ϑcr =
40◦. The material properties are reported in Table 1.
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Figure 8 : Convergence characteristics of the first five
frequencies for the hinged-hinged tapered arch with cen-
troidal axis radius r = 1m, width b = 0.1m, full ampli-
tude ϑ0 = 120◦ and quadratic cross-sectional height vari-
ation with h0 = 0.08m, α0 = 30◦ in damaged configura-
tion. The stiffness of the rotational spring is Kϕ = EI.
Angular coordinate of the cracked cross-section: ϑcr =
40◦. The material properties are reported in Table 1.

Figs. 9 and 10 represent the first four modal shapes,
for both undamaged and damaged configurations for

clamped-clamped and hinged-hinged circular arches, re-
spectively, with quadratic height variation. Furthermore,
Fig. 11 shows the 3D modal shapes for the damaged
clamped-clamped circular arch with quadratic height
variation.

Concerning the undamaged reference configuration, the
even and odd modes are, respectively, symmetric and
skew-symmetric with respect to the middle section of the
arch. The four modal shapes of the hinged arch show
a different behaviour, when compared to the others; in
fact, the principal displacement component is the radial
one, while practically null tangential translation occurs.

In the damaged cases, mode shapes show no
symmetry/skew-symmetry anymore and generally
differ from the undamaged ones.

7 Conclusion

This paper presents the in-plane free vibrations analy-
sis of circular arches with uniform, continuously vary-
ing and stepped cross-sections to illustrate the versatility
of the generalized differential quadrature method. Dif-
ferent boundary conditions have been considered. Both
undamaged and damaged configurations have been ex-
plored, modelling the cracked section as an elastic ro-
tational spring. Examples presented show that the gen-
eralized differential quadrature method can produce ac-
curate results utilizing only a small number of sampling
points. The G.D.Q. technique provides a very simple al-
gebraic formulation to determine the weighting coeffi-
cients required by the differential quadrature approxima-
tion without in any way restricting the choice of mesh
grids. The discretizing and the programming procedure
are easy. Fast convergence and very good stability have
been shown. From the numerical computation, it can
be concluded that the G.D.Q.E. approach is an efficient
method for the vibration analysis of circular arches with
varying cross-section in undamaged and damaged con-
figurations due to its high order of accuracy and low re-
quirement for virtual storage and computational effort.
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Figure 9 : Modal shapes referring to the free vibrations of the clamped-clamped tapered circular arch with centroidal
axis radius r = 1m, width b = 0.1m, full amplitude ϑ0 = 120◦ and quadratic cross-sectional height variation with
h0 = 0.08m in undamaged and damaged configurations. The stiffness of the rotational spring is Kϕ = EI. Angular
coordinate of the cracked cross-section: ϑcr = 80◦. The material properties are reported in Table 1.
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Figure 10 : Modal shapes relative to the free vibrations of the hinged-hinged tapered circular arch with centroidal
axis radius r = 1m, width b = 0.1m, full amplitude ϑ0 = 120◦ and quadratic cross-sectional height variation with
h0 = 0.08m in undamaged and damaged configurations. The stiffness of the rotational spring is Kϕ = EI. Angular
coordinate of the cracked cross-section: ϑcr = 80◦. The material properties are reported in Table 1.
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Figure 11 : 3D modal shapes relative to the free vibrations of the clamped-clamped tapered circular arch with cen-
troidal axis radius r = 1m, width b = 0.1m, full amplitude ϑ0 = 120◦ and quadratic cross-sectional height variation
with h0 = 0.08m in damaged configurations. The stiffness of the rotational spring is Kϕ = EI. Angular coordinate
of the cracked cross-section: ϑcr = 80◦. The material properties are reported in Table 1.
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