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Abstract: A single model cannot satisfy the high-precision prediction requirements given 
the high nonlinearity between variables. By contrast, ensemble models can effectively 
solve this problem. Three key factors for improving the accuracy of ensemble models are 
namely the high accuracy of a submodel, the diversity between subsample sets and the 
optimal ensemble method. This study presents an improved ensemble modeling method to 
improve the prediction precision and generalization capability of the model. Our proposed 
method first uses a bagging algorithm to generate multiple subsample sets. Second, an 
indicator vector is defined to describe these subsample sets. Third, subsample sets are 
selected on the basis of the results of agglomerative nesting clustering on indicator vectors 
to maximize the diversity between subsets. Subsequently, these subsample sets are placed 
in a stacked autoencoder for training. Finally, XGBoost algorithm, rather than the 
traditional simple average ensemble method, is imported to ensemble the model during 
modeling. Three machine learning public datasets and atmospheric column dry point 
dataset from a practical industrial process show that our proposed method demonstrates 
high precision and improved prediction ability. 
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1 Introduction 
Regression, which is frequently used to build mathematical models of complex objects and 
predict specific output results, has attracted considerable attention in machine learning 
during the past decades [Vanli, Sayin, Mohaghegh et al. (2019)]. In many studies, linear 
and nonlinear regression and their improved modeling methods based on multivariate 
statistics and traditional machine learning have been proposed; the modeling methods 
include ridge regression [Li, Hu, Zhou et al. (2018)], least absolute shrinkage and selection 
operator regression [Xu, Fang, Shen et al. (2018); Osborne and Turlach (2011)], partial 
least squares regression [Lavoie, Muteki and Gosselin (2019); Biancolillo, Naes, Bro et al. 
(2017)], support vector regression (SVR) [Zhang, Gao, Tian et al. (2016); Wei, Yu and 
Long (2014)], and artificial neural network (ANN) [Du and Xu (2017); Martinez-Rego, 
Fontenla-Romero and Alonso-Betanzos (2012)]. These regression methods have been 
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applied to building mathematical models for various real-life scenarios, such as time series 
[Safari, Chung and Price (2018); Sarnaglia, Monroy and da Vitoria (2018); Sahoo, Jha, Singh 
et al. (2019)] and industry [Xue and Yan (2017); Rato and Reis (2018); Sedghi, Sadeghian 
and Huang (2017); Khazaee and Ghalehnovi (2018); Gonzaga, Meleiro, Kiang et al. (2009)]. 
However, many problems, such as multiple operating conditions and high nonlinearities, 
interfere with the prediction quality of key variables given the complexity of object processes 
and high-precision requirement of models. Ensemble models are imported to overcome the 
overfitting and low generalization ability of a single model [Bidar, Shahraki, Sadeghi et al. 
(2018)]. The significance of an ensemble depends on the formation of a series of submodels. 
A multilearner system is established through a certain fusion strategy to accomplish the same 
task as a single model [Kittler, Hatef, Duin et al. (1998)]. 
At present, various ensemble modeling methods have been developed [Magalhaes (2012); 
Rajalakshimi, Rengaraj, Bharadwaj et al. (2018); Li, Ge and Zang (2018)]. Mohan and 
Saranya [Mohan and Saranya (2019)] developed a novel bagging ensemble approach using 
four base learners, namely, multilayer perceptron, RTree, REPTree, and random forest (RF). 
The forecasting effect on surface-level O3 concentration was accurate by evaluating the 
errors measured by each submodel. Moretti et al. [Moretti, Pizzuti, Panzieri et al. (2015)] 
investigated a bagging ensemble model through statistical method and neural network. 
Whether the submodel output was substituted by ANN or statistical method was 
determined by the prediction error of submodels. Three cases showed that their model 
outperforms other parallel methods. Hu et al. [Hu, Mao, He et al. (2011)] presented a novel 
SVR ensemble algorithm based on bagging and negative correlation learning to 
compensate for errors. Their model continuously reconstructed the samples of the next 
submodels to improve the set error. The average value of the predicted output of each 
submodel was used as the final prediction result. Leaching simulation showed that their 
model outperforms the three other models. 
These studies have achieved favorable results in various applications. However, they have 
not considered the fundamentals of ensemble models. High accuracy and a significant 
diversity of submodels are the two key factors for increasing the efficiency of ensemble 
modeling algorithm [Sun, Wang, Chen et al. (2014)]. An ensemble method immensely 
affects the performance of the entire model. The improvement of the three factors 
significantly enhances the fitting prediction ability and robustness of the integrated model. 
For the first factor, most studies have typically adopted traditional multivariate statistical 
analysis and machine learning algorithms, such as ANN and SVR, as the submodels in the 
hybrid modeling method. Furthermore, the prediction accuracy of traditional machine 
learning methods is limited, and the lack of generalization ability leads to poor prediction 
effect of submodels. As a key research area in artificial intelligence, deep learning, which 
was first proposed by Hinton and Salakhutdinov [Hinton and Salakhutdinov (2006)], has 
gradually replaced machine learning algorithms. Deep learning algorithms have a strong 
nonlinear fitting ability and can effectively overcome gradient diffusion and local optimum 
caused by ANN. Stacked autoencoders (SAE) are common algorithms used in deep 
learning [Yuan, Huang, Wang et al. (2018); Yan and Yan (2019)]. For the second factor, the 
bagging algorithm has been extensively adopted to generate multiple subsample sets. 
Although training subsets with certain differences can be obtained through the bagging 
algorithm, the diversity and difference between each submodel are determined on the basis 
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of the randomness and independence of resampling a trained subsample set from the 
bagging algorithm [Sun and Sun (2016)]. Accordingly, the distribution of some subsample 
sets resampled through multiple rounds of bootstrapping might be similar, and their 
diversity was insignificant. No clear measurement of diversity and difference between 
subsets has been defined. In addition, the output of each individual submodel is typically 
produced through a simple or weighted average to produce an ensemble final output when 
an integrated concept is applied to a regression estimation problem. The two traditional 
methods ignore the possibility of using a nonlinear function to describe the mathematical 
relationship between submodels for achieving an improved prediction effect. 
Based on these truths, we propose a novel ensemble modeling method to enhance the 
diversity between subsets using a clustering indicator vector based on bagging and SAE. 
The agglomerative nesting (AGNES) clustering algorithm is used to cluster the indicator 
vector of each subsample set after bagging. The number of clusters determines the number 
of submodels. One subset of each cluster is selected and placed into an SAE for training to 
obtain the subsets with the most significant diversity. XGBoost algorithm is imported to 
integrate all the submodels during the model integration phase. 
The rest of this paper is organized as follows. Section 2 introduces the basic knowledge 
and algorithms. Section 3 describes our proposed modeling method in detail. Section 4 
presents the results and analysis of parallel comparative experiments on three public 
datasets and one dataset from a practical industrial process. Section 5 provides the 
conclusion drawn from this study. 

2 Preliminaries 
The basic knowledge and concepts of bagging algorithm, AGNES, SAE, and XGBoost are 
briefly reviewed, and an indicator vector is defined to illustrate the diversity of subsample 
sets in this section. 

2.1 Bagging 
Bagging, as a common and effective multilearner method, utilizes bootstrap sampling in 
constructing component learners and generates sufficient independent variance among 
them [Hu, Mao, He et al. (2011)]. Suppose the existence of a labeled dataset { , }D = X y , 
where n mR ×∈X , 1nR ×∈y , n  is the number of samples, and m  expresses the number of 
variables. The core idea of the bagging algorithm based on bootstrap resampling is to 
construct the same size of each subset as the original training sample set by randomly 
extracting samples from original training samples [Li and Yan (2018)]. During resampling, 
some samples of the original sample dataset may appear several times in the subset, 
whereas other samples may not emerge. T  sample subsets are achieved by repeating T  
rounds of bootstrap resampling, which can be expressed as: 1 2{ , ,..., }bagging TD D D D= , where 

{ , }, [1, ]t t tD t T= ∈X y , t n mR ×∈X , and 1t nR ×∈y . 

2.2 AGNES 
AGNES is considered a bottom-up approach to hierarchical clustering. First, each sample 
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is treated as an initial cluster. Second, in each step of the algorithm, two clusters that fit the 
similarity measurement are aggregated until all objects are merged into a single cluster. 
Finally, a threshold is determined to select the result of clustering. The detailed steps and 
selective similarity measurement of the AGNES algorithm can be found in Xie et al. [Xie 
and Wang (2018); Zhou (2016)]. In the present study, the average value of Euclidean 
distance between two clusters is used as the similarity measurement. In particular, two 
clusters with the smallest average Euclidean distance value between all samples are merged. 

2.3 AE and SAE 
AE, which is inspired by ANN, is a typical unsupervised machine learning method. SAEs 
have been used as the representative algorithms in deep learning since the introduction of 
a layer-wise greedy training algorithm into AE by Hinton et al. [Hinton and Salakhutdinov 
(2006)] in 2006. The training mechanism of SAEs is divided into two steps, namely, 
unsupervised pretraining and supervised fine-tuning. 

 

Figure 1: Schematic of the AE 

During unsupervised pretraining, each AE in SAEs aims to reconstruct input signals 
through gradient descent algorithm. Fig. 1 illustrated the schematic of the AE. The 
unlabeled dataset is 1 2{ , , , }n= X x x x , where i mR∈x , m  denotes the number of variables, 
and n  is the number of samples. The encoding part, which is formed from the input layer 
to the hidden layer, extracts the abstract feature of input data. The extracted feature can be 
denoted as 1 2{ , , , }n= H h h h  , where i dR∈h  , and d   denotes the number of nodes in the 
hidden layer. The encoding part can be calculated as 

1 1 1( )s= + ，h W x b  (1) 
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where 1W   and 1b   indicate the weight matrix and bias vector of the encoding portion, 
respectively. 1( )s ⋅  is the activation function of the network. In this study, all activation 
functions of our model use a sigmoid function as the activation function, which can be 
described as follows: 

1( ) .
(1 )zf z

e−=
+

 (2) 

 

Figure 2: Structure of the SAE 

The decoding part is formed from the hidden layer to the output layer to reconstruct the 
input data. The reconstructed signal can be defined as 1 2

ˆ ˆ ˆ ˆ{ , , , }n= X x x x , where ˆ i mR∈x . The 
decoding part is determined as follows: 

2 1 1̂
ˆˆ ( )s= + ，x W h b  (3) 

where 1
W   and 1

b   correspond to the weight matrix and bias vector of the decoding 
portion. In contrast to ANN, AE imports the error between the input and output signals as 
a loss function, which can be calculated as 

2

( ) ( )
1 1

1ˆ ˆ( , ) .
2

n m

i j i j
i j

L x x x x
n = =

= −∑∑  (4) 

Within the allowable range of error, the reconstructed signal in the AE is typically useless 
and can be ignored. The output of the hidden layer with reduced dimensions becomes an 
important abstract feature of the original signal. The output of the hidden layer of the 
previous AE is adopted as the input signal of the next AE, which constitutes the structure 
of the SAE and can be denoted as 

1( ),2 ,
ii i SAEf i nθ −= ≤ ≤h h  (5) 
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where ( )
i

f ⋅θ  is the mapping function, and sn  is the number of AEs in the SAE. 

During supervised fine-tuning, the trained weight matrix and bias vector of each AE 
denoted as { , }i iW b  are placed in a multilayer deep neural network as the initial values. The 
nodes of each layer in this network are the same as the number of hidden nodes in each AE. 
The output of this network is set as the labeled data denoted as 1 2{ , , , }ny y y= y  . 
Subsequently, a backpropagation algorithm is used to fine-tune the parameters of the entire 
network and to make the output of this model and labeled data equal. Fig. 2 presents the 
entire structure of the SAE. 

2.4 XGBoost 
XGBoost, an extension of gradient boosting decision tree (GDBT), is an ensemble learning 
algorithm proposed by Chen et al. in 2016 [Zhang, Chen, Xu et al. (2019)]. In recent years, 
XGBoost has demonstrated significant regression and classification performance in the 
Kaggle data-mining competition [Qi, Xu and Zhu (2019)]. In comparison with GBDT, 
which only uses the first-order derivative information during optimization, XGBoost 
introduces the Taylor second-order derivative and expands the target loss function to 
improve calculation accuracy. In addition to the loss function, XGBoost finds the optimal 
solution for the regular term. Simultaneously, XGBoost has a built-in cross-validation 
feature sampling and regularization that can extremely prevent overfitting. Mean square 
error (MSE) is imported as the target function when solving regression problems. XGBoost 
can automatically use a CPU’s multithreaded calculations, thereby reducing runtime and 
improving algorithm accuracy. Zhou et al. [Zhou, Li, Shi et al. 2019] provided a detailed 
derivation and calculation method of the XGBoost algorithm. 

2.5 Indicator vector 
We define a simple and intuitive variable called an indicator vector to describe the matrix 
distribution intuitively. Statistically, the mean and variance values are frequently used to 
exhibit the distribution of vectors. Thus, we extend the two symbols to define the diversity 
between matrixes. The existence of an unlabeled dataset 1 2{ , , , }n i mR= ∈ ，X x x x x   is 
assumed. The formula of mean and variance for the thj   independent variable can be 
expressed using Eqs. (6) and (7). 

( ) ( )
1

1 , [1, ],
n

j i j
i

x j m
n

µ
=

= ∈∑  (6) 

2
( ) ( ) ( )

1

1 ( ) , [1, ].
n

j i j j
i

x j m
n

σ µ
=

= − ∈∑  (7) 

The combination of the mean and variance of each independent variable constitute the 
indicator vector of X  denoted as 

(1) (2) ( ) (1) (2) ( )={ , ,..., , , ,..., }.m mµ µ µ σ σ σλ  (8) 

For each variable in the dataset, the indicator vector considers the average value and the 
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degree of each sample that deviates from the mean value. Thus, the indicator vector can 
intuitively characterize the sample distribution and dispersion degree of X . Moreover, the 
statistical significance of mean and variance are simple and intuitive, in which they can be 
achieved easily without complex calculation. The selection of a subset of subsamples with 
the largest diversity using the indicator vector is presented in Section 3. 

3 Methodology 
As mentioned previously, the proposed method aims to improve the prediction accuracy 
when modeling, solve the poor generalization ability of a single model, and distinguish the 
diversity of subsets thoroughly. The optimal ensemble method is used to fit the nonlinear 
relationship between the submodels during the ensemble process. Our proposed modeling 
algorithm is composed of three stages, namely, (a) construction and selection of subsets; 
(b) construction and training of all submodels; (c) integration of trained submodels. The 
structure diagram of our proposed method is depicted in Fig. 3. The metrics that evaluate 
the performance of the model are defined. 

 
Figure 3: Structure diagram of the proposed method 

3.1 Construction and selection of subsets 
Assume an original dataset { , }D = X y  , where n mR ×∈X  , and 1nR ×∈y  . After data 
normalization, the training and test datasets are divided and denoted as { , }train train trainD = X y  
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and { , }test test testD = X y  , respectively, where train p mR ×∈X  , test q mR ×∈X  , 1train pR ×∈y  , and 

1test qR ×∈y  . In the initial construction stage, T   subsample sets are generated on trainD  
through the bagging algorithm denoted as 1 2{ , ,..., }bagging TD D D D= , where { , }, [1, ]t t tD t T= ∈X y , 

t p mR ×∈X , and 1t pR ×∈y . Then, the indicator vector of tX  and the indicator vector set of 

baggingD  denoted as below equations are achieved using Eqs. (6), (7), and (8): 

(1) (2) ( ) (1) (2) ( )={ , ,..., , , ,..., },t t t t t t
t m mµ µ µ σ σ σλ  (9) 

1 2 1 2={ , ,..., }, .T t mR ×∈θ λ λ λ λ  (10) 

Subsequently, θ   is clustered through the AGNES algorithm. The AGNES algorithm 
typically merges clusters with large similarity by measuring the Euclidean distance, as 
mentioned in Section 2.2. Conversely, clusters with small similarities are not amalgamated. 
This condition ensures that the indicator vectors within the same cluster are nearly similar. 
The statistical significance of the indicator vector is to represent the distribution of samples. 
Consequently, the indicator vectors in the same cluster represent that these subsample sets 
in the same cluster have a similar distribution. The diversity of these subsets can be viewed 
similarly. By contrast, the sample subsets between different clusters have a large distance 
and can be regarded as having a large difference. The indicator vector does not contain the 
distribution of trainy   because the diversity of subsample sets placed in the training 
submodels is focused. 

3.2 Construction and training of all submodels 
Considering that the threshold increases in a certain step size, the final clustering result is 
determined on the basis of the number of clusters that decreases the fastest corresponding 
with the threshold. k  clusters denoted as 1 2{ , ,..., }kC Cl Cl Cl=  are obtained, where k T< . In 
accordance with the foregoing description, k  clusters indicate k  kinds of diversity among 

baggingD . Thus, one subsample set is randomly selected in kCl  as the training dataset of the 
submodel. In particular, k  clusters determine that the number of SAE submodels is k .  
Suppose that the selected sample subsets for training from all clusters are denoted as 

1 2{ , ,..., }kDT DT DT DT= . The th ( [1, ])l l k∈  SAE submodel denoted as SAEl  uses lDT  subset 
for unsupervised pretraining and supervised fine-tuning. The adjustable parameters, such 
as the nodes of each layer in each SAE submodel, are the same. The trained SAE submodel 
is stored to complete the final integration phase. 

3.3 Integration of trained submodels 
We focus on the integrated method of all submodels to ensure the final prediction precision 
of the ensemble model. Following the training process, { , }train train trainD = X y  is placed into all 
trained SAEs to achieve the predicted output of a training dataset expressed as 

1 2
ˆ ˆ ˆ ˆ{ , ,..., }train train train
train k=Y y y y . Subsequently, the optimal ensemble method is obtained by treating 
t̂rainY   as the training data and trainy   as the labeled data for the XGBoost algorithm. 
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{ , }test test testD = X y   is placed into each submodel during the testing phase to obtain the 
predicted output of the submodel denoted as 1 2

ˆ ˆ ˆ ˆ{ , ,..., }test test test
test k=Y y y y  . The final predicted 

output of { , }test test testD = X y  is calculated using the trained ensemble model denoted as ˆ testy . 
Furthermore, the advantages of the three main factors of integrated modeling are 
maximized in the three steps of our algorithm. During the construction and selection of 
subsets, the clustering on the indicator vectors can divide the subsample sets with the 
largest diversity to the optimal possible extent. During the training of all submodels, SAE 
improves the prediction accuracy of each submodel given the powerful abilities of fitting 
and regression prediction of deep learning. The involvement of layer-wise greedy pre-
training and fine-tuning can effectively obtain the global optimal solution. During the 
integration phase, the XGBoost algorithm develops an excellent integration capability to 
outperform the entire ensemble model. For clarity and concise description, the procedure 
of our proposed method is presented in Algorithm 1. 

Algorithm 1. Procedure of our proposed method 
Input: { , }D = X y , n mR ×∈X , 1nR ×∈y  
Initialize: Normalize { , }D = X y  into [0,1]  

Divide into { , }train train trainD = X y  , train p mR ×∈X  , 1train pR ×∈y   and { , }test test testD = X y  , 

test q mR ×∈X , 1test qR ×∈y  
Step 1: for 1,2,...,t T= , do: 

Bootstrap sampling on { , }train train trainD = X y  
Generate sample subsets { , }, [1, ]t t tD t T= ∈X y , t p mR ×∈X , 1t pR ×∈y  
Calculate indicator vector of tX   using Equations (6), (7), (8): 

(1) (2) ( ) (1) (2) ( )={ , ,..., , , ,..., }t t t t t t
t m mµ µ µ σ σ σλ  

Step 2: Cluster on 1 2 1 2={ , ,..., },T t mR ×∈θ λ λ λ λ  by AGNES, obtain k  clusters 
for 1,2,...,l k= , do: 

Choose one subset randomly from lCl  
Train SAEl  by lDT  
Record ˆ train

ly  
Step 3: Ensemble k   SAEs by fitting 1 2

ˆ ˆ ˆ ˆ{ , ,..., }train train train
train k=Y y y y   and trainy   through 

XGBoost 

3.4 Model evaluation index 
To evaluate the aforementioned model quantitatively, three indicators, namely, root MSE 
(RMSE), Pearson correlation coefficient ( r ), and regression index ( 2R ), are used. Three 
performance indices are defined as 

( )
1

ˆ
,

n

i i
i

y y
RMSE

n
=

−
=
∑

 (11) 
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where ˆiy  expresses the predicted output of the model, y  and ŷ  correspond to 

1 1

1 1ˆ ˆ, .
n n

i i
i i

y y y y
n n= =

= =∑ ∑  (14) 

4 Experiments and results 
In this section, three machine learning benchmark datasets and atmospheric column 

 

Figure 4: Plot of the AGNES algorithm 
for BHP clustering (X-axis: Subset 
Number; Y-axis: Threshold) 

 
Figure 5: Cluster numbers vary with 
threshold (BHP) 

Table 1: Clustering results on BHP (Threshold=0.03) 

Cluster No. Subset No. Cluster No. Subset No. 
1 5,10 6 16 
2 0,1,4,7,14,19 7 3 
3 9,11,12,18 8 13 
4 8 9 2 
5 15,17 10 6 
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naphtha dry point (NDP) dataset from the practical industrial process are imported to 
illustrate the performance of our proposed method. All simulation programs are written in 
Python and run on a computer with an Intel Core i5-4590 (3.3 GHz) processor and 4 GB 
RAM. Our analysis and discussion are included. 

Table 2: RMSE, r , and 2R  results of BHP with different models 

No. Method RMSE r  2R  DM 
1 SVR 0.078388 0.935488 0.871182 / 
2 SAE 0.071673 0.946255 0.892308 / 
3 ANN 0.082403 0.929043 0.857650 / 
4 B+A+SAE+XGBoost 0.057407 0.965009 0.930912 Yes 
5 B+A+SAE+AVG 0.061544 0.960309 0.920596 Yes 
6 B+A+SAE+RF 0.060773 0.961248 0.922573 Yes 
7 B+A+SAE+GDBT 0.060390 0.961100 0.923545 Yes 
8 B+SAE+XGBoost 0.064559 0.964780 0.912626 No 
9 B+SAE+AVG 0.067926 0.947860 0.897863 No 
10 B+SAE+RF 0.067926 0.951431 0.903272 No 
11 B+SAE+GDBT 0.063645 0.956974 0.915081 No 
12 B+KM+SAE+XGBoost 0.071103 0.946315 0.894014 Yes 
13 B+KM+SAE+AVG 0.070931 0.946411 0.894527 Yes 
14 B+KM+SAE+RF 0.0704616 0.946979 0.895917 Yes 
15 B+KM+SAE+GDBT 0.071310 0.945928 0.893396 Yes 
16 B+FCM+SAE+XGBoost 0.065203 0.955329 0.910872 Yes 
17 B+FCM+SAE+AVG 0.070951 0.946434 0.894466 Yes 
18 B+FCM+SAE+RF 0.069491 0.949659 0.898763 Yes 
19 B+FCM+SAE+GDBT 0.063430 0.957160 0.915655 Yes 

4.1 Boston house price (BHP) dataset 
BHP dataset, which is provided by the scikit-learn library in Python, contains 13 input 
attributes and 1 output attribute with a total of 506 samples. The description of this dataset 
can be found in Du et al. [Du, Sun, Cao et al. (2018)]. After random disruption, the number 
of training and test datasets are 404 and 102, respectively. A total of 20 subsets (numbered 
from 0 to 19) are achieved through the bagging algorithm. The AGNES algorithm clustering 
of subsets is demonstrated in Fig. 4. The step size is set to 0.01. The number of clusters is 
reduced to maximum extent when the threshold is increased from 0.02 to 0.03. Thus, 0.03 is 
set as the threshold. Fig. 5 exhibits the change in the number of clusters with an increase in 
the threshold. The comparison of Figs. 4 and 5 denotes that 20 subsamples gather 10 classes, 
as displayed in Tab. 1. In accordance with the clustering results presented in Fig. 4, the 
number of randomly selected subsample sets from each cluster is written in bold. 



 
 
 
134                                            CMES, vol.121, no.1, pp.123-144, 2019 

  
All the numbers of the three nodes in the hidden layer of AEs in SAE submodels are 10, 7, 
and 4. Three single prediction models, namely, SAE, SVR, and ANN, without the bagging 
algorithm and three other ensemble methods, namely, scilicet simple average (AVG), RF, 
and GDBT, are imported for comparison. To compare the performance of other clustering 
algorithms through our proposed approach, we use K-means (KM) and fuzzy C-means 
(FCM) clustering methods to cluster our proposed indicator vectors in parallel experiments. 
We import Silhouette Coefficient (SC) and fuzzy partition coefficient (FPC) as the 
indicators to determine the optimal number of clusters for KM and FCM, respectively. The 
number of clusters, which changes from 2 to 19, corresponding to the maximum value of 
SC or FPC is the last option. Such methods are equally applied to four datasets. The nodes 
in the hidden layer in ANN and all AEs in the SAE are set to 10, 7, and 4 as well. In SVR, 
the optimal radial basis function is 1 ( 1σ = ). The four integrated models use the same input 
subsample sets to ensure the feasibility of the experiment. The number of trees and max 
depth parameters are all set to 30 and 4 in XGBoost, respectively. The learning rate of 
XGBoost is 0.1. 
Moreover, the ensemble modeling method without adding the diversity measurement (DM) 
directly places the subsets generated by bagging into the submodels for training to reflect 
the importance of DM in our proposed method for improved prediction effect. In particular, 
the first 10 subsets numbered from 0 to 9 previously generated through the bagging 

 

Figure 6: Plot of the AGNES algorithm 
for CHP clustering (X-axis: Subset 
Number; Y-axis: Threshold) 

 

Figure 7: Cluster numbers vary with 
threshold (CHP) 

Table 3: Clustering results on CHP (Threshold=0.007) 

Cluster No. Subset No. Cluster No. Subset No. 
1 6,19 6 9,12,13,18 
2 0 7 2,3,10,14 
3 8 8 1,5,15 
4 7,11,16 9 4 
5 17   
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algorithm are directly used for model comparison because the number of submodels is 10. 
In the comparison experiments, the parameter settings of all models are the same. Under 
the interference of their respective indicators, the optimal clustering results of KM and 
FCM are 2 and 16 clusters, correspondingly. Tab. 2 demonstrates all parallel experiments 
on BHP, and the optimal results are written in bold. “A” indicates AGNES, “B” denotes 
bagging, and “DM” is the abbreviation of diversity measurement. The last column indicates 
whether or not the process of clustering with the indicator vector to select the subsamples 
with the greatest diversity is added. 

Table 4: RMSE, r , and 2R  results of CHP with different models 

No. Method RMSE r  2R  DM 
1 SVR 0.123302 0.849762 0.719008 / 
2 SAE 0.117432 0.863617 0.745126 / 
3 ANN 0.119674 0.858064 0.735303 / 
4 B+A+SAE+XGBoost 0.109459 0.882544 0.778560 Yes 
5 B+A+SAE+AVG 0.117767 0.877215 0.769083 Yes 
6 B+A+SAE+RF 0.111873 0.876925 0.768684 Yes 
7 B+A+SAE+GDBT 0.110505 0.880255 0.774307 Yes 
8 B+SAE+XGBoost 0.111409 0.878131 0.770602 No 
9 B+SAE+AVG 0.112657 0.875269 0.765431 No 
10 B+SAE+RF 0.111851 0.877000 0.768778 No 
11 B+SAE+GDBT 0.111781 0.877059 0.769065 No 
12 B+KM+SAE+XGBoost 0.112881 0.874397 0.764499 Yes 
13 B+KM+SAE+AVG 0.112145 0.876421 0.767559 Yes 
14 B+KM+SAE+RF 0.113003 0.874189 0.763988 Yes 
15 B+KM+SAE+GDBT 0.112808 0.874581 0.764800 Yes 
16 B+FCM+SAE+XGBoost 0.111044 0.878787 0.772103 Yes 
17 B+FCM+SAE+AVG 0.111954 0.876900 0.768352 Yes 
18 B+FCM+SAE+RF 0.111401 0.877959 0.770634 Yes 
19 B+FCM+SAE+GDBT 0.112291 0.875919 0.766955 Yes 

4.2 California house price (CHP) dataset 
CHP dataset, which is supported by the scikit-learn library in Python, consists of 8 
independent variables and 1 dependent variable with a total of 20640 samples. A detailed 
description of CHP can be found in Pace et al. [Pace and Barry (1997)]. After normalization, 
16512 samples are used as the training dataset, and 4128 samples are used as the test dataset. 
The clustering results are plotted in Figs. 6 and 7. These results indicate that 20 subsets 
through bagging containing 9 subsample sets have large differences. Tab. 3 provides the 
specific clustering results of these subsets from CHP. The hidden nodes of AEs are 6, 4, 
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and 3. Radial basis function is applied to SVR ( =1σ  ). The parameter settings and 
experiment procedures are the same as mentioned in Section 4.1. The number of trees, max 
depth parameters, and learning rate are set to 30, 3, and 0.2, correspondingly, in XGBoost. 
The optimal clustering results of KM and FCM are 2 and 14, respectively. Tab. 4 
summarizes the prediction results of different models for CHP datasets. 
4.3 Concrete compressive strength (CCS) dataset 
CCS dataset is composed of 8 input attributes and 1 output attribute with a total of 1030 

samples and can be obtained on the website: 
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength from UCI Machine 
Learning Repository. All the meanings of input data can be found in Yeh [Yeh (2006)]. The 
number of training and test datasets are 824 and 206, respectively. In Figs. 8 and 9, 13 
classes are gathered, as listed in Tab. 5 in detail. Three nodes in the hidden layer of ANN, 
SAE, and SAE submodels are set to 6, 4, and 3. The radial basis function is adopted to SVR 
( =1σ ). The parameters of XGBoost are set in the same manner: The number of trees is set 
to 2000, max depth is set to 3, and the learning rate is 0.1. The optimal partitioning results 

 
Figure 8: Plot of the AGNES algorithm 
for CCS clustering (X-axis: Subset 
Number; Y-axis: Threshold) 

 
Figure 9: Cluster numbers vary with 
threshold (CCS) 

Table 5: Clustering results on CCS (Threshold=0.020) 

Cluster No. Subset No. Cluster No. Subset No. 
1 1,9 8 19 
2 0,4 9 5,17 
3 2,12 10 7,18 
4 10 11 15 
5 16 12 6 
6 3,13,14 13 8 
7 11   

http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength


 
 
 
Novel Ensemble Modeling Method for Enhancing Subset Diversity                       137                

of KM and FCM are two clusters. The same experimental process functions on the CCS 
dataset. The obtained results are presented in Tab. 6. 

Table 6: RMSE, r , and 2R  results of CCS with different models 

No. Method RMSE r  2R  DM 
1 SVR 0.089187 0.912753 0.829071 / 
2 SAE 0.077016 0.936403 0.872539 / 
3 ANN 0.080828 0.929064 0.859610 / 
4 B+A+SAE+XGBoost 0.066959 0.951644 0.903656 Yes 
5 B+A+SAE+AVG 0.072019 0.942927 0.888542 Yes 
6 B+A+SAE+RF 0.068625 0.949204 0.898800 Yes 
7 B+A+SAE+GDBT 0.069141 0.947455 0.897273 Yes 
8 B+SAE+XGBoost 0.068990 0.948400 0.897722 No 
9 B+SAE+AVG 0.075224 0.937423 0.878402 No 
10 B+SAE+RF 0.070503 0.945709 0.893186 No 
11 B+SAE+GDBT 0.070302 0.945620 0.893794 No 
12 B+KM+SAE+XGBoost 0.077432 0.937492 0.871160 Yes 
13 B+KM+SAE+AVG 0.073912 0.938953 0.882607 Yes 
14 B+KM+SAE+RF 0.075018 0.938440 0.879067 Yes 
15 B+KM+SAE+GDBT 0.074071 0.939421 0.882103 Yes 
16 B+FCM+SAE+XGBoost 0.078984 0.933103 0.865944 Yes 
17 B+FCM+SAE+AVG 0.074704 0.938271 0.880079 Yes 
18 B+FCM+SAE+RF 0.075739 0.937774 0.876731 Yes 
19 B+FCM+SAE+GDBT 0.074158 0.939771 0.881826 Yes 

4.4 Atmospheric column NDP dataset 
We apply the proposed algorithm to industrial atmospheric tower modeling to predict dry 
point temperatures. Atmospheric column NDP dataset is collected from the practical 
industrial process of a chemical plant. In this experiment, 16 input controllable variables 
and 1 output variable with a total of 150 samples are used. The specific meaning and 
explanation of each variable are mentioned in Wang et al. [Wang and Yan (2019)]. The 
training and test datasets are divided into 120 and 30, respectively.  
After the same clustering on the 20 subsample sets generated through the Bagging 
algorithm (Figs. 10 and 11), 13 subsets with significant diversity are obtained, as listed in 
Tab. 7. The simulation experiment on NDP is conducted in the same manner. However, the 
data from the chemical plant cause large noises in the sample, thereby making the 
regression effect poor. To quantify the model performance visually, we use maximal 
absolute relative error (MARE), rather than 2R , as the evaluation index. The calculation 
of MARE, which expresses the poor results of model prediction accuracy after 
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antinormalization, is formulated as 

ˆ
max , 1,..., .i i

i
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y
−
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The hidden nodes in all neural network algorithms are set to 10, 7, and 4. The optimal 
Gaussian kernel function width is 1 ( =1σ  ). Moreover, the parameters of XGBoost are 
changed: the number of trees is 200, and the max depth is set to 4. The learning rate of 
XGBoost is altered to 0.2. Under the SC and FPC indicators, KM and FCM are clustered 
into two categories as the optimal result. Various algorithm modeling experiment results 
are summarized in Tab. 8. “PI” represents the performance increase in the MARE. The 
column named “Performance Improved” indicates the increase in the performance of the 
MARE relative to the model. 

Table 8: RMSE, r , and MARE results of NDP with different models 

 
Figure 10: Plot of the AGNES algorithm 
for NDP clustering (X-axis: Subset 
Number; Y-axis: Threshold) 

 
Figure 11: Cluster numbers vary with 
threshold (NDP) 

Table 7: Clustering results on NDP (Threshold=0.07) 

Cluster No. Subset No. Cluster No. Subset No. 
1 5,8,13,17 8 4,6,9,10 
2 12 9 15 
3 2 10 16 
4 1,7 11 19 
5 11 12 3 
6 18 13 14 
7 0   
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No. Method RMSE r  MARE PI DM 
1 SVR 0.122049 0.626570 0.060808 45.74% / 
2 SAE 0.120011 0.648733 0.056016 28.11% / 
3 ANN 0.132330 0.469436 0.059767 32.63% / 
4 B+A+SAE+XGBoost 0.099382 0.751880 0.040268 / Yes 
5 B+A+SAE+AVG 0.106235 0.707382 0.042162 4.49% Yes 
6 B+A+SAE+RF 0.110664 0.723285 0.053731 25.06% Yes 
7 B+A+SAE+GDBT 0.118687 0.669424 0.054619 26.27% Yes 
8 B+SAE+XGBoost 0.115015 0.681638 0.053166 24.26% No 
9 B+SAE+AVG 0.116240 0.678385 0.051712 22.13% No 

10 B+SAE+RF 0.129561 0.660101 0.060303 33.22% No 
11 B+SAE+GDBT 0.170671 0.577409 0.092203 56.33% No 
12 B+KM+SAE+XGBoost 0.111245 0.665180 0.066312 39.27% Yes 
13 B+KM+SAE+AVG 0.110417 0.689816 0.067596 40.43% Yes 
14 B+KM+SAE+RF 0.113904 0.652748 0.068355 41.09% Yes 
15 B+KM+SAE+GDBT 0.141868 0.584872 0.080284 49.84% Yes 
16 B+FCM+SAE+XGBoost 0.119180 0.683836 0.062331 35.40% Yes 
17 B+FCM+SAE+AVG 0.117688 0.686591 0.060549 33.40% Yes 
18 B+FCM+SAE+RF 0.115902 0.667471 0.059457 32.27% Yes 
19 B+FCM+SAE+GDBT 0.131491 0.622433 0.061491 34.51% Yes 

4.5 Analysis and discussion 
The conclusions based on the results of the experiments on four datasets are summarized 
as follows: 
1) Considering the advantages of ensemble models, we compare the different prediction 
effects of three single models and four integrated models in 19 parallel experiments using 
the same dataset. Except for some experiments, such as No. 8 in Tab. 8, the effects of four 
ensemble models are superior to the single models with a low prediction error in each 
dataset, thereby demonstrating the superiority of the ensemble model caused by the 
bagging algorithm. The integrated model can train some sample points that are difficult to 
predict multiple times, thus compensating the defects in some sample points that may have 
large prediction errors in a single model, overcoming the overfitting caused by a single 
model, and reducing the RMSE when testing the ensemble model. 
2) In terms of the accuracy of submodels, as presented in Nos. 1, 2, and 3 in Tabs. 2, 4, 6, 
and 8, we can infer that SAE shows the optimal prediction results among the three single 
models considering its advantages caused by deep learning mechanism. The use of SAE as 
a submodel in the integrated model significantly affects and improves the final prediction 
accuracy of the final ensemble model. The high accuracy of the submodel indicates an 
improved integration effect. 
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3) For the diversity improvement of subsets, the intervention of DM improves the overall 
prediction accuracy of the model when the integrated model is used on the basis of the 
comparison of Experiment Nos. 4-7 with Nos. 8-11 in Tabs. 2, 4, 6, and 8. Furthermore, we 
can conclude that ensemble models with the DM mechanism measured by the indicator vector 
significantly increase the diversity of subsamples, thereby allowing the integrated model to 
achieve high prediction accuracy. The increase in the diversity of subsample sets helps the 
submodel to learn a rich sample distribution of the original dataset. Thus, the integrated model 
exhibits a lower RMSE or MARE and higher r  and 2R  than the single model.  
4) For the ensemble method, from Experiment Nos. 4-7 or Nos. 8-11 in Tabs. 2, 4, 6, and 
8, the XGBoost ensemble algorithm embodies its powerful integration ability, and the 
prediction accuracy and regression effect are optimal whether the DM is imported or not. 
This condition confirms that XGBoost exhibits its extraordinary ensemble capabilities 
when the submodels are all the same. Although in some cases, such as in Experiment Nos. 
6 and 7 in Tab. 6, the r  and 2R  values are slightly lower than the predictions of our 
proposed model, and the RMSE of our model can be significantly reduced. In addition, the 
Bagging+SAE+XGBoost algorithm reaches the optimal in comparison with the three other 
methods when the same modeling method is adopted without DM. The suboptimal 
algorithm varies with different datasets. However, by comparing Experiment Nos. 1-3 with 
Nos. 12-19 in Tabs. 2, 4, 6, and 8, the integration capability of XGBoost is worse than the 
simple average and slightly better than the single model when the number of submodels is 
2. This condition is due to the ensemble effect of XGBoost is correlated with the number 
of submodels. In Experiment Nos. 16-19 in Tabs. 2 and 4, the ensemble effect of XGBoost 
is outstanding, especially on other clustering methods, because the numbers of submodels 
are 16 and 14. 
5) In our model, the AGNES clustering method is irreplaceable. The comparison of 
Experiment Nos. 4-7 and 12-15 with Nos. 16-19 displayed in Tabs. 2, 4, 6, and 8 denotes 
that the clustering results through KM are all two in the four datasets. The number of 
clusters is small in which the diversity of each subsample dataset cannot be distinguished 
well, thus leading to the ensemble model obtained through the KM algorithm, and its 
performance is slightly better than a single model. By contrast, FCM provides the optimal 
cluster numbers of 16 and 14 in BHP and CHP datasets, correspondingly. Numerous 
clusters show that nearly all subsample datasets are diverse, thereby resulting in repeated 
training of some sample subsets with the same distribution. Redundant information directly 
interferes with the precision of prediction during the ensemble process. However, the 
prediction accuracy of the final ensemble model using FCM is better than the model using 
KM clustering and the integration model without adding DM but all worse than the 
ensemble model of the AGNES clustering method in the BHP and CHP datasets given the 
increase in the number of submodels and DM. However, the precision effect of the 
integrated model using FCM clustering or the integrated model using KM clustering is 
nearly the same in the CCS and NDP datasets when the results of clustering are consistent. 
Moreover, KM and FCM are required to define the number of clusters and some parameters 
in advance and calculate the index based on the division result to find the optimal solution, 
thereby significantly increasing calculation time and computational complexity. In our 
proposed method, only the step size is required, and the number of clusters is determined 
by the change in step size. In particular, the number of clusters is adaptively selected in 
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AGNES without calculating additional indicators. This mechanism reduces computational 
costs, and the number of clusters is moderate. 
6) In the BHP and CHP datasets, our methods can significantly reduce the RMSE of test data 
while increasing r  and 2R  under the same training and test datasets. Experiment Nos. 3 and 
4 listed in Tab. 2 indicate that the RMSE can be reduced from 0.082403 to 0.057407. For the 
CHP dataset, although the improvement effect of 2R   is not evident, our algorithm can 
reduce the RMSE to less than 0.11 in the case where the RMSE is nearly difficult to reduce. 
7) For the CCS dataset, our approach is the only model to increase 2R  from approximately 
0.8 for a single model to more than 0.9. 
8) For the NDP dataset, our method significantly improves r under large noise. 
Simultaneously, the performance of the MARE can be increased to 56.33% for the sample 
with the largest prediction error. The improvement in MARE performance marks a 
reduction in prediction error. This condition indicates that our proposed algorithm is the 
only model that reduces the RMSE of test dataset to less than 0.1. 

5 Conclusion 
In this study, a novel ensemble modeling method is proposed to overcome three key issues 
in integrating submodels. These key issues are increasing the accuracy of submodels, 
improving the diversity of subsets, and selecting the optimal ensemble method. First, the 
indicator vector and AGNES algorithm simplify the classification of the subsamples with 
the utmost diversity generated through bagging. Second, in comparison with traditional 
machine learning submodels, SAE, a deep learning algorithm, is introduced to improve the 
prediction accuracy of each submodel. Finally, the XGBoost integration capability is used 
as the optimal ensemble method to fit the nonlinear relationship between various 
submodels. A total of 19 sets of parallel experiments are conducted in each dataset to 
highlight the advantages of our algorithm. All results validate that our proposed algorithm 
outperforms other single or ensemble models for the benchmark datasets and practical 
industrial dataset. Considering that the ensemble model can effectively improve the 
robustness and limitations of overfitting caused by a single model, the proposed method 
can be applied to pattern recognition for classification problems in the future. 
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