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Abstract: This study proposed a partitioned method to analyze maneuvering of insects 
during flapping flight. This method decomposed the insect flapping flight into wing and 
body subsystems and then coupled them via boundary conditions imposed on the wing’s 
base using one-way coupling. In the wing subsystem, the strong coupling of the flexible 
wings and surrounding fluid was accurately analyzed using the finite element method to 
obtain the thrust forces acting on the insect’s body. The resulting thrust forces were 
passed from the wing subsystem to the body subsystem, and then rigid body motion was 
analyzed in the body subsystem. The rolling, yawing, and pitching motions were 
simulated using the proposed method as follows: In the rolling simulation, the difference 
of the stroke angle between the right and left wings caused a roll torque. In the yawing 
simulation, the initial feathering angle in the right wing only caused a yaw torque. In the 
pitching simulation, the difference between the front- and back-stroke angles in both the 
right and left wings caused a pitch torque. All three torques generated maneuvering 
motion comparable with that obtained in actual observations of insect flight. These 
results demonstrate that the proposed method can adequately simulate the fundamental 
maneuvers of insect flapping flight. In the present simulations, the maneuvering 
mechanisms were investigated at the governing equation level, which might be difficult 
using other approaches. Therefore, the proposed method will contribute to revealing the 
underlying insect flight mechanisms. 
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fφ flapping frequency 
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L body length 
Lw wing span length 
M mass ratio 
mb mass of the insect body 
Re Reynolds number 
rA aspect ratio of the wing 
r2 non-dimensional radius of the second moment of the wing area 
Sp projection area of the wing chord normal to the translational direction 
SW area of the wing surface 
Ti torque due to the force acting the body in the i-th direction 

Tφ flapping period 
Vm mean flapping velocity 
Vmax maximum velocity of the wing due to the body rotation 
α non-dimensional parameter 
θ feathering angle 
θ0 initial feathering angle 
θ0

R right wing’s initial feathering angle 
θ0

L left wing’s initial feathering angle 
μf fluid viscosity 
ζ angle of inclination in the body axis 
ρf fluid mass density 
Φ stroke angle 
ΦL left wing’s stroke angle 
ΦR right wing’s stroke angle 
ΦF front stroke angle 
ΦB back stroke angle 
φ stroke angular displacement 
ψi rotation angle of the body in the i-th direction 

1 Introduction 
Insects have developed flapping flight through their evolutionary history [Brodsky 
(1994)]. This flight is superior to other forms of locomotion and has resulted in their 
habitat extending over the entire planet. Therefore, the flapping flight of insects has 
attracted much attention of researchers. 
The characteristic motions of an insect’s flapping wings were observed using high-speed 
video camera recordings [Weis-Fogh (1973)], and the kinematics have been investigated 
extensively in many studies [Ellington (1984b); Walker, Thomas and Taylor (2010); 
Chen, Skote, Zhao et al. (2013); Chen and Skote (2015)]. Dynamically scaled 
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experiments based on the kinematics of the insect’s flapping wings revealed that (1) the 
fluid flow forms a vortex at the leading edge of the wings, (2) this vortex is stable during 
the flapping translation, and (3) it creates enough lift force for the insect to fly [Dickinson, 
Lehmann and Sane (1990); Ellington, Van den Berg, Willmott et al. (1996)]. The 
kinematics of the insect’s flapping wings can be caused by the interaction of the wing and 
surrounding fluid [Ishihara and Horie (2006); Ishihara, Horie and Denda (2009); Ishihara, 
Yamashita, Horie et al. (2009)]. 
Most recently, flapping-wing nanoscale air vehicles mimicking insects have been 
developed [Wood (2008); Ma, Chirarattananon, Fuller et al. (2013); Bontemps, Vanneste, 
Paquet et al. (2013)]. These devices are expected to be capable of the sophisticated 
maneuvers seen in insect flapping flight. However, the underlying mechanism of these 
maneuvers is still unclear. Here, we focus on how maneuvering parameters such as the 
stroke and initial feathering angles give maneuvering motions. This relationship is 
complicated and nonlinear, and it is not revealed yet. This is because there is no approach 
to analyze this relationship directly. Therefore, the objective of this study is to develop an 
analysis method to investigate and demonstrate this relationship at the governing 
equation level, which might be difficult using other approaches. 
Several approaches are available for revealing the maneuvering mechanism of the insect 
flapping flight. High-speed video camera recordings give the kinematics of the insect’s 
wing and body during maneuvering. Computational fluid dynamics can analyze the 
associated fluid mechanics [Liu, Ellington, Kawachi et al. (1998); Hamdani and Sun (2000); 
Ramamurti and Sandberg (2002); Aono, Liang and Liu (2007)]. Furthermore, an approach 
taking into account the fluid-structure interaction is necessary, because the insect’s wings 
and the surrounding fluid are coupled to cause the wing’s characteristic motions that result 
in the enough lift force for the insect to hover [Ishihara, Yamashita, Horie et al. (2009); 
Ishihara, Horie and Niho (2014)]. The deformation of the insect’s wings can change 
vortices around them to enhance the aerodynamic performance [Nakata and Lie (2012); 
Nguyen, Sundar, Yeo et al. (2016)], and it can reduce the vibration of the insect’s body to 
contribute stabilization of insect flapping flight [Yao, Yeo and Nguyen (2019)]. 
There are essentially two computational methods for the fluid-structure interaction, that is, 
the strongly and weakly coupled methods [Zhang and Hisada (2004)]. In the strongly 
coupled method, the formulation enforces the coupled conditions on the fluid-structure 
interface. In contrast, in the weakly coupled method, the formulation does not enforce the 
coupled conditions on the fluid-structure interface. Therefore, the strongly coupled 
method is necessary to solve strongly coupled problems. A weakly coupled method was 
applied to the interaction of the insect’s wings and the fluid surrounding the insect 
[Nakata and Liu (2012); Eberle, Reinhall and Daniel (2014)]. However, the insect’s 
wings and the fluid surrounding the wing are strongly coupled because of the high 
flexibility of the wings [Yamada and Yoshimura (2008); Ishihara, Horie and Denda 
(2009)]. A monolithic formulation of the insect’s wing and body in the fluid-structure 
interaction analysis using the strongly coupled method is very expensive computationally 
[Nakata and Liu (2012); Nakata, Noda and Liu (2018); Yao, Yeo and Nguyen (2019)] 
and leads to numerical difficulties. Therefore, a different approach is required. 
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Hovering is the most fundamental flight mode [Ellington (1984a)], and turning behaviors 
initiated from quasi-static flight are justified for maneuvering [Bergou, Ristroph, 
Guckenheimer et al. (2010); Beatus and Cohen (2015); Whitehead, Beatus, Canale et al. 
(2015)]. Therefore, each body rotation for rolling [Beatus and Cohen (2015)], yawing 
[Bergou, Ristroph, Guckenheimer et al. (2010)], or pitching [Whitehead, Beatus, Canale 
et al. (2015)] from the static state is taken as the basis of maneuvers during insect 
flapping flight. 
It seems that the insect uses the stroke angle and initial feathering angle for maneuvering 
[Bergou, Ristroph, Guckenheimer et al. (2010); Beatus and Cohen (2015); Whitehead, 
Beatus, Canale et al. (2015)]. These parameters must change at the wing’s base because 
the insect’s wing lacks internal muscles [Wootton, Herbert, Young et al. (2003)]. This 
understanding suggests that these changes can be described as the boundary conditions 
imposed on the wing’s base. Furthermore, it follows from this description that the insect 
flapping flight can be partitioned into the wing and body subsystems, and it can be 
considered as their coupling via boundary conditions imposed on their interface, that is, 
at the wing’s base. 
In this study, a partitioned method for maneuvering analysis of insect flapping flight is 
proposed. In the proposed method, the insect flapping flight is partitioned into the wing 
and body subsystems, and they are coupled via the boundary conditions imposed on their 
interface at the wing’s base using partitioned algorithms. The boundary conditions 
describe not only the coupled conditions but also the transmission functions of the wing’s 
base, including the maneuvering parameters. This formulation allows us to solve the 
strong coupling of the wing and the fluid surrounding the wing separately to avoid the 
numerical difficulties of applying the strongly coupled method to the whole system. 
This study demonstrates the fundamental validity of the proposed method for the 
maneuvering analysis of insect flapping flight. Here, one-way coupling was used because 
it is one of the simplest partitioned algorithms. In the wing subsystem, the thrust force is 
calculated by a strongly coupled analysis of the wing and surrounding fluid. This force is 
passed to the body subsystem, and the motion of the body is calculated by rigid body 
analysis. The maneuvers simulated using the proposed method were compared with those 
in previous studies. As far as we know, no other study has evaluated the maneuvers of the 
body motion with simulations that account for the fluid-structure interaction of the wings. 
This might be because of the numerical difficulties stemming from a monolithic 
formulation of the insect’s wings and body in the fluid-structure interaction. 

2 Partitioned method of insect flapping flight 
2.1 Partitioned modeling 
The flexible wings and surrounding fluid are strongly coupled to produce the 
characteristic motions of the wings and create enough lift for the insect to hover [Ishihara, 
Yamashita, Horie et al. (2009); Ishihara, Horie and Niho (2014)]. This result indicates 
that the fluid-structure interaction is essential in the insect flapping flight mechanism. 
Thus, a strongly coupled method is required to solve this problem [Yamada and 
Yoshimura (2008); Ishihara, Horie and Denda (2009)]. However, the monolithic 
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formulation of the wings and the body in the fluid-structure interaction leads to numerical 
difficulties [Nakata and Liu (2012)]. 
To resolve this issue and reveal the underlying mechanism of flapping flight maneuvers, 
a partitioned method for insect flapping flight is proposed based on the model shown in 
Figure 1. As shown in this figure, the insect flapping flight is decomposed into the 
subsystems of the wing and body, and these subsystems are coupled via boundary 
conditions at the wing’s base. These boundary conditions include the coupled conditions 
that consist of compatible and equilibrium equations. In addition to these conditions, 
these boundary conditions include the transmission functions of the wing’s base, 
including the insect’s control of the maneuvering parameters. 
 

 

Figure 1: Proposed partitioned model of insect flapping flight 
The proposed model allows us to solve the strong coupling of the wings and their 
surrounding fluid separately, which avoids the numerical difficulties of applying the 
strongly coupled method to the whole system. The underlying physical interpretations on 
the proposed modeling are described below. 
Parameters for maneuvering, such as the stroke angle and initial feathering angle [Bergou, 
Ristroph, Guckenheimer et al. (2010); Beatus and Cohen (2015); Whitehead, Beatus, 
Canale et al. (2015)], are thought to be controlled actively by the insect at the wing’s base 
because insect wings lack internal muscles [Wootton, Herbert, Young et al. (2003)]. This 
means that their control can be described by boundary conditions imposed on the 
interface between the wing and the body, that is, at the base of the wing. This description 
can also be justified as a reduced-order model by taking into account the complexities of 
the wing’s base [Beatus and Cohen (2015)], which is among the most complicated joints 
in the animal kingdom [Pringles (1957); Dickinson and Tu (1997)]. 
Furthermore, the mechanical characteristics of the wing subsystem and body subsystem 
are quite different from each other. A strong interaction between the fluid and the 
structure occurs in the wing subsystem because of the wing’s high flexibility. In contrast, 
the body subsystem presents a different type of fluid-structure interaction problem 
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because of its small elastic deformation. The characteristic frequency of the wing 
subsystem is the flapping frequency, which is several hundred hertz, and it essentially 
represents an unsteady problem. In contrast, the body subsystem presents a far lower 
characteristic frequency during flight: hovering is the most fundamental mode [Ellington 
(1984a)], and the turning behaviors from quasi-static flight can be considered as 
maneuvers [Bergou, Ristroph, Guckenheimer et al. (2010); Beatus and Cohen (2015); 
Whitehead, Beatus, Canale et al. (2015)].  
To discuss the fundamental validity of the proposed method, one-way coupling is used in 
the partitioned algorithm; that is, the thrust force from the wing subsystem is passed to 
the body subsystem at the wing’s base. This method can be justified by the physical 
interpretation of the maneuver. Each body rotation to produce rolling [Beatus and Cohen 
(2015)], yawing [Bergou, Ristroph, Guckenheimer et al. (2010)], or pitching [Whitehead, 
Beatus, Canale et al. (2015)] from the static state is the basis of the maneuvers during 
insect flapping flight. This method can also be justified by the actual observation of the 
maneuver. The yaw angle Δψ=120° is produced by Δt=80msec from actual data [Bergou, 
Ristroph, Guckenheimer et al. (2010)]. Therefore, the wing speed due to the body 
rotation along the flapping direction is approximately evaluated as r2LwΔψ/Δt=0.034 
m/sec, where r2 and Lw are the nondimensional radius of the second moment of the wing 
area and the wing span length, respectively, and these values are set as 0.545 and 
2.39×10-6 m, respectively, from actual data [Cheng and Deng (2011); Hedrick, Cheng and 
Deng (2009)]. In contrast, the mean speed of flapping wings is given by 2r2ΦLwfφ=1.4 
m/sec, where Φ and fφ are the stroke angle and the flapping frequency, and these values 
are set as 140° and 218 Hz, respectively, from actual data [Hedrick, Cheng and Deng 
(2009)]. The former is ignorable because it is only 2% of the latter. In the following 
sections, the modeling of each subsystem is described. 

2.2 Wing subsystem 
2.2.1 Governing equation 
Insect wings consist of thin membranes to capture the aerodynamic force and a network 
of veins to support them. They are quite flexible, especially regarding torsion [Ennos 
(1987, 1988a)]. According to actual measurements [Combes and Daniel (2003)], the 
rigidity along a wing’s chord-wise direction is approximately two orders smaller than that 
of a wing’s span-wise direction. Insect wings lack internal muscles, and any changes in 
shape that they undergo in flight must be driven by external forces [Wootton, Herbert, 
Young et al. (2003)]. In general, therefore, an insect wing is an elastic body, and its 
behavior can be described by the following equation: 
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where d/dt is the Lagrangian time derivative, the superscript s stands for a structural 
quantity, ρ is the mass density, vi is the ith component of the velocity vector, σij is the ijth 
component of the Cauchy stress tensor, and gi is the ith component of the body force. 



 
 
 
Partitioned Method of Insect Flapping Flight for Maneuvering Analysis                                     151 

The wing’s base, which is the interface between the wing and body, works as a 
transmission [Ennos (1987)]; i.e., it redirects power from the main flight muscles to the 
wing, and, inversely, the aerodynamic force acting on the wing to the body. The wing’s 
base consists of multiple steering muscles, tendons, and both flexible and rigid parts, and 
it is among the most complicated joints in the animal kingdom [Pringle (1957); 
Dickinson and Tu (1997)]. Therefore, a reduced-order approach is useful to summarize 
this seemingly intractable behavior, because it provides a framework for characterizing 
complexity [Beatus and Cohen (2013)]. In this study, the transmission function of the 
wing’s base is described using fundamental and natural boundary conditions imposed on 
the wing’s base. 
The Reynolds number of the fluid surrounding the insect’s wings is typically less than 
1,000. Therefore, its behavior can be described by the incompressible Navier–Stokes 
equations using the arbitrary Lagrangian–Eulerian method [Hughes, Liu and Zimmerman 
(1981)] as follows: 
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where / t∂ ∂  is the arbitrary Lagrangian-Eulerian time derivative, the superscript f 
stands for a fluidic quantity, and vm

i is the ith component of the velocity vector of the 
arbitrary Lagrangian–Eulerian coordinate. 
The following coupled conditions are satisfied on the interface between the insect’s wing 
and the surrounding fluid: 
Geometrical compatibility ii vv sf = ,               (4) 

Equilibrium 0ssff =+ jijjij nn σσ ,                (5) 

where nf
i and ns

i are the ith components of the outward unit normal vectors on the fluid-
structure interface corresponding to the fluid and the structure, respectively. The coupled 
conditions should be satisfied implicitly, because the insect wing and surrounding fluid 
are strongly coupled. 

2.2.2 Lumped torsional flexibility model 
Many observations have reported the flexibility of insect wings during flapping flights 
with various modes of deformation. The most significant among them is the high 
torsional flexibility, which is concentrated on the narrow wing basal and short root 
regions. This flexibility is important in insect flapping flight because the feathering 
motion is essential for lift generation. Therefore, the lumped torsional flexibility model 
shown in Fig. 2 has been successfully used in numerical fluid-structure interaction 
analysis of insect flapping wings [Ishihara and Horie (2006); Ishihara, Horie and Denda 
(2009); Zhang, Liu and Lu (2010); Masoud and Alexeev (2010); Spagnolie, Moret, 
Shelley et al. (2010); Dai, Luo and Doyle (2012); Kang and Shyy (2013); Xiao, Hu and 
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Liu (2014); Ishihara, Horie and Niho (2014); Kolomenskiy, Maeda, Engels et al. (2016); 
Ishihara and Horie (2016); Wang, Goosen and Keulen (2017); Ishihara (2018)]. 
As shown in Fig. 2, the torsional flexibility is described by a torsional spring, and the wing’s 
chord is expressed by a rigid plate connected to a spring at one end. The forced displacement 
describing the flapping motion is imposed on the other end of the spring. The plate translates, 
and a fluid dynamic force acts on the plate to cause torsional oscillation. 
Three-dimensional features are quite essential in the insect flapping flight maneuver. The 
thrust forces from the insect’s wings cause yawing, rowing, and pitching for maneuvering. 
The flapping translation of the insect’s wing forms a three-dimensional leading edge 
vortex stably to create enough aerodynamic forces [Ellington, Van den Berg, Willmott et 
al. (1996); Dickinson, Lehmann and Sane (1990)], and, inversely, these forces cause the 
characteristic feathering motion [Ishihara, Yamashita, Horie et al. (2009); Ishihara, Horie 
and Niho (2014)]. 
In this study, therefore, a three-dimensional implementation of the lumped torsional 
flexibility model was used, as shown in Fig. 3, where the plate spring is the 
implementation of the lumped torsional flexibility, and it connects the stiff leading edge 
beam and the stiff wing plate. The motivation of this model wing is the accuracy of the 
numerical analysis for the flapping wing in a fluid. This model wing can be implemented 
accurately using the finite element mesh, as shown in Fig. 4, where rectangular shell 
elements are used. Because of the small error of finite element modeling in contrast to the 
case of a torsional spring, the finite element analysis for this model wing has been 
sufficiently validated using a corresponding dynamically scaled experiment [Ishihara, 
Horie and Niho (2014); Ishihara and Horie (2016)]. Actually, the plate spring can be set 
such that it works as a lumped torsional flexibility; that is, it simplifies the complicated 
elastic behavior of insect wings to a fundamental pitching mode. The result 
demonstrating this consistency is described in our previous work [Ishihara (2018)]. 
The mean aerodynamic force acting on the wing depends on the nondimensional radius r2 
of the second moment of the wing area [Weis-Fogh (1973); Ellington (1988a)]. In many 
insects, r2 is very close to that of a rectangular wing at 1/30.5 [Ellington (1988a); Ennos 
(1989)]. Therefore, for the sake of simplicity, a rectangular model wing is used as 
discussed in our previous study [Ishihara, Horie and Niho (2014)], where the difference 
of results between rectangular and realistic wings is not so significant. 

wing chord
torsional spring

flapping
translation

 
Figure 2: Lumped torsional flexibility model 
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Figure 3: Three-dimensional implementation of the lumped torsional flexibility model 

2.2.3 Modeling of wing motion 
The flapping translates the wing from back to front (down-stroke) and front to back (up-
stroke) as shown in Fig. 5. As described in Section 2.2.2, this motion can be described as 
a fundamental boundary condition imposed on the base of the model wing. The flapping 
motion can be described using the stroke angular displacement φ, which is positive for 
the counter-clockwise direction about the flapping axis. The amplitude of φ is denoted by 
the stroke angle Φ. The time history of dφ/dt can be given as shown in Fig. 6, which is 
based on actual observation [Ellington (1984b)]. In this figure, the flapping frequency 
and period are described using fφ and Tφ, respectively. The time history of φ shown in Fig. 
7 is given from the time integration of Fig. 6. 
These time histories are applied to the base of the stiff leading edge. The model wing 
flaps in the surrounding fluid and is strongly coupled with the fluid to cause a feathering 
motion passively [Ishihara, Yamashita, Horie et al. (2009)]. The feathering motion can be 
described using the feathering angular displacement θ, which is positive in the counter-
clockwise direction about the torsional axis. 

 
Figure 4: Finite element model wing using rectangular shell elements 

The insect uses the initial feathering angle and the change in the stroke angle for 
maneuvering [Bergou, Ristroph, Guckenheimer et al. (2010); Beatus and Cohen (2015); 
Whitehead, Beatus, Canale et al. (2015)]. As shown in Fig. 5, the proposed modeling can 
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describe this process using the initial feathering angle θ0 and Φ. 

 
Figure 5: Schematic of the flapping motion 

 

  
Figure 6: Time history of the stroke 
angular velocity 

Figure 7: Time history of the stroke 
angular displacement 

2.3 Modeling of body subsystem 
The proposed partitioned modeling allows us to describe the body motion in a way 
different from that of the wing. Taking into account the far smaller elastic deformation of 
the body, it can be modeled as a rigid body. The rotation about the x-axis, or rolling; the 
rotation about the y-axis, or yawing; and the rotation about the z-axis, or pitching from 
the static state, are considered here as the insect flight maneuvering. Then, the behavior 
of the body during maneuvering can be described using the following equation: 

=J ψ M ,                  (6) 
where matrix J is the moment of the inertia of the body; vector ψ is equal to [ψx, ψy, ψz]T; 
ψx, ψy, and ψz represent the roll, yaw, and pitch angles, respectively; the superscript T is 
the transpose; the vector M is equal to [Mx, My, Mz]; and Tx, Ty, and Tz are the moments 
about the x-axis, y-axis, and z-axis, respectively, acting on the body. 
In the case of rotation of the rigid body from the static state, the interaction from the 
surrounding fluid can be evaluated as additional mass and viscosity. In the case of air, 
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however, these effects are very small [Nomura and Hughes (1992)]. Therefore, they are 
ignored in this study. 

z
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stroke
plane
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ξ

 
Figure 8: Schematic of the body subsystem 

3 Numerical methods 
3.1 Fluid-structure interaction analysis of wing subsystem 
3.1.1 Projection method for the monolithic fluid-structure interaction system 
Eqs. (1)-(3) were discretized using the finite element method and combined using Eqs. (4) 
and (5) to obtain a monolithic equation system for the fluid-structure interaction [Zhang 
and Hisada (2001); Ishihara and Yoshimura (2005); Ishihara and Horie (2014)] as follows: 

( )L + + =Ma Cv N + q u - Gp g ,              (7) 
T =G v 0 ,                   (8) 

where M, C, and G are the mass, diffusive, and divergence operator matrices, 
respectively, and N, q, g, a, v, u, and p are the convective term, elastic internal force, 
external force, acceleration, velocity, displacement, and pressure vectors, respectively. 
The subscript L represents the lumping of the matrix, and the superscript T indicates the 
transpose of the matrix. 
The monolithic method solves Eqs. (7) and (8) simultaneously [Rugonyi and Bathe 
(2001)]. Because this formulation enforces coupled conditions (4) and (5), the method is 
strongly coupled, and it avoids spurious numerical power on the interface, which yields 
numerical instability [Fernandez, Gerbeau and Grandmont (2007)]. However, this 
formulation leads to an ill-conditioned system of equations. 
In this study, therefore, a projection method using algebraic splitting was used to avoid 
this difficulty [Ishihara and Yoshimura (2005); Ishihara and Horie (2014)]. The 
monolithic equation system consisting of (7) and (8) was linearized and split into 
equilibrium equations and a pressure Poisson equation as follows: 
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∗ ∗∆ ∆M a = g ,                  (9) 
1

Lτ τγ − ∗∆ ∆t G M G p = - Gv ,              (10) 
∗∆ ∆ ∆M a - G p = g ,               (11) 

where a* is the intermediate acceleration; v* is the intermediate velocity; M* is the 
generalized mass matrix, which consists of the lumped mass and tangential stiffness 
matrices; Δ and t are the variable increment and time, respectively; and Δg is the residual 
vector of Eq. (7). Note that the relationships among the state variables based on 
Newmark’s method are used in these equations. In the nonlinear iteration of each time 
step, first, the equilibrium Eq. (9) is solved to derive the intermediate velocity field v*, 
then the pressure Poisson Eq. (10) is solved to derive the current pressure field p such 
that the current velocity field satisfies the incompressibility constraint (8), and, finally, 
the equilibrium Eq. (11) is solved to derive the current velocity field v.  

3.1.2 Dynamic similarity law for fluid-structure interaction systems 
The nondimensional parameter α [Wang, Birch and Dickinson (2004); Katz and Plotkin 
(2001)], the Reynolds number Re [Katz and Plotkin (2001)], the Cauchy number Ca 
[Chakrabarti (2002)], and the mass ratio M [Blevins (1990); Sedov (1993); Dowell (1999)] 
can be obtained from the dimensional analysis for the governing Eqs. (1)-(5) as follows: 

m

m 2 A

1f c
V r r
ϕα

Φ
= = ,               (12) 

f
m m
f

c VRe ρ
µ

= ,                (13) 

f 2 3
m mCa V c Cθρ= ,               (14) 

w
f 3

m

mM
cρ

= ,                (15) 

where fφ is the flapping frequency, cm is the mean chord length, Vm (=2r2ΦLwfφ) is the 
mean flapping velocity, r2 is the second moment of the wing area, Φ is the stroke angle, 
Lw is the wing span length, rA (=2Lw/cm) is the aspect ratio of the wing, ρf is the fluid 
mass density, μf is the fluid viscosity, Cθ is the compliance of the torsion of the wing, and 
mw is the mass of the wing. These four nondimensional parameters can make two 
different fluid-structure interaction systems dynamically similar to each other. This 
dynamic similarity law is used to incorporate data from the actual insects into the model 
wing [Ishihara, Yamashita, Horie et al. (2009); Ishihara, Horie and Niho (2014); Ishihara 
and Horie (2016); Ishihara (2018)]. 

3.2 Dynamic analysis of body subsystem 
Morphological data for actual insects shows broad variation, even in the same species 
[Ellington (1984a)]. In this study, therefore, instead of measuring the exact shape of each 
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individual, a shape simplification approach was used. The insect’s body was 
approximated using a rigid circular cylinder [Ellington (1984a)], as shown in Figure 9. 
The height and the mass of the cylinder were set as the mean body length L and weight 
mb from actual insect data, respectively. These two dimensions can be obtained from 
several studies [Ellington (1984a); Ennos (1989)]. In contrast, the radius of the body is 
not available directly. Therefore, it was set to a=L/6, L/4, and L/2 under the assumption 
that this range can cover the minimum and maximum radii. Furthermore, the 
nondimensional radius of gyration l2=Jb/(mbL2) (Jb: the moment of inertia of the body, 
which applies to pitching movements of insects) is given as 0.315 for flies in the previous 
study [Ellington (1984a)]. In this study, Jb corresponds to Jz, which is given below. 
Therefore, Jz is set such that it is equal to Jb in this study. From this equality, a 
kinematically equivalent radius a is given as 0.252L, which is very close to L/4. The mass 
density distribution was assumed to be uniform [Ellington (1984a)]. The center of gravity 
was placed at the origin of a Cartesian coordinate system. The y-axis corresponded to the 
longitudinal axis of the body, that is, the angle of inclination in the body axis ξ=0°. Then, 
the governing equation of the rigid body (6) was reduced to 

2

2

d
d

i
i iJ T

t
ψ

= ,                (16) 

where Ji, ψi, and Ti are the moment of the inertia of the body, the rotation angle of the 
body, and the torque due to the external force acting on the body in ith direction of the 
Cartesian coordinate system, or x-, y-, or z-direction. Ji is given as 

2 2

b4 12x z
a LJ J m

 
= = + 

 
,              (17) 

2
b

1
2yJ m a= ,                (18) 

Eq. (16) is solved using Newmark’s β method. 

 

 
Figure 9: Approximation of the body using a rigid cylinder 
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Figure 10: Pair of model wings for calculating the torques acting on the rigid cylinder 
As described in Section 2.1, the thrust force generated by the wing subsystem is passed to 
the body subsystem. This transfer is achieved as follows: 
 Let us consider a pair of model wings as shown in Fig. 10. The aerodynamic forces 
acting on each wing are calculated using the strongly coupled method in Section 3.1. 
These aerodynamic forces are in equilibrium with the reaction forces from the body at the 
wing base, which supports the model wings. Therefore, the aerodynamic forces acting on 
the model wings in Fig. 10 are considered as the thrust forces given to the body, and they 
are used to calculate Ti in Eq. (16). 

3.3 Coupling of wing and body subsystems 
 The one-way coupling between the wing and body subsystems used in this study can be 
described as 

WS
= ds×∫T r f ,                        (19) 

where T is the moment acting on the insect’s body, r is the position vector of each point 
on the wing surface from the gravity center of the insect’s body, f is each fluid surface 
force acting on the point, and SW is the area of the wing surface. f is the function of the 
maneuvering parameters, and it can be expressed as 
f = f (Φ, θ0, ΔΦ, …),                       (20) 
where Φ, θ0, and ΔΦ are the stroke angle, initial feathering angle, and difference of the 
front and back stroke angles. Upon the finite element discretization, Eq. (19) can be 
rewritten as 

W

n n

n
=

∈

×∑
N

T r f ,                        (21) 

where rn is the position vector of node n from the gravity center of the insect’s body, fn is 
the equivalent nodal force corresponding to the fluid surface force, and NW is all nodes 
composing the finite element mesh of model wings. 
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4 Analysis setups 
As described in Section 3.1.2, two different fluid-structure interaction systems are 
dynamically similar to each other if the conditions of the nondimensional parameters α, 
Re, Ca, and M, as well as geometrical similarity, are satisfied. Therefore, these values in 
the wing subsystem were set as α=0.077, Re=251, Ca=0.20, and M=14, which are within 
the range of the values for actual insects [Ishihara, Horie and Niho (2014)]. Furthermore, 
rA and Φ were set to be 11 and 123°, respectively, which are also within the range of the 
values for actual insects [Ellington (1984a); Ellington (1984c); Ennos (1989)]. The mass 
density distribution was equivalent to that used in our previous study [Ishihara, Horie and 
Niho (2014)]. 
Figs. 4 and 11 show the finite element meshes of the model wing and the surrounding 
fluid domain, respectively. The leading edge, plate spring, and wing plate were modeled 
using mixed interpolation of tensorial components shell elements [Dvorkin and Bathe 
(1984); Noguchi and Hisada (1993)] (number of nodes: 149; number of elements: 124), 
while the fluid domain was modeled using stabilized linear equal-order-interpolation 
velocity-pressure elements [Tezduyar, Mittal, Ray et al. (1992)] (number of nodes: 
46,920; number of elements: 254,592). 
The fluid-structure interaction analysis using a setup almost equivalent to the present one 
was validated in our previous studies [Ishihara, Horie and Niho (2014); Ishihara and 
Horie (2016)]. Furthermore, the projection method for the fluid-structure interaction was 
validated using typical benchmark problems [Ishihara and Yoshimura (2005); Ishihara 
and Horie (2014)]. 
The length of the body L was set as 0.0113 m, and the body mass mb was set as 1.52×10-5 
kg from actual morphological data [Ellington (1984a)]. 
The parameters of the maneuvers were changed based on actual observations [Beatus and 
Cohen (2015); Bergou, Ristroph, Guckenheimer et al. (2010); Whitehead, Beatus, Canale 
et al. (2015)] as follows: 
(a) Rolling: For the purpose of evaluating this maneuver, the left wing’s stroke angle ΦL 
was varied from 88° to 123°, while the right wing’s stroke angle ΦR was fixed to 123° in 
the pair of the model wings shown in Fig. 10. 
(b) Yawing: For the purpose of evaluating this maneuver, the right wing’s initial 
feathering angle θ0

R was varied from 0° to 20°, while the left wing’s initial feathering 
angle θ0

L was fixed to 0° in the pair of the model wings shown in Fig. 10. 
(c) Pitching: For the purpose of evaluating this maneuver, ΔΦ for both the right and left 
wings was varied from 0° to 31° in the model wing pair shown in Fig. 10, where ΔΦ is 
defined as ΦF-ΦB, ΦF is the front-stroke angle, and ΦB is the back-stroke angle, as shown 
in Fig. 12. Note that only the right wing is shown in this figure, but the pair satisfied the 
relationship Φ=ΦF+ΦB. 

 



 
 
 
160                                                                                        CMES, vol.121, no.1, pp.145-175, 2019 

 
(a) Birds’ eye view  

(b) yz-plane view 
             Figure 11: Finite element mesh of the surrounding fluid 

𝑥

𝑧

𝑦 Stroke angle Φ=ΦF+ΦB

O

𝜑

Front stroke angle ΦF

Back stroke angle ΦB

 
Figure 12: Control parameters for evaluating a pitching maneuver 

5 Results and discussion 
5.1 Rolling maneuver 
Fig. 13 shows the time histories of the aerodynamic force acting on the wing in the y-
direction, that is, the lift force, where the results are converted to the scale of the model 
insect using the dynamic similarity law. Noise in this figure is discussed in Appendix. As 
shown in this figure, the lift force increases as the stroke angle increases. This reason can 
be explained as described below.  
Fig. 14 shows the vorticity fields at the middle of the down-stroke, where the flapping 
translation has the maximum speed. As shown in this figure, the vorticity fields show 
element-by-element distributions near the model wing. This is because the interpolation 
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characteristic of stabilized linear equal-order-interpolation velocity pressure elements 
used here [Tezduyar, Mittal, Ray et al. (1992)], that is, the vorticity is given by the 
derivative of the linearly interpolated velocity. The present setup for the domain size, the 
boundary condition, and the mesh size is almost equivalent to that in our previous studies 
[Ishihara, Horie and Niho (2014); Ishihara and Horie (2017)], and the present simulation 
program was carefully validated using the corresponding dynamically scaled experiments 
in these studies. The resolution of the fluid mesh is enough to compute the fluid surface 
force acting on the wing. A leading-edge vortex was formed by the flapping translation of 
the wing. As shown in this figure, the magnitude of the vorticity increases as the stroke 
angle increases. This is because the maximum flapping speed increases as the stroke 
angle increases under the constant flapping period. The leading-edge vortex makes a 
significant contribution to the lift force generation [Dickinson, Lehmann and Sane 
(1990)]. Therefore, the lift force increases as the stroke angle increases. 
The roll torque acting on the body can be obtained using Fig. 13. Fig. 15 shows the time 
histories of the roll torque in the case of a=L/4, where the left wing’s stroke angle ΦL was 
changed from 88° to 123°, while the right wing’s stroke angle ΦR was fixed to 123°. 
Furthermore, the relationships between ΦL and the mean lift forces are obtained as shown 
in Fig. 16 by taking the average of each torque history. As shown in Fig. 16, the 
relationships between ΦL and the mean roll torque are approximately linear. The 
anticlockwise rotation about the x-axis, that is, a positive roll, will be caused, because the 
mean torque is always positive. The mean roll torque increases as the body radius a 
increases for each ΦL because the roll torque is proportional to the body radius. In the 
inertial moment Jx (17), the second term in the right-hand side is proportional to the 
square of the body radius, but its effect on the total magnitude is not significant, because 
of the existence of the constant first term. Therefore, the effect of the body radius on the 
roll angle is not significant; that is, the ranges of the roll angle for a=L/6, L/4, and L/2 are 
not so different from each other. 
The rolling behavior of the body can be simulated using the roll torque histories. The 
time histories of the roll angle in the cases of a=L/6, L/4, and L/2 are shown in Figs. 17, 
18, and 19, respectively, where a positive roll is always caused as predicted in the 
discussion of Fig. 16. As shown in these figures, a larger roll angle is generated by the 
larger difference of the stroke angle between the right and left wings. The roll angles at 
the time instant of 8 cycles from these figures are summarized in Tab. 1. In actual 
observations of insects [Beatus, Guckenheimer and Cohen (2015)], the roll angle of 60° 
is produced during 8 strokes by the difference of stroke angles between the left and right 
wings, of which mean value is approximately 18°. In the present simulation, ΦL=105° 
corresponds to these observations, and the present results are comparable with the 
observed roll angle as shown in Tab. 1. Especially, for a=L/4, which gives the moment of 
inertia of actual insects to the present cylinder model, the present result is 55°, which is 
close to 60° from the observations. It follows from these results that the proposed method 
can adequately simulate the rolling behavior of the insect flight maneuver. 
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Figure 13: Time histories of the lift force for various stroke angles 

 

 
(a) 

 

 
(b) 

Figure 14: Vorticity fields near the wing chord at the middle of the down-stroke of 8th 
cycle (time instant of 8.125 cycles). The black bold line is the wing chord. The color 
contour shows the magnitude of the vorticity. (a) ΦL=88°. (b) ΦR=123° 

 

Figure 15: Time histories of the roll torque for a=L/4 
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Figure 16: Relationships between the 
left wing’s stroke angle and mean roll 
torque for a=L/6, L /4, and L/2 

Figure 17: Time histories of the roll angle 
for a=L/6 

 

  
Figure 18: Time histories of the roll angle 
for a=L/4 

Figure 19: Time histories of the roll angle 
for a=L/2 

Table 1: Summary of the roll angles at the time instant of 8 cycles 

ΦL a = L/6 a = L/4 a = L/2 
88° 101° 101° 84° 
95° 83° 83° 69° 
105° 55° 55° 46° 
109° 44° 44° 37° 
116° 22° 22° 18° 
120° 10° 10° 8° 

 



 
 
 
164                                                                                        CMES, vol.121, no.1, pp.145-175, 2019 

5.2 Yawing maneuver 
Fig. 20 shows the time histories of the projected component of the aerodynamic force 
normal to the wing, that is, the drag force, where the results are converted to the scale of 
the model insect using the dynamic similarity law. As shown in this figure, the magnitude 
of the drag force decreases as the initial feathering angle θ0 increases during the down 
stroke, while the magnitude of the drag force increases as the initial feathering angle θ0 
increases during the up-stroke. These relationships can be clearly observed by taking the 
average. Fig. 21 shows these relationships, where the mean drag force during the down-
stroke decreases almost linearly as θ0 increases, while the mean drag force during the up-
stroke increases almost linearly as θ0 increases. The reason why these relationships 
appear can be explained as given below. 
Fig. 22 shows the time histories of the feathering angle, and Figs. 23 and 24 show the wing 
chord motions during the down-stroke and up-stroke, respectively. We define Sp as the 
projection area of the wing chord normal to the translational direction. In the case of θ0=0, 
the amplitudes of Sp during the down-stroke and up-stroke are almost equal to each other 
because of the symmetricity of these half-stroke conditions. Furthermore, the amplitude of 
Sp in the case of θ0>0 is smaller than that in the case of θ0=0 during the down-stroke, as 
shown in Fig. 23, while the amplitude of Sp in the case of θ0>0 is larger than that in the case 
of θ0=0 during the up-stroke, as shown in Fig. 24. The dynamic pressure acting on the wing 
in the translational direction is proportional to Sp. Therefore, as the initial feathering angle 
θ0 increases, the magnitude of the drag force decreases during the down-stroke, while the 
magnitude of the drag force increases during the up-stroke. 
Fig. 25 shows the time histories of the yaw torque for the case of a=L/4 as the right wing’s 
initial feathering angle θ0

R is changed, while the left wing’s initial feathering angle θ0
L is 

fixed at 0°. As shown in this figure, the magnitude of the yaw torque increases as θ0
R 

increases. The mean value for each time history in this figure is indicated to show this more 
clearly. Fig. 26 shows the relationships between the left wing’s stroke angle and the mean 
yaw torque for a=L/6, L/4, and L/2. As shown in this figure, the mean yaw torque increases 
as θ0

R increases almost linearly. The anticlockwise rotation about the y-axis, that is positive 
yawing, will be caused because the mean torque is always positive. 
The yawing behavior of the body can be simulated using the yaw torque histories. The 
time histories of the yaw angle for a=L/6, L/4, and L/2 are shown in Figs. 27, 28, and 29, 
respectively, where a positive yaw is always caused as predicted in the discussion of Fig. 
26. We further note that the magnitude of the yaw angle for each θ0

R decreases 
significantly as the body radius increases, irrespective of the increase of the magnitude of 
the yaw torque. This is because the inertial moment Jy (18) is proportional to the square 
of the body radius. The yaw angles at the time instant of 18 strokes from these figures are 
summarized in Tab. 2. In actual observations of insects [Bergou, Ristroph, Guckenheimer 
et al. (2010)], the yaw angle of 120° is produced during 18 strokes by the difference of 
feathering angles between the left and right wings, of which mean value is approximately 
3°. In the present simulation, θ0

R=3° corresponds to these observations, and the present 
results are comparable with the observed yaw angle as shown in Tab. 2. Especially, for 
a=L/4, which gives the moment of inertia of actual insects to the present cylinder model, 
the present result is 142°, which is close to 120° from the observations. It follows from 
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these results that the proposed method can adequately simulate the yawing behavior of 
the insect flight maneuver. 

  
Figure 20: Time histories of the drag force 
for various initial feathering angles 

Figure 21: Relationships between the 
initial feathering angle and the mean drag 

 

 
Figure 22: Time histories of the feathering angle for the various initial feathering angles 
 

  
Figure 23: Wing chord motion during the 
down-stroke. The black lines show the 
wing chord for θ0=0°, while the red lines 
show the wing chord for θ0=10°. The black 
circles indicate the leading edge. Each 
chord moves from left to right 

Figure 24: Wing chord motion during the 
up-stroke. The black lines show the wing 
chord for θ0=0°, while the red lines show 
the wing chord for θ0=10°. The black 
circles indicate the leading edge. Each 
chord moves from right to left 
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Figure 25: Time histories of the yaw torque 
for a=L/4 

Figure 26: Relationships between the left 
wing’s initial feathering angle and mean 
yaw torque for a=L/6, L /4, and L /2 

 

  
Figure 27: Time histories of the yaw angle 
for a=L/6 

Figure 28: Time histories of the yaw angle 
for a=L/4 
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Figure 29: Time histories of the yaw angle for a=L/2 

Table 2: Summary of the yaw angles at the time instant of 18 cycles 

θ0
R  a=L/6 a=L/4 a=L/2 

1° 105° 50° 15° 
3° 285° 142° 43° 
5° 461° 222° 68° 
10° 926° 448° 138° 
15° 1352° 654° 201° 
20° 1814° 877° 270° 

5.3 Pitching maneuver 
Fig. 30 shows the time histories of the pitch torque as ΔΦ is changed, and Fig. 31 shows 
the relationship between ΔΦ and the mean pitch torque. As shown in these figures, the 
mean pitch torque is always positive, and its magnitude increases as ΔΦ increases. These 
results can be explained as described below. 
The lift force during the front-stroke angle ΦF causes a pitch-up torque, as shown in 
Fig. 32 (a), while the lift force during the back-stroke angle ΦB causes a pitch-down 
torque, as shown in Fig. 32 (b). Therefore, the pitch torque or the difference between the 
pitch-up torque and pitch-down torque is positive in the case of ΔΦ =ΦF-ΦB>0, and it 
increases as ΔΦ increases. 
The pitching behavior of the body can be simulated using the pitch torque histories. The 
time histories of the pitch angle for a=L/6, L/4, and L/2 are shown in Figs. 33, 34, and 35, 
respectively, where a positive pitch is always induced, because the mean pitching torque 
is always positive, as shown in Fig. 31. 
The pitch angles at the time instant of 6 strokes from these figures are summarized in Tab. 
3.  In actual observations of insects [Whitehead, Beatus, Canale et al. (2015)], the pitch 
angle of 23° is produced during 6 strokes by the deviation of the front-stroke angles, of 
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which mean value is approximately 16°. In the present simulation, ΔΦ=15° correspond to 
these observations, and the present results are comparable with the observed pitch angle 
as shown in Tab. 3. Especially, for a=L/4, which gives the moment of inertia of actual 
insects to the present cylinder model, the present result is 15°, which is close to 23° from 
the observations. It follows from these results that the proposed method can adequately 
simulate the pitching behavior of the insect flight maneuver. 

 
 

Figure 30: Time histories of the pitch 
torque for a=L/4 

Figure 31: Relationships between ΔΦ and 
mean pitch torque for a=L /4 

 
(a) 

 

(b) 

 

Figure 32: Schematics of the mechanism of pitch torque generation. The straight arrows 
indicate the total lift force acting on the wing, and the circular arrows indicate the 
resulting pitch torque. (a) Pitch-up torque during front-stroke angle ΦF. (b) Pitch-down 
torque during back-stroke angle ΦB 
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Figure 33: Time histories of the pitch 
angle for a=L/6 

Figure 34: Time histories of the pitch 
angle for a=L/4 

 
Figure 35: Time histories of the pitch angle for a = L/2 

Table 3: Summary of the pitch angles at the time instant of 6 cycles 

ΔΦ a = L/6 a = L/4 a = L/2 
5° 3° 3° 2° 
10° 9° 9° 6° 
15° 16° 15° 10° 
21° 21° 20° 13° 
26° 27° 25° 17° 
31° 33° 30° 20° 
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6 Concluding remarks 
In this study, the partitioned method was proposed to analyze maneuvering during insect 
flapping flight. In the proposed method, insect flapping flight is decomposed into wing 
and body subsystems, and they are coupled via boundary conditions imposed on the 
wing’s base. For the wing subsystem, the finite element method was selected to 
accurately analyze the strong coupling between the wing and the surrounding fluid 
because of the high flexibility of the wing. For the body subsystem, in contrast, rigid 
body motion was analyzed because the elastic deformation of the body is far smaller, and 
rotations from the static state are considered as the maneuver. One-way coupling was 
used as the partitioned algorithm for the purpose of checking the fundamental validity of 
the proposed method. The use of one-way coupling can also be justified by the physical 
interpretation of the maneuver, that is, rotations from the quasi-static state. The 
fundamental maneuvers during insect flapping flight are rolling, yawing, and pitching. 
These were simulated using the proposed method to obtain the following results: 
In the rolling simulation, roll torque was caused by the difference of the stroke angle 
between the right and left wings. In the yawing simulation, yaw torque was caused by the 
initial feathering angle in the right wing only. In the pitching simulation, the pitch torque is 
caused by the difference of the front and back stroke angles in both the right and left wings. 
All maneuvering motions were comparable to those seen in observations of actual insects. 
These results demonstrate that the proposed method can adequately simulate the 
fundamental maneuvers of insect flapping flight. Furthermore, the maneuvering 
mechanisms could be investigated and demonstrated using the proposed method at the 
governing equation level, which might be difficult using other approaches. Therefore, the 
proposed method will contribute to revealing the underlying insect flight mechanisms. 
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Appendix 
Noise can be observed in the force time histories such as Fig. 25. Fig. A1 shows an 
example of their spectral analysis results, which are converted to the scale of the insect 
using the dynamic similarity law. In this figure, noise observed in the force time histories 
appears as the amplitudes from 2,000 Hz to 2,500 Hz. The frequency of this noise is very 
close to the natural frequency of the sixth order mode vibration of the wing, which is 
given by the finite element mode analysis. Fig. A2 shows the shape of this mode. As 
shown in this figure, it is similar to the shape of the first order mode, that is, the 
feathering mode. Therefore, the sixth order mode vibration can appear following the 
feathering mode vibration. It follows from these results and discussion that the source of 
this noise is considered as the sixth order mode vibration of the wing. The magnitude of 
the sixth order mode vibration is much smaller than that of the feathering mode vibration. 
This is because the natural frequency of the sixth order mode vibration is much higher 
than the flapping frequency, while that of the feathering mode vibration is close to the 
flapping frequency. The feathering mode vibration is dominant in the aerodynamic force 
generation [Ishihara, Horie and Niho (2014); Ishihara and Horie (2016)]. Therefore, this 
noise does not have a significant effect on the results. 
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Figure A1: Spectral analysis result for the 
time history of the yaw torque 

Figure A2: Shape of the sixth order mode 
of the present model wing 
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