
Computer Modeling in Engineering & Sciences CMES, vol.121, no.1, pp.249-272, 2019

Analytical and Numerical Solutions of Riesz Space Fractional 
Advection-Dispersion Equations with Delay

Mahdi Saedshoar Heris1 , Mohammad Javidi1 and Bashir Ahmad2, ∗

Abstract: In this paper, we propose numerical methods for the Riesz space fractional 
advection-dispersion equations with delay (RFADED). We utilize the fractional backward 
differential formulas method of second order (FBDF2) and weighted shifted Grünwald 
difference (WSGD) operators to approximate the Riesz fractional derivative and present 
the finite difference method for the RFADED. Firstly, the FBDF2 and the shifted Grünwald 
methods are introduced. Secondly, based on the FBDF2 method and the WSGD operators, 
the finite difference method is applied to the problem. We also show that our numerical 
schemes are conditionally stable and convergent with the accuracy of O(κ + h2) and O(κ2 

+ h2) respectively. Thirdly we find the analytical solution for RFDED in terms Mittag-
Leffler type functions. Finally, some numerical examples are given to show the efficacy of 
the numerical methods and the results are found to be in complete agreement with the 
analytical solution.

Keywords: Riesz fractional derivative, shifted Grünwald difference operators, fractional 
advection-dispersion equation, delay differential equations, FBDF method.

1 Introduction
Fractional calculus finds its applications in diverse areas of science, engineering, economics 
and finance [Bagley and Calico (1991); Weaver Jr, Timoshenko and Young (1990); Marks 
and Hall (1981); Simo and Woafo (2016); Yang (2019); Cattani (2018); Yang, Abdel-Aty 
and Cattani (2019); Feng (2017)]. In most of the cases, fractional differential equations 
(FDEs) cannot be solved exactly, so one needs to seek approximate and numerical 
techniques to solve these equations. Various numerical methods for solving FDEs are 
discussed in Galeone et al. [Galeone and Garrappa (2006); Garrappa (2015); Gorenflo 
(1997); Lubich (1986); Sulaiman, Yavuz, Bulut et al. (2019); Yang, Han, Li et al.
(2016)]. However, there are fewer works dealing with numerical methods for delay 
fractional differential equation [Heris and Javidi (2017b,a, 2018a, 2019); Javidi and Heris
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(2019)]. In recent years, some authors investigated fractional order partial differential
equations [Momani, Odibat and Erturk (2007); Momani and Odibat (2008a); Meerschaert
and Tadjeran (2006)], and delay fractional partial differential equations [Zubik-Kowal
(2000); Jackiewicz and Zubik-Kowal (2006); Tanthanuch (2012)]. Such equations appear
in mathematical modeling of several phenomena occurring in biology, medicine, population
ecology, control systems and climate models [Wu (2012)]. For details on numerical method
for fractional partial differential equations, for instance, see Tadjeran et al. [Tadjeran,
Meerschaert and Scheffler (2006); Liu, Zeng and Li (2015); Ding and Li (2013)].
The fractional advection-dispersion equation (FADE) is an important tool of groundwater
hydrology to deal with the transport of passive tracers carried by fluid flow in a porous
medium [Momani and Odibat (2008b); Liu, Anh, Turner et al. (2003); Huang and Liu
(2005)]. Meerschaert et al. [Meerschaert and Tadjeran (2004)] presented numerical
methods for solving one-dimensional fractional advection-diffusion equation involving a
Riemann-Liouville fractional derivative on a finite domain. Liu et al. [Liu, Anh and
Turner (2004)] transformed the space fractional advection–diffusion equation into a system
of ordinary differential equations and solved the resulting equations by using backward
differentiation formulas. Shen et al. [Shen, Liu and Anh (2008)] discussed the fundamental
solution and discrete random walk model for a time space fractional diffusion equation of
distributed order. Numerical approximations and solution techniques for the space time
Riesz-Caputo fractional advection-diffusion equation were studied in Shen et al. [Shen, Liu
and Anh (2011)]. For more details and examples, we refer the reader to the articles [Ding,
Li and Chen (2015); Sousa (2012); Yang, Liu and Turner (2010); Wu, Baleanu and Xie
(2016); Wu, Baleanu, Deng et al. (2015)].
In this paper, we focus on designing a numerical method for solving the following Riesz
fractional advection-dispersion equation (RFADE) with time delay:

∂u(x, t)

∂t
= Kα

∂αu(x, t)

∂|x|α
+Kβ

∂βu(x, t)

∂|x|β
+ u(x, t− τ) + f(x, t); (1)

subject to the initial and boundary conditions:

u(x, t) = g(x, t), −τ ≤ t ≤ 0, 0 ≤ x ≤ L,
u(0, t) = µ1(t), u(L, t) = µ2(t), 0 ≤ t ≤ T, (2)

where 0 < α < 1, 1 < β ≤ 2, Kα ≥ 0, Kβ > 0 and τ > 0. The Riesz space fractional
operator on a finite domain [0, L] is defined as [Yang, Liu and Turner (2010)]

∂γu(x, t)

∂|x|γ
= −(−∆)

γ
2 u(x, t) = −cγ [RL0 Dγ

xu(x, t) + RL
x Dγ

Lu(x, t)], (3)
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where
cγ = 1

2 cos(πγ
2

)
, 0 < γ ≤ 2, γ 6= 1,

RL
0 Dγ

xu(x, t) = 1
Γ(1−γ)

∂
∂x

x∫
0

(x− η)−γu(η, t)dη, 0 < γ < 1,

RL
x Dγ

Lu(x, t) = −1
Γ(1−γ)

∂
∂x

L∫
x

(η − x)−γu(η, t)dη, 0 < γ < 1,

RL
0 Dγ

xu(x, t) = 1
Γ(2−γ)

∂2

∂x2

x∫
0

(x− η)1−γu(η, t)dη, 1 < γ ≤ 2,

RL
x Dγ

Lu(x, t) = 1
Γ(2−γ)

∂2

∂x2

L∫
x

(η − x)1−γu(η, t)dη, 1 < γ ≤ 2.

(4)

Partial differential equations with delay are more complicated and less studied in the
literature. The solutions of PDEs are different from the ones for PDEs with delay. If we
take exact solution of our model as initial delay solution, then the solution of our model
without delay shifts to the right as

udelay(x, t)|t∈[kτ,(k+1)τ ] = uwithout delay(x, t)|t∈[(k−1),kτ ], k = 1, 2, · · · .

Thus, we can change initial delay solution to control dynamic properties of solutions.

Partial differential equations with delay have recently been studied by many authors and
important aspects such as, existence and stability of solutions for these equations, are
presented [Wu (2012)]. In general, the exact solution of these equations cannot be obtained.
Moreover, it is difficult to study the long-term dynamic properties of these equations. So
one resorts to numerical simulation of such equations. In order to investigate the long-term
dynamic properties, partial differential equations with delay are considered. As a typical
example in the delay field with derivatives of integer order, we take Kα = 0, β = 2 in Eq.
(1). This equation was considered as the reaction-diffusion equation with delay in Huang
et al. [Huang and Vandewalle (2012)]. For the delay field with fractional derivatives, we
take Kα = 0 in Eq. (1) and the resulting equation is known as the Riesz space fractional
diffusion equation with delay and nonlinear source term, see Yang [Yang (2018)].

We first obtain analytical solution for the problem at hand. Then we apply FBDF2 method
for 0 < α < 1 and shifted Grünwald difference operators for 1 < β ≤ 2 to approximate
the Riesz space fractional derivative. Furthermore, we propose the finite difference method
for the RFADED. We also show that the schemes for all h smaller than(

−
3β(β − 1)(2− β)(3 + β) cos(απ2 )

4(3
2)
α
α(8α− 5) cos(βπ2 )

) 1
β−α

are stable and convergent with the accuracy of O(κ+ h2) and O(κ2 + h2) respectively.
The paper is organized as follows. Section 2 contains some definitions. In Section 3,
analytical solution for the given problem is obtained. FBDF2 method is presented in
Section 4, while Section 5 deals with Shifted Grünwald method. In Section 6, numerical
methods for the RFADED are presented. The paper concludes with numerical simulations
and results.
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2 Preliminaries
In this section, we recall some definitions related to our work. Let C(J,R) denote the

Banach space of all continuous functions from J = [0, T ] into R endowed with the norm

‖u‖∞ = sup{|u(t)| : t ∈ J}, T > 0 (5)

and Cn(J, R) denotes the class of all real valued functions possessing derivatives upto order 
n on J = [0, T ], T > 0.
Definition 2.1 [Kilbas, Srivastava and Trujillo (2006)]. The fractional integral of order α > 
0 of the function f ∈ C(J, R) is defined as

Iαf(t) =
1

Γ(α)

t∫
0

f(s)

(t− s)1−αds, 0 < t < T. (6)

Definition 2.2 [Kilbas, Srivastava and Trujillo (2006)]. The Riemann-Liouville fractional 
derivative of order α > 0 of the function f ∈ Cn(J, R) is defined as

RLDαf(t) =


DnIn−αf(t) =

1

Γ(n− α)
(
dn

dtn
)
t∫

0

f(s)

(t− s)α−n+1ds,

n− 1 < α < n, n ∈ N,
f (n)(t), α = n.

(7)

Definition 2.3 [Kilbas, Srivastava and Trujillo (2006)]. The Caputo fractional derivative of 
order α > 0 of the function f ∈ Cn(J, R) is defined as

CDαf(t) =


In−αDnf(t) =

1

Γ(n− α)

t∫
0

f (n)(s)

(t− s)α−n+1ds,

n− 1 < α < n, n ∈ N,
f (n)(t), α = n.

(8)

Definition 2.4 [ Čermák, Horníček and Kisela (2016)]. The generalized delay exponential 
function (of Mittag-Leffler type) is defined by

Gλ,τ,mα,β (t) =

∞∑
j=0

(
j +m
j

)
λj(t− (m+ j)τ)α(m+j)+β−1

Γ(α(m+ j) + β)
H(t− (m+ j)τ), t > 0, (9)

where λ ∈ C , α, β, τ ∈ R and m ∈ Z and H(z) is the Heaviside step function. If
λ ∈ C , α, β, τ ∈ R and m ∈ Z, then the Laplace transform of Gλ,τ,mα,β (t) is

L(Gλ,τ,mα,β (t))(s) =
sα−β exp{−msτ}

(sα − λ exp{−sτ})m+1
, s > 0. (10)

3 Analytical solution of problem
In this section, we derive the analytical solution of the RFADED (1-2).
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Lemma 3.1. [Ilic, Liu, Turner et al. (2005)] Suppose that the one-dimensional Laplacian
(−∆) supplemented with Dirichlet boundary condition at x = 0 and x = L has a complete
set of orthonormal eigenfunctions ϕn associated with eigenvalues λ2

n on a boundary region
Ω = [0, L], that is, (−∆)ϕn = λ2

nϕn leads to the eigenvalues λ2
n = n2π2

L2 for n = 1, 2, ...

and the corresponding eigenfunctions ϕn =
√

2
L sin(nπL ).

In the initial and boundary conditions (2), it is assumed that µ1(t) and µ2(t) are
nonzero smooth functions with first order continuous derivatives. We firstly transform the
nonhomogeneous condition into a homogeneous one. Let

u(x, t) = V (x, t) +W (x, t), (11)

where

V (x, t) = µ1(t) + x
µ2(t)− µ1(t)

L
. (12)

Substituting (11) into (1) leads to the the following problem with homogeneous boundary
conditions satisfied by W (x, t):

∂W (x, t)

∂t
+Kα(−∆)

α
2W (x, t) +Kβ(−∆)

β
2W (x, t) +W (x, t− τ) = f1(x, t), t > 0,

W (x, t) = φ1(x, t), −τ ≤ t ≤ 0, 0 ≤ x ≤ L,
W (0, t) = W (L, t) = 0, t ≥ 0,

(13)

where

f1(x, t) = V (x, t− τ) + f(x, t)− ∂V (x, t)

∂t
−Kα(−∆)

α
2 V (x, t)−Kβ(−∆)

β
2 V (x, t),

φ1(x, t) = g(x, t)− µ1(t)− µ2(t)− µ1(t)

L
x.

(14)

Assume that the solution of (13) has the form:

W (x, t) = X(x)T (t). (15)

Substituting (15) into (13), we obtain the Sturm-Liouville problem:

−Kα(−∆)
α
2X(x)−Kβ(−∆)

β
2X(x) + λX(x) = 0,

X(0) = 0, X(L) = 0
(16)

and
dT (t)

dt
+ T (t− τ) + λT (t) = 0,

T (t) = ν(x, t), −τ ≤ t ≤ 0.
(17)

where λ > 0 and ν(x, t) is the initial function arising from (2). By Lemma 3.1, the
Sturm-Liouville problem (16) has eigenvalues and corresponding eigenfunctions

λn =
n2π2

L2
, Xn(x) = sin(

nπ

L
x), n = 1, 2, ...· (18)
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Therefore we set

W (x, t) =
∞∑
n=1

An(t) sin(
nπ

L
x). (19)

Inserting (19) into (13) leads to
dAn(t)

dt
+ bnAn(t) +An(t− τ) = fn(t),

An(t) = ϕ(t),
(20)

where

fn(t) =
2

L

∫ L
0 f1(x, t) sin(nπL x)dx,

f1(x, t) =
∞∑
n=1

fn(t) sin(nπL x),

ϕ(t) = 2
L

∫ L
0 φ1(x, t) sin(nπL x)dx,

bn = Kαλn
α +Kβλn

β.

(21)

Taking Laplace transform of (20), we get

Ān(s) =
f̄n(s)

s+ e−τs + bn
+

ϕ(0)

s+ e−τs + bn
−
e−τs

∫ 0
−τ e

−sνϕ(ν)dν

s+ e−τs + bn
, (22)

where

Ān(s) = L(An(t)), f̄n(s) = L(fn(t)). (23)

Writing
1

s+e−τs+bn
= 1

bn
bn

s+e−τs
1

1+ bn
s+e−τs

=
∞∑
k=0

(−bn)kekτs e−kτs

(s+e−τs)k+1

=
∞∑
k=0

(−bn)k
∞∑
m=0

(kτ)m

m!
s1−(1−m)e−kτs

(s+e−τs)k+1 ,

(24)

we obtain

L−1(
1

s+ e−τs + bn
) =

∞∑
k=0

∞∑
m=0

(−bn)k(kτ)m

Γ(m+ 1)
G−1,τ,k

1,1−m(t), (25)

Similarly

L−1(
f̄n(s)

s+ e−τs + bn
) =

∞∑
k=0

∞∑
m=0

(−bn)k(kτ)m

Γ(m+ 1)

∫ t

0
G−1,τ,k

1,1−m(p)fn(t− p)dp. (26)

Let

Z(s) = e−τs
∫ 0

−τ
e−sνϕ(ν)dν, (27)

with

L−1(Z(s)) = z(t). (28)
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Then

L−1(
Z(s)

s+ e−τs + bn
) =

∞∑
k=0

∞∑
m=0

(−bn)k(kτ)m

Γ(m+ 1)

∫ t

0
G−1,τ,k

1,1−m(p)z(t− p)dp. (29)

Thus we have

An(t) =
∞∑
k=0

∞∑
m=0

(−bn)k(kτ)m

Γ(m+ 1)
[
∫ t

0 G
−1,τ,k
1,1−m(p)(fn(t− p)− z(t− p))dp

+ϕ(0)G−1,τ,k
1,1−m(t)],

W (x, t) =
∞∑
n=1

∞∑
k=0

∞∑
m=0

(−bn)k(kτ)m

Γ(m+ 1)
[
∫ t

0 G
−1,τ,k
1,1−m(p)(fn(t− p)− z(t− p))dp

+ϕ(0)G−1,τ,k
1,1−m(t)]sin(nπL x),

(30)

which yields the analytical solution of (1)-(2) given by

u(x, t) = µ1(t) +
µ2(t)− µ1(t)

L
x

+
∞∑
n=1

∞∑
k=0

∞∑
m=0

(−bn)k(kτ)m

Γ(m+ 1)
[
∫ t

0 G
−1,τ,k
1,1−m(p)(fn(t− p)− z(t− p))dp

+ϕ(0)G−1,τ,k
1,1−m(t)]sin(nπL x).

(31)

4 Fractional backward Differential Formulas of second order (FBDF2 method)
We consider the initial value problem
C
t0D

α
t y(t) = f(t), y(t0) = y0, 0 < α < 1, (32)

where f is a sufficiently smooth function. We now introduce the FBDF method of second
order(FBDF2) for (32) [Heris and Javidi (2018b)]. For 0 < α < 1, we have
j∑

k=0

$kyj−k − bjy0 ≈ hαfj , (33)

where
j−α

Γ(1− α)
= bj , yj−k = y(tj − kh), fj = f(tj), (34)

with the coefficients given by

$k = (3
2)αωk, k = 0, 1, · · · , ω0 = 1,

ω1 = −4
3α,

ωk = 4
3(1− α+1

k )ωk−1 + 1
3(2(1+α)

k − 1)ωk−2.

(35)

Lemma 4.1. [Heris and Javidi (2018b)] For 0 < α < 1, the coefficients $j
(α) satisfy

$0
(α) > 0, $j

(α) < 0, j = 4, 5 · · · .∣∣$j
(α)
∣∣ < ∣∣$j−1

(α)
∣∣ < $0

(α) , j = 4, 5, · · ·
∞∑
k=0

$k
(α) = 0,

m∑
k=0

$k
(α) > 0, m > 3.

(36)
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5 Shifted Grünwald method

The standard Grünwald-Letnikov difference formula was often unstable for 1 < β ≤ 2 and
for time dependent problems [Meerschaert and Tadjeran (2004)]. On the other hand, the
Shifted Grünwald difference operators formula is stable and is given by

Mγ
h,pu(x) = h−γ

∞∑
k=0

ω
(γ)
k u(x− (k − p)h),

Nγ
h,qu(x) = h−γ

∞∑
k=0

ω
(γ)
k u(x+ (k − q)h).

(37)

Observe that

Mγ
h,pu(x) = −∞D

γ
xu(x) + O(h),

Nγ
h,pu(x) = xD

γ
+∞u(x) + O(h),

(38)

where p, q ∈ Z and ω(γ)
k = (−1)k

(
γ
k

)
.

Lemma 5.1. [Tian, Zhou and Deng (2015)] For 1 < γ ≤ 2, the coefficients ω(γ)
k satisfy

ω
(γ)
0 = 1, ω

(γ)
1 = −γ, ω(γ)

2 = γ(γ−1)
2 ,

1 ≥ ω(γ)
2 ≥ ω(γ)

3 ≥ ... ≥ 0,
∞∑
k=0

ω
(γ)
k = 0,

m∑
k=0

ω
(γ)
k < 0, m ≥ 1.

(39)

Theorem 5.1. [Tian, Zhou and Deng (2015)] Let 1 < γ ≤ 2 and u ∈ L1(R), −∞D
γ
xu,

xD
γ
+∞u and their Fourier transforms belong to L1(R) and let the weighted and shifted

Grünwald difference operators be defined by

LD
γ
h,p,qu(x) =

γ − 2q

2(p− q)
Mγ
h,pu(x) +

2p− γ
2(p− q)

Mγ
h,qu(x),

RD
γ
h,p,qu(x) =

γ − 2q

2(p− q)
Nγ
h,pu(x) +

2p− γ
2(p− q)

Nγ
h,qu(x).

(40)

Then

LD
γ
h,p,qu(x) = −∞D

γ
xu(x) + O(h2),

RD
γ
h,p,qu(x) = xD

γ
+∞u(x) + O(h2),

(41)

where p and q are integers and p 6= q.

Remark 5.1. In case of a well defined function u(x) on the bounded interval [a, b] with
u(a) = 0 or u(b) = 0, it can be extended to zero for x < a or x > b. Then the left and right
Riemann-Liouville fractional derivatives of u at each point x ∈ (a, b) can be approximated
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by the WSGD operators with second order accuracy as

aD
γ
xu(x) = η1h

−γ
[x−ah ]+p∑
k=0

ω
(γ)
k u(x− (k − p)h)

+η2h
−γ

[x−ah ]+q∑
k=0

ω
(γ)
k u(x− (k − q)h) + O(h2),

xD
γ
b u(x) = η1h

−γ
[ b−xh ]+p∑
k=0

ω
(γ)
k u(x+ (k − p)h)

+η2h
−γ

[ b−xh ]+q∑
k=0

ω
(γ)
k u(x+ (k − q)h) + O(h2),

(42)

where η1 = γ−2q
2(p−q) , η2 = 2p−γ

2(p−q) .
Remark 5.2. For 1 < γ ≤ 2 and (p, q) = (1, 0), Eq. (42) on the domain [0, L] can be
written as

0D
γ
xu(xi) = h−γ

i+1∑
k=0

ϑ
(γ)
k u(xi−k+1) + O(h2),

xD
γ
Lu(xi) = h−γ

m−i+1∑
k=0

ϑ
(γ)
k u(xi+k−1) + O(h2),

(43)

where

ϑ
(γ)
0 =

γ

2
ω

(γ)
0 , ϑ

(γ)
k =

γ

2
ω

(γ)
k +

2− γ
2

ω
(γ)
k−1, k ≥ 1. (44)

Lemma 5.2. [Tian, Zhou and Deng (2015)] For 1 < γ ≤ 2, the coefficients ϑ(γ)
k satisfy

ϑ
(γ)
0 = γ

2 > 0, ϑ
(γ)
1 = 2−γ−γ2

2 < 0, ϑ
(γ)
2 = γ(γ2+γ−4)

4 ,

1 ≥ ϑ(γ)
0 ≥ ϑ(γ)

3 ≥ ϑ(γ)
4 ≥ ... ≥ 0,

∞∑
k=0

ϑ
(γ)
k = 0,

m∑
k=0

ϑ
(γ)
k < 0, m ≥ 2.

(45)

6 Numerical methods

In this section, we consider two cases. In case 1, we approximate the time derivative
with order one and the Riesz space fractional derivative with order two. In case 2, we
approximate the Riesz space fractional derivative and derive the Crank-Nicolson scheme
for the equation. We partition the interval [0, L] into an uniform mesh with the space step
size h = L/M and the time step size t = T/N , where M , N are two positive integers. The
set of grid points are denoted by xi = ih and tj = jκ for i = 1, ...,M and j = n+ 1, · · · .

Case 1. We apply numerical method to Eq. (1) as follows.
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Let u(xi, tj) = uji , f(xi, tj) = f ji . Then

uji − u
j−1
i

κ
= −cαKαh

−α(
i∑

k=0

$
(α)
k uji−k +

M−i∑
k=0

$
(α)
k uji+k)

−cβKβh
−β(

i+1∑
k=0

ϑ
(β)
k uji−k+1 +

M−i+1∑
k=0

ϑ
(β)
k uji+k−1) + uj−ni + f ji +R1,

(46)

where i = 1, ...,M , j = n + 1, · · · and R1 is a truncation error term. Taking λα =
cακKαh

−α and λβ = cβκKβh
−β , we have

uji + λα(
i∑

k=0

$
(α)
k uji−k +

M−i∑
k=0

$
(α)
k uji+k)

+λβ(
i+1∑
k=0

ϑ
(β)
k uji−k+1 +

M−i+1∑
k=0

ϑ
(β)
k uji+k−1) = uj−1

i + κuj−ni + κf ji .

(47)

Introducing

A =


$

(α)
0 0 0 · · · 0

$
(α)
1 $

(α)
0 0 · · · 0

...
...

... ...
...

$
(α)
M−2 $

(α)
M−1 · · · · · ·$(α)

0

 ,

B =


ϑ

(β)
1 ϑ

(β)
0 0 0 · · · 0

ϑ
(β)
2 ϑ

(β)
1 ϑ

(β)
0 0 · · · 0

...
...

... ...
...

ϑ
(β)
M−1 ϑ

(β)
M−2 · · · · · · ϑ

(β)
1


(48)

and

D = λα(A+AT ) + λβ(B +BT ), U j = [uj1, u
j
2, ..., u

j
M−1]T , (49)

Eq. (47) takes the form:

(I +D)U j = IU j−1 + F j , (50)

where

F j =


κuj−n1 + κf j1 − λα$

(α)
1 uj0 − λβ(ϑ

(β)
0 + ϑ

(β)
2 )uj0 − (λα$

(α)
M−1 + λβϑ

(β)
M )ujM

κuj−n2 + κf j2 − λα$
(α)
2 uj0 − λβϑ

(β)
3 uj0 − (λα$

(α)
M−2 + λβϑ

(β)
M−1)ujM

κuj−n3 + κf j3 − λα$
(α)
3 uj0 − λβϑ

(β)
4 uj0 − (λα$

(α)
M−3 + λβϑ

(β)
M−2)ujM

...
κuj−nM−1 + κf jM−1 − λα$

(α)
M−1u

j
0 − λβϑ

(β)
M uj0 − (λα$

(α)
1 + λβϑ

(β)
2 )ujM

 .

Case 2. Here we approximate the Riesz space fractional derivative and derive the
Crank-Nicolson scheme for the Eq. (1). Letting u(xi, tj) = uji , f(xi, tj) = f ji , we
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have

uji + ηα(
i∑

k=0

$
(α)
k uji−k +

M−i∑
k=0

$
(α)
k uji+k) + ηβ(

i+1∑
k=0

ϑ
(β)
k uji−k+1 +

M−i+1∑
k=0

ϑ
(β)
k uji+k−1)

= uj−1
i − ηα(

i∑
k=0

$
(α)
k uj−1

i−k +
M−i∑
k=0

$
(α)
k uj−1

i+k )− ηβ(
i+1∑
k=0

ϑ
(β)
k uj−1

i−k+1 +
M−i+1∑
k=0

ϑ
(β)
k uj−1

i+k−1)

+κ
2 (uj−ni + uj−n−1

i ) + κ
2 (f ji + f j−1

i ) +R2,

(51)

where i = 1, ...,M , j = n+1, ... andR2 is a truncation error term. Fixing ηα = cακKαh−α

2

and ηβ =
cβκKβh

−β

2 , we write
∼
D = ηα(A+AT ) + ηβ(B +BT ), U j = [uj1, u

j
2, ..., u

j
M−1]T , (52)

where A and B are defined by (48). Thus Eq. (51) simplifies to the following form:

(I +
∼
D)U j = (I −

∼
D)U j−1 +Qj , (53)

where

Qj =



κ
2 (uj−n1 + uj−n−1

1 ) + κ
2 (f j1 + f j−1

1 )− l
κ
2 (uj−n2 + uj−n−1

2 ) + κ
2 (f j2 + f j−1

2 )− l2
κ
2 (uj−n3 + uj−n−1

3 ) + κ
2 (f j3 + f j−1

3 )− l3
...

κ
2 (uj−nM−1 + uj−n−1

M−1 ) + κ
2 (f jM−1 + f j−1

M−1)− lM−1


and
ls = (ηα$

(α)
s + ηβϑ

(β)
s+1)(uj0 + uj−1

0 ) + (ηα$
(α)
M−s + ηβϑ

(β)
M−s+1)(ujM + uj−1

M ),

s = 2, 3, ...,M − 1,

l = (ηα$
(α)
1 + ηβ(ϑ

(β)
0 + ϑ

(β)
2 ))(uj0 + uj−1

0 ) + (ηα$
(α)
M−1 + ηβϑ

(β)
M )(ujM + uj−1

M ).

6.1 Stability of methods

Lemma 6.1. [Thomas (2013)] Let A be a positive definite matrix of order m − 1. Then,
for any parameter ν ≥ 0, the following inequalities hold:∥∥∥(I + νA)−1

∥∥∥
∞
≤ 1,

∥∥∥(I + νA)−1(I − νA)
∥∥∥
∞
≤ 1.

Theorem 6.1. For h < (−3β(β−1)(2−β)(3+β) cos(απ
2

)

4( 3
2

)
α
α(8α−5) cos(βπ

2
)

)
1

β−α , D is a strictly diagonally

dominant matrix.

Proof. We have

Di,j =



λα$
(α)
j−i + λβϑ

(β)
j−i+1, j > i+ 1,

λα$
(α)
1 + λβ(ϑ

(β)
0 + ϑ

(β)
2 ), j = i+ 1,

2λα$
(α)
0 + 2λβϑ

(β)
1 , j = i,

λα$
(α)
1 + λβ(ϑ

(β)
0 + ϑ

(β)
2 ), j = i− 1,

λα$
(α)
i−j + λβϑ

(β)
i−j+1. j < i− 1,
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where λα > 0 for 0 < α < 1 and λβ < 0 for 1 < β < 2. According to Lemma 4.1,
λα$

(α)
k < 0 when k ≥ 4 and according to Lemma 5.2, λβϑ

(β)
k < 0 when k ≥ 4. For

k = 2, 3, if 0 < α ≤ 5
8 , 1 < β < 2, then λα$

(α)
2 < 0 and λα$

(α)
3 < 0. Therefore,

Di,j < 0 when j > i + 1 or j < i − 1. According to the Lemmas 4.1 and 5.2, we have
$

(α)
0 > 0, ϑ

(β)
1 < 0, which leads to

2λα$
(α)
0 + 2λβϑ

(β)
1 > 0.

Therefore Di,i > 0. For Di,i+1 and Di,i−1, we have

ϑ
(β)
0 + ϑ

(β)
2 = β

2 + β(β2+β−4)
4 = β(β+2)(β−1)

4 > 0,

$
(α)
1 < 0.

Since λα > 0 and λβ < 0, therefore

Di,i+1 = Di,i−1 = λα$
(α)
1 + λβ(ϑ

(β)
0 + ϑ

(β)
2 ) < 0.

For a given i, we can write
M−1∑

j=1, j 6=i
|Di,j | =

i−2∑
j=1
|Di,j |+

M−1∑
j=i+2

|Di,j |+ |Di,i−1|+ |Di,i+1|

= −
i−2∑
j=1

(λα$
(α)
i−j + λβϑ

(β)
i−j+1)−

M−1∑
j=i+2

(λα$
(α)
j−i + λβϑ

(β)
j−i+1)

−2λα$
(α)
1 − 2λβ(ϑ

(β)
0 + ϑ

(β)
2 )

<
i−2∑

j=−∞
(λα$

(α)
i−j + λβϑ

(β)
i−j+1)−

+∞∑
j=i+2

(λα$
(α)
j−i + λβϑ

(β)
j−i+1)

−2λα$
(α)
1 − 2λβ(ϑ

(β)
0 + ϑ

(β)
2 )

= −2λα
+∞∑
k=2

$
(α)
k − 2λβ

+∞∑
k=3

ϑ
(β)
k −2λα$

(α)
1 − 2λβ(ϑ

(β)
0 + ϑ

(β)
2 )

= −2λα
+∞∑
k=0

$
(α)
k −2λβ

+∞∑
k=0

ϑ
(β)
k + 2λα$

(α)
1 +2λβϑ

(β)
1

= 2λα$
(α)
1 + 2λβϑ

(β)
1 = |Di,i| ,

(54)

Therefore
M−1∑

j=1, j 6=i
|Di,j | < |Di,i| .

Also, if 5
8 < α < 1, 1 < β < 2, for h < (−3β(β−1)(2−β)(3+β) cos(απ

2
)

4( 3
2

)
α
α(8α−5) cos(βπ

2
)

)
1

β−α , we have

λα$
(α)
2 + λβϑ

(β)
3 < 0, λα$

(α)
3 + λβϑ

(β)
4 < 0.

Therefore, Di,j < 0 when j > i+ 1 or j < i− 1. Then relation (54) is valid for 5
8 < α <

1, 1 < β ≤ 2. Thus the matrix D is strictly diagonally dominant matrix.

Lemma 6.2. For h < (−3β(β−1)(2−β)(3+β) cos(απ
2

)

4( 3
2

)
α
α(8α−5) cos(βπ

2
)

)
1

β−α , the matrix D is symmetric and

positive definite.
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Proof. In view of Eq. (49), the matrix D is clearly symmetric. Let υ0 be an eigenvalue of
the matrix D. Then it follows by the Geršgorin circles Theorem [Varga (2010)] that

|υ0 −Di,i| ≤
M−1∑

j=1, j 6=i
|Di,j | ,

or

Di,i −
M−1∑

j=1, j 6=i
|Di,j | ≤ υ0 ≤ Di,i +

M−1∑
j=1, j 6=i

|Di,j |.

Then, by Theorem 6.1, we have

υ0 ≥ Di,i −
M−1∑

j=1, j 6=i
|Di,j | ≥ 0,

which shows that D is positive definite.
Remark 6.1. For h < (−3β(β−1)(2−β)(3+β) cos(απ

2
)

4( 3
2

)
α
α(8α−5) cos(βπ

2
)

)
1

β−α ,
∼
D is strictly diagonally dominant

and symmetric positive definite.

Theorem 6.2. The first numerical method (50) for h < (−3β(β−1)(2−β)(3+β) cos(απ
2

)

4( 3
2

)
α
α(8α−5) cos(βπ

2
)

)
1

β−α

is stable.

Proof. Let U j be the numerical solution and uj be an exact solution. Since the matrix (I +
D) is invertible, we have

εj = Pεj−1,

where

εj = U j − uj , P = (I +D)−1. (55)

By Lemma 6.1, we have∥∥εj∥∥∞ =
∥∥P j−1ε0

∥∥
∞ ≤ ‖P‖

j−1
∞
∥∥ε0
∥∥
∞ =

∥∥∥(I +D)−1
∥∥∥j−1

∞

∥∥ε0
∥∥
∞ ≤

∥∥ε0
∥∥
∞.

Thus the numerical method (50) is stable.

Theorem 6.3. For h < (−3β(β−1)(2−β)(3+β) cos(απ
2

)

4( 3
2

)
α
α(8α−5) cos(βπ

2
)

)
1

β−α , the second numerical method

(53) is stable.

Proof. Let U j be the numerical solution and uj be an exact solution. Since the matrix (I +
∼
D) is invertible, we have

εj = Wεj−1,

where

εj = U j − uj , W = (I +
∼
D)−1(I −

∼
D), (56)
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Then

εj = W j−1ε0,

which, by Lemma 6.1, yields∥∥εj∥∥∞ =
∥∥W j−1ε0

∥∥
∞ ≤ ‖W‖

j−1
∞
∥∥ε0
∥∥
∞ =

∥∥∥∥(I +
∼
D)
−1

(I −
∼
D)

∥∥∥∥j−1

∞

∥∥ε0
∥∥
∞ ≤

∥∥ε0
∥∥
∞.

This shows that numerical method (53) is stable.

6.2 Convergence of methods

This subsection is concerned with convergence of the methods presented in Section 5. For
the first method, we can write
∂u(xi, tj)

∂t
=
u(xi, tj)− u(xi, tj−1)

κ
+ O(κ),

Kα
∂αu(xi, tj)

∂|x|α
= λα(

i∑
k=0

$
(α)
k uji−k +

M−i∑
k=0

$
(α)
k uji+k) + O(h2),

Kβ
∂βu(xi, tj)

∂|x|β
= λβ(

i+1∑
k=0

ϑ
(β)
k uji−k+1 +

M−i+1∑
k=0

ϑ
(β)
k uji+k−1) + O(h2),

(57)

Thus the local truncation error of (47) will be of the form:

Ti,j = O(κ2 + κh2)

Theorem 6.4. Let U j be the numerical solution and uj be an exact solution of (50). Then
for h < (−3β(β−1)(2−β)(3+β) cos(απ

2
)

4( 3
2

)
α
α(8α−5) cos(βπ

2
)

)
1

β−α , we have∥∥U j − uj∥∥∞ ≤ CO(κ+ h2), (58)

where C is a positive constant.

Proof. It is easy to find that

uji + λα(
i∑

k=0

$
(α)
k uji−k +

M−i∑
k=0

$
(α)
k uji+k)

+λβ(
i+1∑
k=0

ϑ
(β)
k uji−k+1 +

M−i+1∑
k=0

ϑ
(β)
k uji+k−1) = uj−1

i + κuj−ni + κf ji ,

(59)

and

U ji + λα(
i∑

k=0

$
(α)
k U ji−k +

M−i∑
k=0

$
(α)
k U ji+k)

+λβ(
i+1∑
k=0

ϑ
(β)
k U ji−k+1 +

M−i+1∑
k=0

ϑ
(β)
k U ji+k−1) = U j−1

i + κU j−ni + κf ji .

(60)

Letting eji = U ji − u
j
i and using (59) and (60), we obtain

eji + λα(
i∑

k=0

$
(α)
k eji−k +

M−i∑
k=0

$
(α)
k eji+k)

+λβ(
i+1∑
k=0

ϑ
(β)
k eji−k+1 +

M−i+1∑
k=0

ϑ
(β)
k eji+k−1) = ej−1

i + O(κ2 + κh2),

(61)
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which can equivalently be written in matrix-vector form as

(I +D)εj = Iεj−1 + O(κ2 + κh2)χ,

where

εj = [ej1, e
j
2, ..., e

j
n]T , χ = [1, 1, ..., 1]T , D = λα(A+AT ) + λβ(B +BT ).

Writing

P = (I +D)−1, F = O(κ2 + κh2)(I +D)−1,

we get

εj = Pεj−1 + F,

which, on iterating and using the given initial condition, yields

εj = (P j−1 + P j−2 + ...+ I)F.

By Lemma 6.1, we can write∥∥εj∥∥∞ ≤ (
∥∥P j−1

∥∥
∞ +

∥∥P j−2
∥∥
∞ + ...+ ‖I‖∞)‖F‖∞

= (‖P‖j−1
∞ + ‖P‖j−2

∞ + ...+ ‖I‖∞)‖F‖∞
≤ (1 + 1 + ...+ 1)‖F‖∞
≤ jO(κ2 + κh2) = TO(κ+ h2).

Therefore we have∥∥εj∥∥∞ ≤ CO(κ+ h2).

For the second method, we can write

u(xi, tj)− u(xi, tj−1)

κ
=

1

2
(Kα

∂αu(xi,tj)
∂|x|α +Kβ

∂βu(xi,tj)

∂|x|β
)

+1
2(Kα

∂αu(xi, tj−1)

∂|x|α
+Kβ

∂βu(xi,tj−1)

∂|x|β
) + O(κ2)

Kα
∂αu(xi, tj)

∂|x|α
= ηα(

i∑
k=0

$
(α)
k uji−k +

M−i∑
k=0

$
(α)
k uji+k) + O(h2),

Kβ
∂βu(xi,tj)

∂|x|β
= ηβ(

i+1∑
k=0

ϑ
(β)
k uji−k+1 +

M−i+1∑
k=0

ϑ
(β)
k uji+k−1) + O(h2).

(62)

Thus the local truncation error of (51) will be of the following form:

Ti,j = O(κ3 + κh2).

Theorem 6.5. Let U j be the numerical solution and uj be an exact solution of (53). Then,
for h < (−3β(β−1)(2−β)(3+β) cos(απ

2
)

4( 3
2

)
α
α(8α−5) cos(βπ

2
)

)
1

β−α , we have∥∥U j − uj∥∥∞ ≤ CO(κ2 + h2), (63)

where C is a positive constant.
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Proof. Obviously

uji + ηα(
i∑

k=0

$
(α)
k uji−k +

M−i∑
k=0

$
(α)
k uji+k) + ηβ(

i+1∑
k=0

ϑ
(β)
k uji−k+1

+
M−i+1∑
k=0

ϑ
(β)
k uji+k−1) = uj−1

i − ηα(
i∑

k=0

$
(α)
k uj−1

i−k +
M−i∑
k=0

$
(α)
k uj−1

i+k )

−ηβ(
i+1∑
k=0

ϑ
(β)
k uj−1

i−k+1 +
M−i+1∑
k=0

ϑ
(β)
k uj−1

i+k−1) + κ
2 (uj−ni + uj−n−1

i )

+κ
2 (f ji + f j−1

i ),

(64)

and

U ji + ηα(
i∑

k=0

$
(α)
k U ji−k +

M−i∑
k=0

$
(α)
k U ji+k) + ηβ(

i+1∑
k=0

ϑ
(β)
k U ji−k+1

+
M−i+1∑
k=0

ϑ
(β)
k U ji+k−1) = U j−1

i − ηα(
i∑

k=0

$
(α)
k U j−1

i−k +
M−i∑
k=0

$
(α)
k U j−1

i+k )

−ηβ(
i+1∑
k=0

ϑ
(β)
k U j−1

i−k+1 +
M−i+1∑
k=0

ϑ
(β)
k U j−1

i+k−1) + κ
2 (U j−ni + U j−n−1

i )

+κ
2 (f ji + f j−1

i ),

(65)

Let us set eji = U ji − u
j
i and use (64) and (65) to obtain

eji + ηα(
i∑

k=0

$
(α)
k eji−k +

M−i∑
k=0

$
(α)
k eji+k) + ηβ(

i+1∑
k=0

ϑ
(β)
k eji−k+1

+
M−i+1∑
k=0

ϑ
(β)
k eji+k−1) = ej−1

i − ηα(
i∑

k=0

$
(α)
k ej−1

i−k +
M−i∑
k=0

$
(α)
k ej−1

i+k )

−ηβ(
i+1∑
k=0

ϑ
(β)
k ej−1

i−k+1 +
M−i+1∑
k=0

ϑ
(β)
k ej−1

i+k−1),

(66)

which can be expressed in matrix-vector form as

(I +
∼
D)εj = (I −

∼
D)εj−1 + O(κ3 + κh2)χ,

where

εj = [ej1, e
j
2, ..., e

j
n]T , χ = [1, 1, ..., 1]T ,

∼
D = ηα(A+AT ) + ηβ(B +BT ).

Let us take

W = (I +
∼
D)−1(I +

∼
D), Q = O(κ3 + κh2)(I +

∼
D)−1

so that

εj = Wεj−1 +Q,

which, on iterating and using the given initial condition, becomes

εj = (W j−1 +W j−2 + ...+ I)Q.
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On the other hand, it follows by Lemma 6.1 that∥∥εj∥∥∞ ≤ (
∥∥W j−1

∥∥
∞ +

∥∥W j−2
∥∥
∞ + ...+ ‖I‖∞)‖Q‖∞

= (‖W‖j−1
∞ + ‖W‖j−2

∞ + ...+ ‖I‖∞)‖Q‖∞
≤ (1 + 1 + ...+ 1)‖Q‖∞
≤ jO(κ3 + κh2) = TO(κ2 + h2).

In consequence, we obtain∥∥εj∥∥∞ ≤ CO(κ2 + h2).

7 Test examples
In this section, we show the efficacy and accuracy of the proposed methods with the aid of
examples.
Example 7.1. We consider the following RFDED

∂u(x, t)

∂t
=
∂βu(x, t)

∂|x|β
+ u(x, t− 1) + f(x, t); (67)

subject to the initial condition:

u(x, t) = x2(1− x)2e−t, −1 ≤ t ≤ 0, 0 ≤ x ≤ 1,
u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T, (68)

where 1 < β ≤ 2 and

f(x, t) = −x2(1− x)2e−t − x2(1− x)2e1−t

+ e−t

2 cos(βπ
2

)
(24((1−x)4−β+x4−β)

Γ(5−β) − 12((1−x)3−β+x3−β)
Γ(4−β)

+2((1−x)2−β+x2−β)
Γ(3−β) ),

The exact solution of the problem (67)-(68) is u(x, t) = x2(1− x)2e−t. Numerical results
for the problem (67)-(68) are given by Tabs. 1-2 and shown in Fig. 1.

Table 1: The absolute errors and the convergence orders of the first method (50) for
example 7.1 (67-68)

β = 1.2 β = 1.5 β = 1.8

h = κ Error Order Error Order Error Order

1/16 8.1804e-004 – 8.4754e-004 – 8.6058e-004 –
1/32 2.8459e-004 1.52 2.7131e-004 1.64 2.6043e-004 1.72
1/64 1.1126e-004 1.35 9.7550e-005 1.47 8.6715e-005 1.59
1/128 4.8071e-005 1.21 3.9501e-005 1.30 3.2532e-005 1.41
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Figure 1: The numerical approximation and exact solution by the second method for
example 7.1 (67-68) (RFDED), for β = 1.8, when T = 1
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Figure 2: The numerical approximation and exact solution by the second method for
example 7.2 (69-70)(RFDED), for α = 0.1 and β = 1.8, when T = 1

Example 7.2. Consider the RFDED

∂u(x, t)

∂t
=
∂αu(x, t)

∂|x|α
+
∂βu(x, t)

∂|x|β
+ u(x, t− 1) + f(x, t); (69)

subject to the initial condition:

u(x, t) = x2(1− x)2 cos(t), −1 ≤ t ≤ 0, 0 ≤ x ≤ 1,
u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T, (70)

where 0 < α < 1, 1 < β ≤ 2 and

f(x, t) = − sin(t)x2(1− x)2 − x2(1− x)2 cos(t− 1)

+ cos(t)
2 cos(απ

2
)(Γ(5)((1−x)4−α+x4−α)

Γ(5−α) + Γ(3)((1−x)2−α+x2−α)
Γ(3−α) − 2Γ(4)((1−x)3−α+x3−α)

Γ(4−α) ))

+ cos(t)

2 cos(βπ
2

)
(Γ(5)((1−x)4−β+x4−β)

Γ(5−β) + Γ(3)((1−x)2−β+x2−β)
Γ(3−β) − 2Γ(4)((1−x)3−β+x3−β)

Γ(4−β) )).
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Table 2: The absolute errors and the convergence orders of the second method (53) for
example 7.1 (67-68)

β = 1.2 β = 1.5 β = 1.8

h = κ Error Order Error Order Error Order

1/16 5.2976e-004 – 6.4753e-004 – 7.4404e-004 –
1/32 1.6155e-004 1.71 1.6133e-004 2.00 1.8018e-004 2.04
1/64 4.5724e-005 1.82 4.5524e-005 1.83 4.3620e-005 2.04
1/128 1.2193e-005 1.91 1.2314e-005 1.89 1.0559e-005 2.04
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Figure 3: The numerical approximation by the second method for example 7.2
(69-70)(RFDED), for various α = 0.1, 0.5, 0.9, 0.99, when T = 1 and β = 1.01
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Figure 4: The numerical approximation by the second method for example 7.2
(69-70)(RFDED), for various β = 1.2, 1.5, 1.9, 2, when T = 1 and α = 0.99
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Table 3: The absolute errors and the convergence orders of the second method (53) for
example 7.2 (69-70)

β = 1.2 β = 1.5 β = 1.8

Error Order Error Order Error Order

α = 0.1, h = κ
1/16 5.6605e-004 – 7.0613e-004 – 8.1183e-004 –
1/32 1.7032e-004 1.73 1.6957e-004 2.05 1.9726e-004 2.04
1/64 4.8646e-005 1.81 4.5616e-005 1.89 4.7820e-005 2.04

1/128 1.2997e-005 1.90 1.2330e-005 1.90 1.1587e-005 2.04

α = 0.5, h = κ
1/16 3.3282e-004 – 5.2206e-004 – 6.7321e-004 –
1/32 1.2341e-004 1.43 1.4371e-004 1.86 1.6488e-004 2.03
1/64 3.8985e-005 1.66 4.2741e-005 1.75 4.0088e-005 2.04

1/128 1.1144e-005 1.81 1.1904e-005 1.84 9.7002e-006 2.05

α = 0.9, h = κ
1/16 9.0618e-004 – 5.7238e-004 – 3.7095e-004 –
1/32 2.1508e-004 2.07 9.0954e-005 2.65 7.8189e-005 2.24
1/64 4.6083e-005 2.22 1.9051e-005 2.25 1.6563e-005 2.23

1/128 9.4770e-006 2.28 4.2314e-006 2.17 3.7547e-006 2.14

The exact solution of this problem is u(x, t) = cos(t)x2(1− x)2. Numerical results for the
given problem are given by Tab. 3 and Figs. 2-4. In Tab. 3, scheme (53) for h < 0.0952 is
stable and convergent for α = 0.8, β = 1.2.

8 Conclusion
In this paper, we applied the FBDF method of second order and the shifted Grünwald

method for solving the Riesz space fractional advection-dispersion equations with delay
. The FBDF2 and the shifted Grünwald methods are introduced. Furthermore we find
the analytical solution for RFDED in terms of t Mittag-Leffler type functions. The
approximation of solution for the Riesz space fractional advection-dispersion equations
with delay relies on the FBDF2 method and the WSGD operators, and is obtained
by applying the finite difference method. It is shown that the schemes for h <

(−3β(β−1)(2−β)(3+β) cos(απ
2

)

4( 3
2

)
α
α(8α−5) cos(βπ

2
)

)
1

β−α are stable and convergent with the accuracy of O(κ+h2)

and O(κ2 + h2) respectively. Numerical methods presented in this paper are illustrated
with the help of the examples. The obtained results clearly demonstrate that our methods
are efficient and produce accurate results.
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Čermák, J.; Horníček, J.; Kisela, T. (2016): Stability regions for fractional differential
systems with a time delay. Communications in Nonlinear Science and Numerical
Simulation, vol. 31, no. 1, pp. 108-123.

Ding, H.; Li, C. (2013): Numerical algorithms for the fractional diffusion-wave equation
with reaction term. Abstract and Applied Analysis, vol. 2013.

Ding, H.; Li, C.; Chen, Y. (2015): High-order algorithms for riesz derivative and their
applications (ii). Journal of Computational Physics, vol. 293, pp. 218-237.

Feng, G. (2017): General fractional calculus in non-singular power-law kernel applied to
model anomalous diffusion phenomena in heat transfer problems. Thermal Science, vol. 21,
no. suppl 1, pp. S11-S18.

Galeone, L.; Garrappa, R. (2006): On multistep methods for differential equations of
fractional order. Mediterranean Journal of Mathematics, vol. 3, no. 3-4, pp. 565-580.

Garrappa, R. (2015): Trapezoidal methods for fractional differential equations:
Theoretical and computational aspects. Mathematics and Computers in Simulation, vol.
110, pp. 96-112.

Gorenflo, R. (1997): Fractional calculus: some numerical methods. Courses and
Lectures-International Centre for Mechanical Sciences, pp. 277-290.

Heris, M. S.; Javidi, M. (2017): On fbdf5 method for delay differential equations
of fractional order with periodic and anti-periodic conditions. Mediterranean Journal of
Mathematics, vol. 14, no. 3, pp. 134.

Heris, M. S.; Javidi, M. (2017): On fractional backward differential formulas for fractional
delay differential equations with periodic and anti-periodic conditions. Applied Numerical
Mathematics, vol. 118, pp. 203-220.

Heris, M. S.; Javidi, M. (2018): On fractional backward differential formulas methods
for fractional differential equations with delay. International Journal of Applied and
Computational Mathematics, vol. 4, no. 2, pp. 72.

Heris, M. S.; Javidi, M. (2018): Second order difference approximation for a class of riesz
space fractional advection-dispersion equations with delay. arxiv:1811.10513.

Heris, M. S.; Javidi, M. (2019): Fractional backward differential formulas for the
distributed-order differential equation with time delay. Bulletin of the Iranian Mathematical
Society, vol. 45, no. 4, pp. 1159-1176.



270 CMES, vol.121, no.1, pp.249-272, 2019

Huang, C.; Vandewalle, S. (2012): Unconditionally stable difference methods for delay
partial differential equations. Numerische Mathematik, vol. 122, no. 3, pp. 579-601.
Huang, F.; Liu, F. (2005): The fundamental solution of the space-time fractional
advection-dispersion equation. Journal of Applied Mathematics and Computing, vol. 18,
no. 1, pp. 339-350.
Ilic, M.; Liu, F.; Turner, I.; Anh, V. (2005): Numerical approximation of a
fractional-in-space diffusion equation, i. Fractional Calculus and Applied Analysis, vol.
8, no. 3, pp. 323-341.
Jackiewicz, Z.; Zubik-Kowal, B. (2006): Spectral collocation and waveform relaxation
methods for nonlinear delay partial differential equations. Applied Numerical Mathematics,
vol. 56, no. 3-4, pp. 433-443.
Javidi, M.; Heris, M. S. (2019): Analysis and numerical methods for the riesz space
distributed-order advection-diffusion equation with time delay. SeMA Journal, pp. 1-19.
Kilbas, A. A. A.; Srivastava, H. M.; Trujillo, J. J. (2006): Theory and Applications of
Fractional Differential Equations, volume 204. Elsevier Science Limited.
Liu, F.; Anh, V.; Turner, I. (2004): Numerical solution of the space fractional
fokker-planck equation. Journal of Computational and Applied Mathematics, vol. 166, no.
1, pp. 209-219.
Liu, F.; Anh, V. V.; Turner, I.; Zhuang, P. (2003): Time fractional advection-dispersion
equation. Journal of Applied Mathematics and Computing, vol. 13, no. 1, pp. 233-245.
Liu, Q.; Zeng, F.; Li, C. (2015): Finite difference method for time-space-fractional
schrödinger equation. International Journal of Computer Mathematics, vol. 92, no. 7, pp.
1439-1451.
Lubich, C. (1986): Discretized fractional calculus. SIAM Journal on Mathematical
Analysis, vol. 17, no. 3, pp. 704-719.
Marks, R. J.; Hall, M. W. (1981): Differintegral interpolation from a bandlimited signal’s
samples. IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 4,
pp. 872-877.
Meerschaert, M. M.; Tadjeran, C. (2004): Finite difference approximations for fractional
advection-dispersion flow equations. Journal of Computational and Applied Mathematics,
vol. 172, no. 1, pp. 65-77.
Meerschaert, M. M.; Tadjeran, C. (2006): Finite difference approximations for two-sided
space-fractional partial differential equations. Applied Numerical Mathematics, vol. 56, no.
1, pp. 80-90.
Momani, S.; Odibat, Z. (2008): A novel method for nonlinear fractional partial differential
equations: combination of dtm and generalized taylor’s formula. Journal of Computational
and Applied Mathematics, vol. 220, no. 1, pp. 85-95.
Momani, S.; Odibat, Z. (2008): Numerical solutions of the space-time fractional
advection-dispersion equation. Numerical Methods for Partial Differential Equations, vol.
24, no. 6, pp. 1416-1429.



Analytical and Numerical Solutions of Riesz Space Fractional Advection-Dispersion 271

Momani, S.; Odibat, Z.; Erturk, V. S. (2007): Generalized differential transform method
for solving a space-and time-fractional diffusion-wave equation. Physics Letters A, vol. 370,
no. 5, pp. 379-387.
Shen, S.; Liu, F.; Anh, V. (2008): Fundamental solution and discrete random walk
model for a time-space fractional diffusion equation of distributed order. Journal of Applied
Mathematics and Computing, vol. 28, no. 1, pp. 147-164.
Shen, S.; Liu, F.; Anh, V. (2011): Numerical approximations and solution techniques for
the space-time riesz-caputo fractional advection-diffusion equation. Numerical Algorithms,
vol. 56, no. 3, pp. 383-403.
Simo, H.; Woafo, P. (2016): Effects of asymmetric potentials on bursting oscillations in
duffing oscillator. Optik-International Journal for Light and Electron Optics, vol. 127, no.
20, pp. 8760-8766.
Sousa, E. (2012): A second order explicit finite difference method for the fractional
advection diffusion equation. Computers & Mathematics with Applications, vol. 64, no.
10, pp. 3141-3152.
Sulaiman, T. A.; Yavuz, M.; Bulut, H.; Baskonus, H. M. (2019): Investigation of
the fractional coupled viscous burgers equation involving mittag-leffler kernel. Physica A:
Statistical Mechanics and Its Applications, vol. 527, pp. 1-20.
Tadjeran, C.; Meerschaert, M. M.; Scheffler, H. P. (2006): A second-order accurate
numerical approximation for the fractional diffusion equation. Journal of Computational
Physics, vol. 213, no. 1, pp. 205-213.
Tanthanuch, J. (2012): Symmetry analysis of the nonhomogeneous inviscid burgers
equation with delay. Communications in Nonlinear Science and Numerical Simulation, vol.
17, no. 12, pp. 4978-4987.
Thomas, J. W. (2013): Numerical Partial Differential Equations: Finite Difference
Methods, volume 22. Springer Science & Business Media.
Tian, W.; Zhou, H.; Deng, W. (2015): A class of second order difference approximations
for solving space fractional diffusion equations. Mathematics of Computation, vol. 84, no.
294, pp. 1703-1727.
Varga, R. S. (2010): Geršgorin and His Circles, volume 36. Springer Science & Business
Media.
Weaver Jr, W.; Timoshenko, S. P.; Young, D. H. (1990): Vibration Problems in
Engineering. John Wiley & Sons.
Wu, G. C.; Baleanu, D.; Deng, Z. G.; Zeng, S. D. (2015): Lattice fractional diffusion
equation in terms of a riesz-caputo difference. Physica A: Statistical Mechanics and Its
Applications, vol. 438, pp. 335-339.
Wu, G. C.; Baleanu, D.; Xie, H. P. (2016): Riesz riemann-liouville difference on discrete
domains. Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 26, no. 8, 084308.
Wu, J. (2012): Theory and Applications of Partial Functional Differential Equations,
volume 119. Springer Science & Business Media.



272 CMES, vol.121, no.1, pp.249-272, 2019

Yang, A. M.; Han, Y.; Li, J.; Liu, W. X. (2016): On steady heat flow problem involving
yang-srivastava-machado fractional derivative without singular kernel. Thermal Science,
vol. 20, no. suppl 3, pp. S719-S723.
Yang, Q.; Liu, F.; Turner, I. (2010): Numerical methods for fractional partial differential
equations with riesz space fractional derivatives. Applied Mathematical Modelling, vol. 34,
no. 1, pp. 200-218.
Yang, S. (2018): Finite difference method for riesz space fractional diffusion equations
with delay and a nonlinear source term. Journal of Nonlinear Sciences and Applications,
vol. 11, no. 1, pp. 17-25.
Yang, X. J. (2019): General Fractional Derivatives: Theory, Methods and Applications.
Chapman and Hall/CRC.
Yang, X. J.; Abdel-Aty, M.; Cattani, C. (2019): A new general fractional-order derivative
with rabotnov fractional-exponential kernel applied to model the anomalous heat transfer.
Thermal Science, vol. 23, no. 3.
Zubik-Kowal, B. (2000): Chebyshev pseudospectral method and waveform relaxation
for differential and differential-functional parabolic equations. Applied Numerical
Mathematics, vol. 34, no. 2-3, pp. 309-328.


