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3-D Thermo-Stress Field in Laminated Cylindrical Shells

Hai Qian" ", Sai-Huen Lo?, Ding Zhou® and Yang Yang'

Abstract: The temperature and the stress distribution in simply-supported laminated
cylindrical shells undergo thermal loads on the surface have been investigated. Exact
solutions of physical quantities including temperature, heat flux, thermal displacement
and stress are developed for the cylindrical laminated shell. Cylindrical shells are
partitioned into more thin layers. In cylindrical coordinate, analytical expressions for
physical quantities inside each layer are derived. Taking into account the compatibility of
physical quantities at the interfaces, the relations between the outer and the inner layer of
the laminated shell can be described with a transfer matrix. The undetermined parameters
from the solutions of each layer can be obtained with boundary conditions. The
convergence of the solutions to the number of Fourier series terms has been checked. The
accuracy and feasibility of the present method is verified by comparing theoretical results
with numerical outcomes due to Finite Element Method (FEM). Finally, the influences of
surface temperature, geometrical size and material properties with respects to
temperature, thermal stresses and displacement of layered cylindrical shell are worked
out in details in a parameter study.

Keywords: Laminated cylindrical shells, thermo-elasticity, analytical solutions, transfer
matrix.

1 Introduction

The mechanical responses of layered cylindrical shells have attracted considerable
research efforts due to their increasing applications in the transportation of liquid and
solid materials. Owing to the inhomogeneity of the laminated shell, complex stresses and
deformations may be resulted even under a uniform temperature field. An accurate
assessment of the displacement and the stress distribution in layered shell due to
temperature loads would bring an important effect on the design and the structural safety
of cylindrical pipes and other laminated composite cylindrical structures.

Lots of findings on temperature field of structural elements were presented before. Chang
et al. [Chang, Kang and Chen (1973)] used Green’s formulas to study steady and
transient heat transfer in porous materials. Marin et al. [Marin and Lesnic (2007)]
investigated the problems of steady heat conduction around nonlinear functionally graded
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materials (FGMs). Norouzi et al. [Norouzi, Delouei and Seilsepour (2013)] obtained
exact solution for steady-state heat transfer in the fiber reinforced composite multilayered
materials. Kayhani et al. [Kayhani, Norouzi and Delouei (2012)] adopted Sturm-
Liouville theorem to derive the exact solution to investigate steady heat conduction in
laminated cylinder. Tarn et al. [Tarn and Wang (2003)] used the state space approach to
study the problem of heat conduction in anisotropic tube made by functional gradient
materials. LU factorization approach is used by Kayhani et al. [Kayhani, Shariati,
Nourozi et al. (2009)] to get an explicit solution of the steady heat conduction for
composite laminated cylinder. Based on an equivalent single layer method, Blanc et al.
[Blanc and Touratier (2007)] adopted equivalent single layer method and obtained an
advanced exact model to solve the heat conduction problems for laminated structures. Ma
et al. [Ma and Chang (2004)] developed a refined approach to solve the problem of heat
conduction for anisotropic laminates. Haji-Sheikh et al. [Haji-Sheikh, Beck and Agonafer
(2003)] derived an analytical solution to investigate steady heat conduction in double-
layered objects. Rahideh et al. [Rahideh, Malekzadeh and Haghighi (2012)] simulated the
heat conduction with finite wave heat speed in laminated FGM domain.

Thermal stresses on laminated structures have been widely studied by many researchers.
Eason [Eason (1962)] studied time dependent thermal stress problems when the material
is anisotropic. lesan [lesan (1980)] employed the linear thermo-elasticity theory and
investigated the responses of laminated cylinder. Fard [Fard (2015)] showed exact
analytical result to analyze a composite laminated panel under different boundary
conditions according to an advanced sandwich panel theory. Aziz et al. [Aziz and Torabi
(2013)] derived an exact solution of thermal stresses for hollow cylinder with constant
interior heat generation and prescribed temperature conditions. Based on the thermo-
elastic theory, Ruhi et al. [Ruhi, Angoshtari and Naghdabadi (2005)] obtained an
analytical solution of laminated cylinders made by functionally graded materials. Ma et
al. [Ma, Dui, Yang et al. (2015)] studied thermal displacements and stress from a hollow
FGM sphere subjected to uniform thermal load and present an analytical solution. Hyer
et al. [Hyer and Cooper (1986)] derived an analytical solution to solve the problem of
composite pips under surrounding temperature gradient. Hyer et al. [Hyer, Cooper and
Cohen (1986)] studied the influences of a constant temperature change on deformations
and stresses in composite pipes. For the Green-Lindsay type objects, Hetnarski et al.
[Hetnarski and Ignaczak (1993)] investigated the thermo-elastic waves induced by
instantaneous heating-source. Ghugal et al. [Ghugal and Kulkarni (2013)] studied
thermal stresses and displacements for orthotropic cross-ply multilayered plates with the
theory of trigonometric shear deformation. Huang et al. [Huang and Tauchert (1992)]
investigated the static response of a double-curved cross-ply composite plate subjected to
mechanical and thermal loads. Ali et al. [Ali, Alsubari and Aminanda (2016)] provided
an improved theory of shear deformation to investigate a laminated shell under
hygrothermal and mechanical loads through simplifying this problem to such case of
generalized plane strain deformations. On basis of Donnell’s shell theory, Wu et al. [Wu,
Jiang and Liu (2005)] studied the thermal buckling in multilayered shells made by FGMs.
Javaheri et al. [Javaheri and Eslami (2002)] derived analytical solutions for the
rectangular panel made by functional graded material subjected to thermal loads
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according to the classic plate theory. Alankaya et al. [Alankaya and Oktem (2016)]
studied the problem of static analysis of cross-ply double-curved shell on basis of an
improved shear deformation theory. Chen et al. [Chen and Liu (2001)] studied thermal
stress of the thin laminates with a boundary element method. Najafizadeh et al.
[Najafizadeh and Eslami (2002)] discussed thermal buckling of circle panel made by
FGMs on basis of an advanced shear deformation plate theory. With an asymptotic
approach, Reddy et al. [Reddy and Cheng (2001)] studied 3D deformations in simply-
supported plane made by FGMs. Shiah et al. [Shiah, Guao and Tan (2005)] developed
BEM to analyze the thermal effects in 2D anisotropic material with heat sources. Kim et
al. [Kim, Zhou and Chattopadhyay (2002)] established the thermal-piezoelectric-
mechanical coupling model to study the distribution of interlaminar stress in smart
laminated shells. Yas et al. [Yas and Aragh (2010)] discussed the 3D steady problem for
the fiber rein-forced cylindrical panel made by FGMs. Kumar et al. [Kumar, Chakrabarti
and Ketkar (2013)] provided static study of skew laminated shells with the theory of
higher order shear deformation. Yuan [Yuan (1993)] provided an exact solution to
discuss the thermal-induced responses of thick laminated shells under varying thermal
load. Qian et al. [Qian, Zhou, Liu et al. (2014, 2015)] derived analytical solutions for
simply-supported laminated plane undergoing different thermal loads. Moreover, Qian et
al. [Qian, Zhou, Liu et al. (2015)] studied the simply-supported composite arches under
steady thermal loads. On basis of refined shear deformation theory, Alankaya et al.
[Alankaya and Erdonmez (2017)] used Double Fourier series to study the effects of
curvature on hyperbolic paraboloidal formed, multilayered composite surfaces. With
Galerkin finite element method, Ahmadi [Ahmadi (2017)] present a layer wise solution
to investigate the distribution of stress in laminated plate under prescribed mechanical
loads. Sladek et al. [Sladek, Sladek, Solek et al. (2008)] analyzed the thermal stresses in
the Reissner-Mindlin shells with a meshless local Petrov-Galerkin approach. Civalek et
al. [Civalek (2007); Civalek (2008); Civalek (2017); Civalek and Acar (2007)] studied
free vibration in the conical panel, isotropic conical shells, carbon nanotubes reinforced,
FG shell and plates, Mindlin plates on elastic foundations by discrete singular
convolution. Bishay et al. [Bishay, Sladek, Sladek et al. (2012)] explored a new finite
element to study MEE materials. Akgoz et al. [Akgoz and Civalek (2011)] studied
nonlinear free vibration about thin laminates supported by non-linear elastic foundations.
Zuo et al. [Zuo, Yang, Chen et al. (2014)] used a wavelet finite element to analyze FG
plates with the Mindlin plate theory. Baltacioglu et al. [Baltacioglu, Akgdz and Civalek
(2010)] studied large deflection of laminated plates. Xiang et al. [Xiang, Ma, Kitiornchai
et al. (2002)] studied vibration in thin cylinders supported by intermediate ring and
obtained an exact solution. Talebitooti [Talebitooti (2013)] studied free vibration in
composite conical shells with LW-DQM. Wu et al. [Wu and Chi (2004)] presented an
asymptotic theory to study nonlinear problem in laminated cylinders based on 3D
nonlinear elastic theory. Wu et al. [Wu, Chiu and Wang (2008)] analyzed simply
supported laminated piezoelectric plates based on the RKP method. Heydarpour et al.
[Heydarpour, Malekzadeh, Haghighi et al. (2012); Heydarpour, Malekzadeh and
Gholipour (2019); Heydarpour and Malekzadeh (2019)] used Lord-Shulman theory to
study thermoelastic behavior of multi-FG spherical shells and FG-GPLRC spherical
shells, and analyzed thermoelastic response of rotating FG cylinders with layerwise
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differential quadrature method. Malekzadeh et al. [Malekzadeh and Ghaedsharaf (2014)]
studied thermoelastic problem of laminated cylindrical panels according to 3D
thermoelasticity theory. Malekzadeh et al. [Malekzadeh, Fiouz and Razi (2009)]
presented a dynamic solution of laminated plates undergo moving load on the basis of 3D
elasticity theory. Malekzadeh et al. [Malekzadeh and Beni (2015)] studied nonlinear free
vibration of FG plates undergo different conditions.

Without the consideration of the effect of transverse shear deformation, the classic
lamination theory with Love-Kirchhoff assumptions is a practical approach to assess the
behavior of thin laminates. For thick laminates, the effect from transverse shear
deformation should not be ignored. In this study, the 3D thermo-elasticity theory is
applied to the laminated cylindrical shells under steady-state thermal loads on surfaces.
The analytical solutions of each layer in laminated shells were developed with the help of
transfer matrix method. Unlike one-layer equivalent approach, each layer of different
material properties is dealt with separately, such that displacement and stresses at the
interface are strictly compatible.

2 Temperature distributions over the cylinder
2.1 Temperature in a single shell layer

A laminated cylindrical shell consisted of P layers and the radius of the outer surface in
Jjth layer is #; (j=1, 2...P). The materials of each layer are isotropic. The geometry and the
cylindrical coordinate system of the shell are presented in Fig. 1. The total length and the
inner radius are represented by / and ro, respectively. The material of each laminated
layer is isotropic with possibly district to each other. The case is considered that the
temperature of the two ends is a constant and this value is taken as the reference
temperature. Without loss of generality, the temperatures are furtherly considered to be
zero based on the relative temperature concept. The shell is simple-supported on
boundaries. The inner and the outer surfaces are under thermal loads #(6, z) and #,(6, z),
respectively. Besides, we assume that the properties of materials are uninfluenced by the
thermal process experienced by the shell.

outer surface

inner surface

(a) multi-layer cylindrical shell (b) a homogenous layer of one material type

Figure 1: Model of multi-layer cylindrical shell
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The thinning layer approach is introduced to solve the heat governing equation. As a
result, each isotropic layer is further divided into M; (j =1, 2... P) layers. Thus, the total

M
layer-number is N ( N :ZMJ. ). In such case, the variable » in the heat governing
=
equation can be approximately replaced by the center coordinate of layer rj. For thin
layers, the heat conduction equation in the ith (=1, 2 ... N) layer can be given as

2 2 2
0T (r,0,z) +i6Ti(r,0,z) +L6 T(r,0,z) N 0T (r,0,z) _

1
or e ol oz’ o

or’ I
where 7 is the center coordinate of the ith thin layer.
The temperature condition on the edges is

T,(r,0,0)=T(r,0,1)=0 2)

The temperature distribution 7i(r, 0, z) can be given by the Fourier series

Zt sm( j ZZamn )cos(m@ sm( j Zz  (r)sin(m@ sm( 7;ZJ 3)

m=1 n=1 m=1 n=1

The temperature solution (3) satisfies the temperature conditions (2). Substituting Eq. (3)
into Eq. (1), 7,(r,0,z) can be worked out as follows,

r o Z i( WH’I“+eﬂ’H2)sm(nﬂzj+ii( - 'H;m,+eﬁ ’H,inl)cos(me)sin(#j
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+ZZ( K H;’,m)sin(mﬁ)sin(nTﬂzj 4)
m=1 n=l1
where
4 222 4 2.2
& ’f ooy1-1 & 172[ 1-1
a = > .= ?
n ﬂn 2’;0
2 2.2 222
4
\/4m2+ T T 1-1 —\/4m2+ 17;]/;0 1-1
b IB:n/1 = b (5)
21
and H),, H.., H ;m , H! , H and HS  are the unknown expressions of the ith layer.

Once the coefficients are determined, the temperature filed of the laminated shell can
be obtained.

2.2 Induction formulae of temperature
Based on Eq. (4), we can rewrite the temperature and the heat flux as matrix, i.e.,
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T;(r,ﬁ,z)
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where k; is heat transfer coefficient, and [¢n (r)} , [qﬁmn,(r)J , [¢mn2(r)J are 2x1 matrix

function described as from temperature solution (4),
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Taking r = r; and r = ri.1 in Eq. (7) respectively, the unknown coefficients [A'n ] , [Afnn,]

and [Afm] can be eliminated as follows,

[0 ]=[ei)][ei: 0] [£:0:0] [FnD]=[ @D ][ 0] [ini]-

(8,20 ]= [ ) [0 ()] [#ai) ] )
Based on the continuity condition at the interface of the laminated shell, we have
[ (.60.2) | =[] (7.6.2)]. (10)

Therefore, the relations between the gth (¢=2, 3...N) and the inner layers can be
recursively obtained:

|- lereo] (Tl oien] floio] 2 |
’;} =[e1.0)] {H[(p (n)][w;,,lm]‘}[wf,,m(ro)]{gzﬂ,

775

; } (220 {f[[w;nz(r,-)][w;nz(n-l)]"}[w;,,z(n))]{z’;’"'}- (11)

2.3 Undetermined temperature coefficients
Think over that outer and inner surfaces of cylindrical shell under steady state thermal
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loads #,(0, z) and #:1(8, z),
L(r,0,2)=1,(0,z), Ty(ry,0,2)=1,(0,2). (12)

The Fourier series can be adopted to express temperature loads #,(6, z) and #(6, z),

tl<e,z>=i{§f,,ﬂ (0.2 25 o fin 2%

+ii ”lj I (6,z)cos( mH)sm(nTjdde cos(mH)sm[%}

+ii zj j )sin m@)sm( 1 jdzd@ sm(mg)su{mlrzj

ey
t})(&,z)=i{%.‘:ﬂt (6, z)sm(nl szd@}sm[mlrzj
%3 1 i PATS cos(m@)sm(Tjdde cos(mH)sm(m;Zj (13)
332 =1 11, (0.2)sin mH)Sln( : jdzd@ sm(m@)sm(mlrzj

Substituting the temperature solution (4) into boundary Eqs. (12) and (13) gives
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Solving Eq. (11) (taking ¢=N) and Eq. (14), H!, H}, H  , H' , H , H°® and
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coefficients of the gth layer H'

H! . can all be determined. Substituting the coefficients
H! , H and H' back to Eq. (11), the unknown
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be determined in turn. At last, the temperature distribution can be derived out by taking
these coefficients to the general solution of temperature field (4).
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3 Displacement and stress distributions over the cylinder

3.1 Displacement in a single layer

The thermal expansion coefficient is denoted by a;. The Young’s modulus of each layer
is denoted by E;. The Poisson's ratio is denoted by u;. The thinning layer approach in
Section 2.1 can also be employed in simplifying the three-dimensional thermo-elasticity
equation. Thermo-elastic constitutive relationships of the ith layer (i=1, 2 ... N) in the
cylindrical coordinate system are given by
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r To 00 To
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where 7, (r,0,z), 7.(r.0,2), 7.,(r.0,2), 0.(r,0,z), o,(r,0,z) and o.(r,0,z) are
stress of the ith layer (=1, 2 ... N), u,(r,0,z), v,(r,6,z) and w,(r,0,z) are displacement
components, respectively. 4, and G, are the Lam¢ constants described as:

R . o Y ¢ (16)
(1+/’li)(l_2/ui) 2(1+/’li)

The equilibrium equations without the body forces for the ith layer (i=1, 2, ... N) can be

written as
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Substituting thermo-elastic constitutive relationships (15) into Eq. (17), the equilibrium
differential equations for displacements are given by
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Since there is no in-plane displacement on both ends, we can obtain
u, (r,H,O) =u, (r,@,l) =0, v (r,H,O) =V, (r,@,l) =0. (19)

The Fourier series can be adopted to describe the displacement as follows,
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(r) are the undetermined expressions in 7, while w, (r, 6’) is the unknown functions
in 7 and 6. Eq. (20) satisfies the boundary conditions of Eq. (19). Here, w, (r, 9,2) can be
decomposed into two parts.



224 CMES, vol. 121, no.1, pp.215-247, 2019

3.1.1 Case 1: n=0
When n=0, w,(r,6,z)=w,(r,0). In this case, we have

T,(r,0,2)=0, u,(r,0,2)=0, v,(r,0,2)=0. 21

Substituting solution (21) into the equilibrium differential Eq. (18), a partial differential
equation of second order is obtained:
1 0w, (r, 6’) o*w, (r, 0) 10w, (r.0)
PR or’ r or
According to Eq. (22), the solution of w, (r,0) can be given by

=0. 22)
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m=1 m=1

where a, d,, a,, a,, ai and a are the coefficients determined from boundary conditions.

3.1.2 Case 2: n>0

When n>0, expressions of temperature (4) and displacement (20) are substituted into Eq.
(18). The solutions of u,(r,0,z), v,(r,0,z) and w,(r,0,z) are derived out as:
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where a;,, a;, and a;, (i=1, 2...N, g=1, 2,.., 6) are unknown coefficients which depend on

the boundary conditions of ith shelled layer. Three sets of coefficients s;,, ¢y, si,» ¢/, »

i

d,, can be determined from the derivation process of the formulas (24).

i

i i
@g a'nd SZg s §2g9

The first group of coefficients s . and &g (g=1,2, 3, 4) can be obtained:
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The second group of coefficients sfg , ./,“fg and c?fg (g=1,2,3,4,5, 6) can be obtained.
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ALCH| =Bl — Bl |+ G (AL Bl — ALBL)+ " CLCL| = 4%, — 4, =0 (28)
FioSig i051g i051g
and
i Alifclig ]’gcll é/i — Alié]zBlig B AEB;% (29)
lg i i l 2 lg I i i I
¢ Blgclélz - ﬁclz ¢ Blfclg _Blgcﬁ
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The third group of coefficients s;,, ¢;, and &,, can be obtained. s, is the roots of the

following equation,
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A5CE| = BE - BE |+ Cx (45B% - A§§B§§)—LC§§C§§ —— A5 -4 =0 (3D)
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As wl.(r,Q,Z);tO for n=0, the complete solutions for displacements are the combining

Eqgs. (23) and (24)

3.2 Stresses in a single layer
Take the solutions of displacement to equation (15), the complete stress components are

given by
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3.3 Induction formulas of displacement and stress

The induction formulas are divided into two parts based on solutions of displacement and
stress for case 1: =0 and case 2: n>0.

3.3.1 Case 1: n=0
When n=0, the displacements and stresses as given in Egs. (23) and (34) can be shortened as:

) w, (r,0 W (r < | W cos m@ | W' sinmé
[w:" (1;.,0)] - Lé Erﬁ))} - {Xz Erﬂ ! ;{Xzz (( %cos me} i WZ{[XME ;sm m@} (33)
where W, (r), W, (r) and W,,(r) are defined as the displacement functions, X(r),
X,,(r) and X, (r) are stress functions.

For brevity, Egs. (23), (34) and (35) can be rewritten as

(R (]=[EO]8]. [Ra()]=[£a (][40 ] [Ra(M)]=[ £ ()][4]. GO

in which,

s i) o) o)

ml m2
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ETEIR A MR NI I YA
[E,;z(r)]{ } [A;z]{ﬂ- (37)

G.mr -G.mr a,

On basis of the continuities of physical quantities on the interface, we have
[@.(.0)]=[@" (n.0)]. (38)

Thus, the relationships of physical quantities between gth and the innermost layers are
given by:

[ 2. (7)) £ (s )]1}[1?;2 (n)]- (39)

3.3.2 Case 2: n>0

When 7>0, the displacements and stresses of an isotropic layer as given in Egs. (28) and
(39) can be shortly rewritten as:

ULO(”)SH% U, (r)eo s(m@)sin@ U 2(r)sm(mé’)sm?
ul_ér,g,z) Vlfo(r)sin? Vo (r)sin (m@)sin? |4 2(r)cos(m&)sm?
(7,0, )
fvg(i,g,?) o[ W (r)eos™ 2 | o W (r)eos(mO)eos™= | o [, (r)sin(m)eos ™ |
U;(V,H,Z) :Z:‘ i nrz +Z‘TZ:‘ nrz +Z‘TZ:‘ nrz
i(roz)| Z,(r)s - | VA ,(r)cosm@smT VA 2(r)smm@smT
7,5(r.0,2) X,’;O(r)cos? X! l(r)cosm@cos% X! 2(r)smm@cosTZ

Y,;’o(r)sinnTm Y! ,(r)smm@sm% Y 2(r)cosmﬁsm%

(40)

Where UrIIO (V) > I/MIO( ) > VVMiO( ) Urlnnl( )’ Vr:ml( )’ Vanml( ) U/lnnZ( )’ Vrrlth (l") and
W,.,(r) are displacement functions, Z,(r), X,,(r), Y,y (), Zy (r)s Xy (7)), Yo (7),

Zy,(r), X,,.,(r) and Y, , () are stress functions.
For brevity, Egs. (24), (34) and (40) can be expressed as

(R (M) =L En (D[40 +[ 2 ()] [ R (7)) = [ B () [ Ao ]+ [ Qo () ]
(R (r) [=[ Epe (1) [ Az ]+ @ ()] (41)
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in  which, [R;O(r)] , [annl(r)J , [R;mz (V):| , [E;O (r)] , [A;O] , [Q:,o (r)} ,
[E;nl (F)J ,[A'MJ, [Q,’;,,,l(r)], [E,’;n,z(r)} , [Aﬁm] and [Q;nz(r)] are given in detail in
Appendix A.

On basis of the compatibility of physical quantities at the interface, the relationships
between gth (¢=2, 3, ..., N) and innermost layers are given by:

L] Tt L 0] 1) T )T 0] 2 )]

S ] e ()]s ) [ )]
]={1j[E;m(n)][E;m () l}mﬂ <r0>]—{fl[[E;m(n)][E;'z,zl(r,--l )T}[Q;n. ()]

(42)

3.4 Coefficients of displacement and stress

In this analysis, the mechanical loads are not considered. If existed, the superposition
method is adopted. The temperature conditions of cylindrical shells are

O'l (ro,ﬁ,z) = O',N (rN,H,Z) =0, z’le (1’0,9,2) = z'r'\; (rN,Q,z) =0,
7, (r.0,z) =7, (ry,0,2)=0. (43)
The two cases n=0 and n>0 are identified and are considered separately.

3.4.1 Case 1: n=0

When n=0, substituting Eq. (43) into Eq. (39) (taking g=N), the relationships of physical
quantities between outer and inner layers are given by

J-{IE e Ee ] %)
()] {H[E ()][Eu ()] HWO( )} ’

(44)
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The displacement W, (r,), W, (ry), Wo(r) . Wo(ry), W,,(r,) and W, (r,) can be
determined from Eq. (44). The functions [Rg (rq )] , [R;l (r )] and [le2 (rq )] (g=2,3...N-

q
1) are obtained from equation (39) and the unknown coefficients |, d,, ai, a;, a; and
a, (i=1, 2...N) are determined from Eq. (36).

3.4.2 Case 2: n>0

When >0, substituting Eq. (43) into Eq. (42) (taking g=N), the relationships of physical
quantities between Nth and innermost layers are

U3 ()] Uy ()] [2] [ ()] (Upr (0)] [P
Vio (FN) u 2 Vio (ro) Qg") Vi (VN) " 12 anl(ro) il
I/Vﬂ/(\)l (I"N ) — v110 VnO VV}'I‘O (l’b) + QnO Wm/\:l (VN) = anl anl W”lm] (ro) + anl

0 Vio Vil "0 Q| "o Vi Vil 70 -
0 0 Q, 0 0

L 0 ] L0 el L 0 U RN oS
UmNnZ (rN) —UrimZ (’b )_ _g;""z
VWZZ (rN) 1 2 V,:,nz (I/b) )3nn2
Wi (1) | = [VW Vgﬂfz} W (1) |+ 831"2

O mn2 mn2 O gnnZ

0 0 ngz

L O . L O . mn2
(45)

The detail of each matrix and abbreviations in Eq. (45) is given in Appendix B.

The coefficients U, (%) » Vo (%) » Woo(%) » Un () s Vi (1) s Wo(rv) > Upu () »
Vot (10) > Wi (1) 5 Upa (1) 5 Vo () > Wi (1) 5 Una () 5 Voa (10) 5 W0 (1)
Upia (r) » Vi (1) and W,

displacement and stress functions [R;’O(rq )] , [ijl(rq )] and [R,an(rq )] (g=2,3...N-1)

(ry) can be obtained through equation (45). The

are obtained from equation (42) and ag,, 4/, , aj, (g=1, 2,...,6) can be obtained through
equation (41). The complete displacement and stress distributions of the laminated shell

are given by substituting a; , aé o ali and a; . respectively into Egs. (23), (24) and (34).

J

4 Convergence and comparison

A numerical example has been implemented to investigate the convergence ability of the
present method. The double precision computations are conducted in the following
numerical calculations. As the most common laminated structure in engineering practice,
a triple-layer cylindrical shell is present as instance. The materials of surface layers and
middle layer are steel and concrete, respectively, and their radii are 7=1.5 m, 1=1.9 m,
r=2.3 m, r3=2.7 m. The shell length is /=10 m. Poisson’s ratios of steel and concrete are
0.3 and 0.2, respectively. The thermal conductivities of steel and concrete are 50
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W/(m-°C) and 2 W/(m-°C), respectively. The Young’s Moduli of steel and concrete are
200GPa and 30GPa, respectively. Thermal expansion coefficients of steel and concrete
are 1.2x10%/°C and 0.7x10°%/°C, respectively. The inner surface of the cylindrical shell
undergoes a uniform steady-state thermal load: #(6, z)=0°C, meanwhile the outer surface
undergoes the thermal load:

I 0<0<nm

t,(0,2) = {0 (46)

—-<0<0

where, =100 °C.

The laminated shell is divided into 15 thin layers. Limiting indices m and # in the infinite
series to L in Egs. (6), (25), (26) and (36), we have approximate results of displacement
and stress in terms of L. Five different numbers for L=15, 20, 25, 30, 35 have been
checked in the series. Tab. 1 provides the numerical results at »=1.6 m, 6=1.8 rad, z=4.2
m and 7=2.0 m, 6=1.28 rad, z=3.2 m, respectively. Tab. 1 reflects that the data converge
rapidly with the growing numbers of term L. There is little difference between solutions
for L=30 and 35. Thus, the terms’ number of Fourier series is set as L=30 in the
subsequent calculations.

Table 1: Investigation of convergence

Position L u(mm) v(mm) op(MPa) o (MPa) 7,4 MPa)

15 6.54 -1.92 108 198 2.89

6 20 7.28 -1.98 119 232 3.12
5:1.%; rzl&’ 25 9.84 -2.28 125 258 3.28
=42 m 30 10.8 -2.40 161 286 4.56
35 10.8 -2.40 161 286 4.56

15 6.82 2.12 13.8 39.6 -5.46

7=2.0m, 20 7.28 2.48 15.8 41.8 -5.88
6=128rad, 25 8.96 2.59 16.8 43.2 -6.66
z=32m 30 9.60 2.70 17.9 44.5 -6.72
35 9.60 2.70 17.9 44.5 -6.72

To evaluate the errors in adopting the thin layer approach in Eq. (2), the three-layer shell
has been further divided progressively into 6, 9, 12, 15 and 18 thin layers. Tab. 2 presents
the numerical results for displacements and stresses at »=1.6m, 6=1.8 rad, z=4.2 m and
r=2.0 m, 6=1.28 rad, z=3.2 m, respectively. It is clear that the data for N=15 and 18 have
identical three significant figures. This means we can eliminate the error through
enlarging the number of the thin layers (i.e., decreasing the thickness of thin layers). A
finite element (FE) simulation with the help of ANSYS software (Element types: solid 90
for temperature analysis, solid 186 for structural analysis) has been implemented to
assure the validity of the current method. The comparison of results at the five locations
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is given in Tab. 3, which suggests that the FEM simulation results agree well with the
analytical solutions.

Table 2: The influence of total thinning layer numbers

Position N u(mm) v(mm) op(MPa) o.(MPa) z4(MPa)

6 102  -2.12 148 262 432

=1.6m, 9 103 2.23 153 281 4.53
6=18rad, 12 108  -2.40 159 285 4.58
z=4.2m 15 108 -2.40 161 286 4.56
18 108  -2.40 161 286 4.56

6 952 2.53 15.9 415 -6.46

=2.0m, 9 958 2.59 16.8 43.8 -6.58
6=128tad, 12  9.60 2.68 17.6 44.3 6.71
z=3.2m 15  9.60 2.70 17.9 44.5 -6.72
18 9.60 2.70 17.9 44.5 6.72

Table 3: Comparison studies towards current results and FE results

Displacements 6=1.8rad, z=4.2 m
Method
and stresses r=150m r=1.80m »=2.10m r=240m r=2.70m
Current 10.9 10.7 10.9 11.3 11.6
u(mm)
FE 10.7 10.6 10.8 11.1 114
Current -2.40 -2.40 -2.40 -2.40 -2.40
v(mm)
FE -2.39 -2.40 -2.40 -2.40 -2.40
Current 180 134 14.0 -105 -103
oo(MPa)
FE 175 131 13.8 -103 -101
Current 275 309 46.0 104 142
o-(MPa)
FE 272 306 45.7 103 139
Current 0 7.09 5.07 422 0
‘L'ra(MPa)
FE 0 7.04 5.04 4.18 0

Numerical data are compared with the results from Ayoubi et al. [Ayoubi and Alibeigloo
(2017)] to validate the present method. The hollow cylinder in reference is an isotropic-
one-walled functionally graded materials cylindrical shell with the dimensions of 7p=0.95
m, 7,=1.05m, /=3 m. The surface temperatures are #(6, z)=200K and ¢,(6, z)=0,
respectively. The outer surface is metal (Ni) with the material properties k,=90.5
W/(m-K), E,=206 GPa and a,=1.33x107/K. The inner surface is ceramic (SiC) with the
material properties k=65 W/(m'K), E~427 GPa and a~4.3x10%K. The material
properties of the cylinder follow the laws:
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r m, r m- r m
E(r)=E.()", a@)=a. ()", k@r)=k ()", 47)
Ty Ty Ty
1n& ln% lnkl
EC aC kC
where, m, = , m,= , my = .
In’® In’® In’®

7

0 ¥

0

The functionally graded cylinder is divided into ten layers and the nondimensional stress
o," along the thickness at z=1.5 m can be obtained in Tab. 4. From comparison of the
present results with the reference, good agreement is found.

Table 4: Comparison of radial stresses o, through the thickness with reference

r/( rp-ro) 0.1 0.3 0.5 0.7 0.9
present -0.676 -1.37 -1.35 -0.890 -0.277
reference -0.674 -1.35 -1.34 -0.889 -0.277

Note: radial stresses o,'=c,/(a0T:E"), a=10"°/K, T=200K, E*=1 GPa

5 Parameter studies

In this part, the discussion of temperature, displacement and stress mainly is focused on
the influences of surface temperature 7, geometric dimensions, the number of laminated
layers and the material properties.

5.1 Influence of surface temperatures

The first model is a triple-layered cylindrical shell. The layer radii are 7=1.5 m, =19 m,
r=2.3 m, r3=2.7 m, respectively. The shell length is /=10 m. The material properties are
identical with that shell shown in Section 4. The outer surface of the shell undergoes
three different thermal loads #: 50°C, 100°C, 150°C in Eq. (46). The temperature of the
inner surface is constant as 0°C.

Fig. 2 illustrates the temperature change along the » direction at 6=1.8 rad, z=4.2 m for
various temperature fields. It follows that the temperature variation rate within the
surface layers along the r direction are pretty small in Fig. 2. However, the temperature
gradient within the middle layer is larger because the thermal conductivity of the surface
layers in the cylindrical shell is much greater than that of the core layer. Fig. 3 reflects
the distributions of u, v, o, and 79.. We can find from Figs. 2 and 3 that the absolute
values of all physical quantities increase with the increasing thermal loads # from the
outer surface. It is clear from Figs. 3(a) and 3(b) that the u and v vary slightly with » but
increase with the increasing thermal load. Fig. 3(c) presents that o, is always positive.
Moreover, we can see from Fig. 3(d) that 75. are of discontinuity on the interfaces, i.e.,
different 7y, exist for distinct material properties on two sides in the shell.
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Figure 2: The temperature change along r-axis at 6#=1.8 rad, z=4.2 m for a 3-layered
cylindrical shell under different surface temperatures
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Figure 3: Displacements and stresses at =1.8 rad, z=4.2 m under different thermal loads
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To analyze the stress distribution features on the interface, the distributions of stresses oy
and 7. on two sides of the interface at =1.9 m, z=4.25 m along the 6 direction are
depicted in Fig. 4 for #£%=100°C. Since the Young’s modulus of steel is relatively greater,
we can see that the absolute values of stresses in surface layers are greater than those in
middle layer at all time.

150
| —=— =19
—o— =19

100

0o 05 00 05 10 -lo 0.5 0.0 0.5 1.0
dr ar
(a) stress oy (b) stress s

Figure 4: The oy and 7. distribution for £,=100°C at /=1.9 m, z=4.25 m

Note: the subscript “-” and superscript “+” indicate the position of inner and outer
surfaces on the interface, respectively.

5.2 Figures influence of the ratio h/ro

A three-layered cylindrical shell with thickness % (i.e., r3-r9)=1.2 m and /1= h>= h3=0.4 m
is studied in this part. We considered three different values ro=1 m, 1.5 m and 3 m, for
which A/r=1.20, 0.80 and 0.40 respectively. The shell length is /=10 m. The material
properties of laminated shells are the same as given in Section 4. The outer surface in the
cylindrical shell undergoes thermal load #=100°C in Eq. (46). The inner surface
undergoes a constant thermal load #,(6, z)=0°C.

The temperature distribution along the radial direction » at 6=1.8 rad, z=4.2 m is plotted
in Fig. 5, and Fig. 6 presents the changes of u, v, g, and o. Fig. 5 illustrates that the
temperature distribution is almost constant with different ratio A/ro. Figs. 6(a) and 6(b)
reflect that absolute values for displacements u and v increase with increasing A/ro. Fig.
6(c) tells that the change rates of ¢, and o increase with the increasing 4/ro.
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5.3 Influence of material properties

The last model is to compare the displacement and the stress along the r-axis of three
distinct two-layered shells. The material of the inner layer is steel, while the material of
the outer layer is concrete. The inner dimension of the tube is =2 m, and the outer
dimension is 7»=3.2 m. Hence the thickness / of the tube equal to 1.2 m. All shells have
the same length /=10 m. We considered three different thicknesses for the steel layer
h=0.4 m, 0.6 m and 0.8 m for which A/h=2.0, 1.0 and 0.5 respectively. The outer
surface in the layered shells undergoes a distributed thermal load with 7=100°C in Eq.
(46). The inner surface is suffered a constant temperature #,(6, z)=20°C. The distributions
of T, v, w, 0. and 7. at 6=n/4, z=4.5 m along the radial direction are given in Fig. 7 and
Fig. 8. For cylindrical shells of the same total thickness, we can find temperature filed,
thermal stresses and displacements are different. Fig. 7 reflects that the temperature T’
varies lightly in steel layer, as thermal conductivity of steel is greater than concrete. Figs.
8(a) and 8(b) clearly present that the displacement v and w change substantially in the
shell of 4=0.4 m. The reason is that the Young’s modulus for steel is significantly
greater than concrete. We can also observe from Fig. 8(c) that the change of . on the
interface between steel and concrete layers increases with decreasing ratio Ag/h.. As
shown in Fig. 8(d) 7,- is almost invariant near the inner surface, however, 7. changes
quite substantially in place away from the inner surface, say (r—7,)/h>02 .
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Figure 8: Displacement and stress distribution at 8=n/4 rad, z=4.5 m along r-axis under
different laminates

6 Conclusions

This study presents an investigation into simply-supported layered cylindrical shells
subjected to thermal loads on the surface on basis of the theory of exact three-
dimensional thermo-elasticity. With the consideration of the effect of transverse shear
deformation and the continuities at the interface, the exact temperature and stress
solutions can be readily derived by solving several sets of algebraic equations for
laminated cylinders with arbitrary layers. Main conclusions are summarized as listed:

(1) By use of the theoretical method developed in this paper, the temperature distribution,
displacement and stress of cylindrical layered shells under thermal loads can be derived
in a straightforward way.

(2) A thinning layer approach is explored to solve the heat conduction equation and the
three-dimensional thermo-elasticity equation. The results of FEM simulation are
presented to compare with results due to the analytical method. The comparison of
results suggests the accuracy and correctness of the present methodology. Also, the
convergence property of the proposed method is examined and an excellent convergence
property of the present approach is found. The present methodology can be used to study
the thermal buckling problems.

(3) Results showed that the research objects in the shell consistently grow with the
increasing thermal load on the outer surface. Stress gy and 74 are of discontinuity on the
interfaces, i.e., distinct material properties exist on two sides in the shell. The geometrical
sizes and the material properties make significant influences on the temperature field,
thermal stresses and displacements of layered cylindrical shells.
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where V7 , V7 and V/  (i,j=1, 2) are the 3x3 matrices.
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