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Abstract: Fluidelastic instability is destructive in tube bundles subjected to cross flow. 
Flow channel model proposed by Leaver and Weaver is well used for modeling this 
problem. However, as the tube motion is supposed to be harmonic, it may not simulate the 
general dynamic behaviors of tubes. To improve this, a model with arbitrary tube motion 
is proposed by Hassan and Hayder. While, due to involving in the time delay term, the 
stability problem cannot be solved by the eigenvalue scheme, and time domain responses 
of the tube have to be obtained to assess the instability threshold. To overcome this 
weakness, a new approach based on semi-discretizing method (SDM) is proposed in this 
study to make the instability threshold be predicted by eigenvalues directly. The motion 
equation of tube is built with considering the arbitrary tube motion and the time delay 
between fluid flow and tube vibration. A time delay integral term is derived and the SDM 
is employed to construct a transfer matrix, which transforms the infinite dimensional 
eigenvalue problem into a finite one. Hence the stability problem become solvable 
accordingly. With the proposed method, the instability threshold of a typical square tube 
array model is predicted, and the influences of system parameters on stability are also 
discussed. With comparing with prior works, it shows significant efficiency improvement 
in prediction of the instability threshold of tube bundles. 
 
Keywords: Fluidelastic instability, vibration equation, time delay, semi-discretizing 
method, fluid-induced vibration. 

1 Introduction 
Tube and shell heat exchangers are widely used in conventional and nuclear industries. 
Tube bundles in heat exchangers are usually exposed to external flows, and the interaction 
between tube and fluid flow will induce tube vibration. It often leads to damage and even 
failures of tubes which has become a critical problem of heat exchangers [Shinde (2015)]. 
The excitation mechanisms of Flow-Induced Vibration (FIV) can be identified as 
turbulence excitation, vortex shedding, fluidelastic instability and acoustic resonance 
broadly. As fluidelastic instability may cause severe unacceptable damage and is the most 
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complex and difficult to predict, it has attracted more attentions than other three FIV 
behaviors. The feature phenomenon of fluidelastic instability is that when the flow velocity 
exceeds certain threshold, the amplitude of tube vibration rises sharply with a small 
increment of inlet flow velocity, and it may lead to the tube failure in a short time. 
Due to the danger of fluidelastic instability of tube bundles, amounts of researches have 
been carried out to predict and prevent it, and several theoretical models for tube arrays 
subjected to cross flow were developed. As the fluid forces are difficult to solve 
theoretically, the early solution was to build a simplified model in terms of extensive 
experimental data. In Roberts’ experiments [Roberts Washington (1966)], transverse 
fluidelastic instability was observed in the in-flow direction at low flow velocities. Robert 
made the first attempt at analyzing the phenomenon by the Jet Switch model. Researching 
on a single row of tube array, Connors [Connors (1970)] proposed quasi-static model. A 
quantity expression between reduced flow velocity and mass-damping parameters (MDP) 
is given in the model. Connors did not approach the fluid forces theoretically, but measured 
them. Tanaka et al. [Tanaka and Takahara (1980, 1981)], Chen [Chen (1983a, 1983b)] 
provided an unsteady model, where the unsteady forces were obtained directly from 
experiments. Also, there were quasi-steady models developed by Blevins [Blevins (1977)] 
and Price et al. [Price and Paidoussis (1984, 1986)], where four new constants were to be 
determined and couldnot account for stiffness-controlled instabilities. A semi-analytical 
approach to modeling fluidelastic instability was presented by Lever et al. [Lever and 
Weaver (1982); Lever and Weaver (1986a, 1986b)] and Yetisir et al. [Yetisir and Weaver 
(1993a, 1993b)], which was based on damping-controlled mechanism. The model was 
considered in the case that an elastic tube was confined in a rigid tube bundle. In the original 
form, the flow channel model of Lever et al. [Lever and Weaver (1982)] idealized the tube 
as a single degree of freedom system vibrating at its natural frequency, only in the 
transverse direction, and a time delay was expressed associating with the time taken for the 
two fluid streams on either side of the tube to readjust to the changing flow-channel 
configuration as a tube vibrates. Lever et al. [Lever and Weaver (1986a, 1986b)] modified 
the flow channel to account for streamwise motion, however, the transverse and streamwise 
flow motions were analyzed independently of each other. Yetisir et al. [Yetisir and Weaver 
(1993a, 1993b)] then extended the original model to account for the case of multiple 
flexible tubes. Since the differential motion equation was linear, the stability problem can 
be assessed in terms of the roots of the characteristic polynomial. Although Lever and 
Weaver’s model described the system behavior and fluid force theoretically, due to the 
assumption that tube motion is harmonic and only in the transverse direction, which is not 
identical to its arbitrary vibration facts, this makes the model not be suitable for nonlinear 
analysis. Hassan et al. [Hassan and Hayder (2008); Hassan and Weaver (2016); Hassan and 
Weaver (2017)] modified the semi-analytical model to account for any arbitrary motion, 
expanding the motion of tube to two dimensions in the plane, and developed a time domain 
model. Although this model may approach the arbitrary tube free motion with no limitation, 
it brought in a heavy burden in solving the equations by direct time integration scheme. On 
account of that only one inlet flow speed case corresponding to a certain MDP can be 
solved in once numerical computation. Moreover, time domain responses of the tube at 
different inlet flow speeds have to be obtained for assessing the instability via vibrational 
amplitudes. It will take a large amount of calculation time and hence limit its application 
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in engineering analysis.  
To avoid the time domain solution for the Hassan and Hayder’s model, the obstacle is that 
the time delay and unlimited vibration mode leads to an infinite-dimensional eigenvalue 
problem as the multiplier of characteristic polynomial has no closed form. This paper hence 
proposes a tube-flow coupling dynamic equation with a constant delay term and a time 
delay integral term based on Hassan and Hayder’s model, which supposes the tube motion 
is arbitrary. The SDM is then introduced to overcome the challenge via desecrating the 
time delay integration term. Furthermore, a transform matrix is built to make the stability 
problem become a finite eigenvalue one. The stability characteristics are presented by the 
stability map in different MDPs and effects of related parameters on stability are discussed. 
Finally, the results are compared with the test and theoretical one of prior researches to 
validate the proposed approach. 

2 Elastic fluid mechanics modeling 
In this study, a typical square tube array shown in Fig. 1 is chosen, and the elastic fluid 
force is approached by reformulated flow channel model proposed by Hassan et al. [Hassan 
and Hayder (2008)]. 

  
Figure 1: Flow channel model 

The flow passing tubes is divided into two fluid channels and wake regions as shown in 
Fig. 1. The flexible tube (tube 5) vibrates in the 𝑋𝑋-𝑌𝑌 plane, while other surrounding tubes 
are supposed to be rigid and fixed. Since fluid boundaries contact with tubes, it is 
influenced by motion of tubes as follows. The fluid boundary 𝛤𝛤1 varies with the motion of 
the analyzed tube (tube 5). For the fluid boundary 𝛤𝛤2, the right end of which varies with the 
analyzed tube while the other end is fixed. Fluid boundaries 𝛤𝛤3, 𝛤𝛤4, 𝛤𝛤5 and 𝛤𝛤6 are all fixed. 
The curvilinear coordinate (𝑠𝑠) is measured from the tube center along the curved path of 
fluid flow and 𝑠𝑠0 is corresponding to the inlet position of flow channel. For simplifying the 
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modeling, it should be noted that the fluid flow is regarded as incompressible and inviscid, 
as well as the fluidelastic excitation is assumed to be independent on wake phenomena. 
The flow is assumed to attach and separate at fixed locations. And these assumptions may 
not be valid for large amplitude of tube vibration. The conservation of mass equation and 
momentum equation obtained from the one-dimensional Reynolds equation are in 
following forms, respectively: 
𝜕𝜕𝜕𝜕(𝑠𝑠,𝑡𝑡)
𝜕𝜕𝑡𝑡

+ 𝜕𝜕
𝜕𝜕𝑠𝑠

[𝐴𝐴(𝑠𝑠, 𝑡𝑡)𝑈𝑈(𝑠𝑠, 𝑡𝑡)] = 0                                    (1) 
1
𝜌𝜌
𝜕𝜕𝜕𝜕(𝑠𝑠,𝑡𝑡)
𝜕𝜕𝑠𝑠

+ 𝑈𝑈(𝑠𝑠, 𝑡𝑡) 𝜕𝜕𝜕𝜕(𝑠𝑠,𝑡𝑡)
𝜕𝜕𝑠𝑠

+ 𝜕𝜕𝜕𝜕(𝑠𝑠,𝑡𝑡)
𝜕𝜕𝑡𝑡

+ ℎ
2𝑠𝑠0

𝑈𝑈2(𝑠𝑠, 𝑡𝑡) = 0   (2) 

where, the fluid flow velocity 𝑈𝑈(s, t), pressure 𝑃𝑃(s, t) and the fluid channel area 𝐴𝐴(s, t) are 
assumed to vary with position 𝑠𝑠  and time 𝑡𝑡  respectively, 𝑠𝑠  is the one-dimensional 
curvilinear coordinate along the channel.  
The fluid boundaries 𝛤𝛤1 and 𝛤𝛤2 vary with the vibration of the tube, then the channel area 𝐴𝐴, 
flow velocity 𝑈𝑈  and fluid pressure P fluctuate. The above three parameters can be 
expressed by the sum formulas of constant components and variable components, which 
are functions of time and position. The average channel area of the overall fluid channel 𝐴𝐴0, 
the flow velocity 𝑈𝑈0 and the pressure 𝑃𝑃0 at the inlet are assumed to be constant [Yetisir and 
Weaver (1993a)]: 
𝐴𝐴(𝑠𝑠, 𝑡𝑡) = 𝐴𝐴0 + 𝑎𝑎(𝑠𝑠, 𝑡𝑡)        (3) 
𝑈𝑈(𝑠𝑠, 𝑡𝑡) = 𝑈𝑈0 + 𝑢𝑢(𝑠𝑠, 𝑡𝑡)      (4) 
𝑃𝑃(𝑠𝑠, 𝑡𝑡) = 𝑃𝑃0 + 𝑝𝑝(𝑠𝑠, 𝑡𝑡)         (5) 
Via substituting the Eqs. (3), (4), (5) into (1) and (2), the flow velocity and the pressure 
distributions along the 𝑠𝑠 coordinate can be obtained by solving the equation. By integrating 
the pressure distribution over the fluid boundary 𝛤𝛤1, the force exerting on the analyzed tube 
(tube 5) can be obtained. Eqs. (4) and (5) are rewritten by utilizing integration by parts as  

𝑢𝑢(𝑠𝑠, 𝑡𝑡) = 1
𝜕𝜕0+𝑎𝑎(𝑠𝑠,𝑡𝑡) �−𝑈𝑈0𝑎𝑎(𝑠𝑠, 𝑡𝑡) − ∫ 𝜕𝜕𝑎𝑎(𝑠𝑠,𝑡𝑡)

𝜕𝜕𝑡𝑡
𝑑𝑑𝑠𝑠𝑠𝑠

−𝑠𝑠0
�      (6) 

𝑃𝑃(𝑠𝑠, 𝑡𝑡) = 𝑃𝑃0 + 𝜌𝜌 �1
2
𝑈𝑈02 −

1
2
𝑈𝑈2 − ∫ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑡𝑡
𝑑𝑑𝑠𝑠𝑠𝑠

−𝑠𝑠0
− ℎ

2𝑠𝑠0
∫ 𝑈𝑈2𝑑𝑑𝑠𝑠𝑠𝑠
−𝑠𝑠0

�     (7) 

where, ℎ  is the fluid resistance coefficient which is related to the arrangement and 
geometric parameters of tube arrays, supposed not to vary significantly with Reynolds 
number in the vicinity of the stability threshold for each tube bundle array. 
As shown in Fig. 2, the pressures in channel 1 and 2 can be calculated from the pressure 
distributions along the two stream channels, respectively 𝑃𝑃1(s, t) and 𝑃𝑃2(s, t). The lift and 
drag force on per unit length along 𝑋𝑋 and 𝑌𝑌 direction are expressed respectively as 

�
𝐹𝐹𝐿𝐿(𝑡𝑡) = ∫ [𝑃𝑃1(𝑠𝑠, 𝑡𝑡) − 𝑃𝑃2(𝑠𝑠, 𝑡𝑡)] 𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑎𝑎

𝐹𝐹𝐷𝐷(𝑡𝑡) = ∫ [𝑃𝑃1(𝑠𝑠, 𝑡𝑡) − 𝑃𝑃2(𝑠𝑠, 𝑡𝑡)] 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑎𝑎

        (8) 

Where 
𝛽𝛽 = 𝑠𝑠

𝐷𝐷/2
           (9) 

𝑠𝑠𝑎𝑎  and 𝑠𝑠𝑠𝑠 correspond to the positions of flow becoming into attachment and separation, 
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respectively. 𝛽𝛽 is the angle between the surface normal and the transverse line at 𝑠𝑠 = 0 of 
the tube.  

 

Figure 2: Pressure over the length of the channel in contact with flexible tube 

Hassan and Hayder analyzed the fluidelastic instability in time domain utilizing the above 
model by finite element code and numerical simulation. The time domain responses of the 
tube have to be obtained to assess the instability via vibrational amplitudes, which 
inevitably involve in heavy calculation burden and judgement for instability.  
To avoid assessing the stability via time-based solutions, in the following, the fluidelastic 
force is derived based on Hassan and Hayder’s model where SDM can be applied for, and 
make the instability threshold can be predicted directly in terms of eigenvalues.  
For small tube responses, that is 𝐴𝐴0 ≫ 𝑎𝑎(𝑠𝑠, 𝑡𝑡), Eq. (6) becomes 

𝑢𝑢(𝑠𝑠, 𝑡𝑡) = �𝑈𝑈0𝑎𝑎(𝑠𝑠, 𝑡𝑡) + ∫ 𝜕𝜕𝑎𝑎(𝑠𝑠,𝑡𝑡)
𝜕𝜕𝑡𝑡

𝑑𝑑𝑠𝑠 + ∫ 𝜕𝜕𝑎𝑎(𝑠𝑠,𝑡𝑡)
𝜕𝜕𝑡𝑡

𝑑𝑑𝑠𝑠𝑠𝑠
𝑠𝑠𝑎𝑎

𝑠𝑠𝑎𝑎
−𝑠𝑠0

�∑ [(−1)𝑛𝑛(1/𝐴𝐴0)𝑛𝑛+1𝑎𝑎𝑛𝑛(𝑠𝑠, 𝑡𝑡)]∞
𝑛𝑛=0  

 (10) 
With 𝑠𝑠 = 0, then 

𝑢𝑢(𝑠𝑠, 𝑡𝑡) = 1
𝜕𝜕0
�−𝑈𝑈0𝑎𝑎(𝑠𝑠, 𝑡𝑡) − ∫ 𝜕𝜕𝑎𝑎(𝑠𝑠,𝑡𝑡)

𝜕𝜕𝑡𝑡
𝑑𝑑𝑠𝑠 − ∫ 𝜕𝜕𝑎𝑎(𝑠𝑠,𝑡𝑡)

𝜕𝜕𝑡𝑡
𝑑𝑑𝑠𝑠𝑠𝑠

𝑠𝑠𝑎𝑎
𝑠𝑠𝑎𝑎
−𝑠𝑠0

�      (11) 

And 𝑈𝑈(𝑠𝑠, 𝑡𝑡) is a piecewise function in the curvilinear coordinate, when  𝑠𝑠 > 𝑠𝑠𝑎𝑎, 

𝑢𝑢(𝑠𝑠, 𝑡𝑡) = 1
𝜕𝜕0+𝑎𝑎(𝑠𝑠,𝑡𝑡) �−𝑈𝑈0𝑦𝑦(𝑡𝑡) − ∫ �̇�𝑦(𝑡𝑡 + 2(𝑠𝑠−𝑠𝑠𝑎𝑎)

𝜕𝜕0
) 𝑠𝑠0+𝑠𝑠

𝑠𝑠0
𝑑𝑑𝑠𝑠 − ∫ �̇�𝑦(𝑡𝑡)𝑑𝑑𝑠𝑠𝑠𝑠

𝑠𝑠𝑎𝑎
𝑠𝑠𝑎𝑎
−𝑠𝑠0

�     (12) 

Take the variable substitution ζ = 𝑡𝑡 + 2(𝑠𝑠 − 𝑠𝑠𝑎𝑎) 𝑈𝑈0⁄  into Eq. (12), 

𝑢𝑢(𝑠𝑠, 𝑡𝑡) = 1
𝜕𝜕0+𝑎𝑎(𝑠𝑠,𝑡𝑡) �

�− 3𝜕𝜕0
2
− 𝜕𝜕0𝑠𝑠𝑎𝑎

2𝑠𝑠0
+ 𝜕𝜕0

2𝑠𝑠0
� 𝑦𝑦(𝑡𝑡2)

− 𝜕𝜕0
2𝑠𝑠0

𝑦𝑦(𝑡𝑡1)− �̇�𝑦(𝑡𝑡2)(𝑠𝑠 − 𝑠𝑠𝑎𝑎)
�      (13) 

where 𝑡𝑡2 = 𝑡𝑡, 𝑡𝑡1 = 𝑡𝑡 + 2(−𝑠𝑠0 − 𝑠𝑠𝑎𝑎) 𝑈𝑈0⁄ . 
Similarly, when 𝑠𝑠 < 𝑠𝑠𝑎𝑎, 𝑈𝑈(𝑠𝑠, 𝑡𝑡) is expressed as 

𝑢𝑢(𝑠𝑠, 𝑡𝑡) = 1
𝜕𝜕0+𝑎𝑎(𝑠𝑠,𝑡𝑡) ��−

3𝜕𝜕0
2
− 𝜕𝜕0𝑠𝑠

2𝑠𝑠0
+ 𝜕𝜕0

2𝑠𝑠0
� 𝑦𝑦(𝑡𝑡2) − 𝜕𝜕0

2𝑠𝑠0
𝑦𝑦(𝑡𝑡1)�        (14) 
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where 𝑡𝑡2 = 𝑡𝑡 + 2(𝑠𝑠 − 𝑠𝑠𝑎𝑎) 𝑈𝑈0⁄ , 𝑡𝑡1 = 𝑡𝑡 + 2(−𝑠𝑠0 − 𝑠𝑠𝑎𝑎) 𝑈𝑈0⁄ . 
Combining Eqs. (2-13) and (2-14), it is obtained 

𝑢𝑢(𝑠𝑠, 𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧ 1
𝜕𝜕0+𝑎𝑎(𝑠𝑠,𝑡𝑡) �

�− 3𝜕𝜕0
2
− 𝜕𝜕0𝑠𝑠𝑎𝑎

2𝑠𝑠0
+ 𝜕𝜕02

4𝑠𝑠0
� 𝑦𝑦(𝑡𝑡)

− 𝜕𝜕02

4𝑠𝑠0
𝑦𝑦(𝑡𝑡1)− �̇�𝑦(𝑡𝑡)(𝑠𝑠 − 𝑠𝑠𝑎𝑎)

�                                    𝑠𝑠 > 𝑠𝑠𝑎𝑎

1
𝜕𝜕0+𝑎𝑎(𝑠𝑠,𝑡𝑡) ��−

3𝜕𝜕0
2
− 𝜕𝜕0𝑠𝑠𝑎𝑎

2𝑠𝑠0
+ 𝜕𝜕02

4𝑠𝑠0
� 𝑦𝑦(𝑡𝑡2)− 𝜕𝜕02

4𝑠𝑠0
𝑦𝑦(𝑡𝑡1)�           𝑠𝑠 < 𝑠𝑠𝑎𝑎

     (15) 

In flow channel model, for any 𝑠𝑠, it gives 
𝑎𝑎1(𝑠𝑠, 𝑡𝑡) = −𝑎𝑎2(𝑠𝑠, 𝑡𝑡)   (16) 
Combining Eqs. (16) and (8), it yields 
𝑢𝑢1(𝑠𝑠, 𝑡𝑡) = −𝑢𝑢2(𝑠𝑠, 𝑡𝑡)     (17) 
where 𝑎𝑎1, 𝑎𝑎2 are fluctuating channel area corresponding to flow channel 1 and 2. And 𝑢𝑢1, 
𝑢𝑢2 are fluctuating flow velocity corresponding to flow channel 1 and 2. Taking partial 
derivative with respect to time 𝑡𝑡 on both sides of Eq. (17), it is written as follows: 
𝜕𝜕𝑢𝑢1(𝑠𝑠,𝑡𝑡)

𝜕𝜕𝑡𝑡
= −𝜕𝜕𝑢𝑢2(𝑠𝑠,𝑡𝑡)

𝜕𝜕𝑡𝑡
        (18) 

For 𝑠𝑠 > 𝑠𝑠𝑎𝑎, it gives 

𝑃𝑃1(𝑠𝑠, 𝑡𝑡) − 𝑃𝑃2(𝑠𝑠, 𝑡𝑡) = 𝜌𝜌 �𝑈𝑈0𝑢𝑢 + 2∫ 𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡
𝑑𝑑𝑠𝑠𝑠𝑠

−𝑠𝑠0
+ 𝜕𝜕0ℎ

𝑠𝑠0
∫ 𝑢𝑢𝑑𝑑𝑠𝑠𝑠𝑠
−𝑠𝑠0

�     (19) 

The fluid channel area depends on the tube displacement along 𝑌𝑌 direction and the time 
lag. The relationship is given as 
𝑎𝑎(𝑠𝑠, 𝑡𝑡) = 𝑦𝑦�𝑡𝑡 + 𝜏𝜏(𝑠𝑠)�𝑓𝑓(𝑠𝑠)       (20) 
where, 𝜏𝜏(𝑠𝑠) is the time delay between fluid flow redistribution and the elastic tube motion. 
So far, there are investigations about time delay in a series of literatures, such as Lever et 
al. [Lever and Weaver (1982)], Price et al. [Price and Paidoussis (1984)] , Granger [Granger 
and Paidoussis (1996)], and later researches [Bouzidi, Hassan, Fernandes et al. (2014); El 
Bouzidi and Hassan (2015); Li and Mureithi (2017)]. In present work, the Lever and 
Weaver linear model of time delay 𝜏𝜏(𝑠𝑠) is adopted, which is shown as follows, 
𝜏𝜏(𝑠𝑠) = 𝜀𝜀𝑠𝑠

𝜕𝜕0
       (21) 

𝜀𝜀 is the relative fluid length coefficient, which related to the phase lag of fluid flow. The 
phase lag is considered to be closely associated with the fluidelastic instability, which is 
related to the tube arrangement and pitch ratio. The value of 𝜀𝜀 is adopted as 2 in the paper. 
The artificial time delay function is shown in Fig. 3. 
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Figure 3: Time delay function in the Lever and Weaver model 

𝑓𝑓(𝑠𝑠) is the decay function, which has different forms such as linear form and exponential 
form. The assumed decay function 𝑓𝑓(𝑠𝑠) on 𝛤𝛤2 is expressed as 

𝑓𝑓(𝑠𝑠) = 𝑠𝑠0+𝑠𝑠
𝑠𝑠0

      (22) 

Eqs. (15) and (20) are substituted into Eq. (19) to produce 
𝑃𝑃1(𝑠𝑠, 𝑡𝑡) − 𝑃𝑃2(𝑠𝑠, 𝑡𝑡) = 

𝜕𝜕0𝜌𝜌
𝜕𝜕0

�𝐴𝐴1𝑦𝑦(𝑡𝑡) + 𝐴𝐴2𝑦𝑦(𝑡𝑡1) + 𝐴𝐴3�̇�𝑦(𝑡𝑡) + 𝐴𝐴4 ∫ ��−3𝜕𝜕0
2
− 𝜕𝜕0𝑠𝑠

2𝑠𝑠0
+ 𝜕𝜕02

4𝑠𝑠0
� 𝑦𝑦(𝑡𝑡2)� 𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎

−𝑠𝑠0
�    (23) 

where 
𝑡𝑡1 = 𝑡𝑡 + 2(−𝑠𝑠0 − 𝑠𝑠𝑎𝑎) 𝑈𝑈0⁄ , 𝑡𝑡2 = 𝑡𝑡 + 2(𝑠𝑠 − 𝑠𝑠𝑎𝑎) 𝑈𝑈0⁄  

𝐴𝐴1 = ��−
3𝑈𝑈0

2
−
𝑈𝑈0𝑠𝑠𝑎𝑎
2𝑠𝑠0

+
𝑈𝑈02

4𝑠𝑠0
��2 +

ℎ
𝑠𝑠0

(𝑠𝑠 − 𝑠𝑠𝑎𝑎)� −
ℎ𝑈𝑈0
𝑠𝑠0

(𝑠𝑠𝑎𝑎 + 𝑠𝑠0)� 

𝐴𝐴2 = −�
𝑈𝑈02

4𝑠𝑠0
�
ℎ
𝑠𝑠0

(𝑠𝑠 − 𝑠𝑠0) + 1� + �−
3𝑈𝑈0

2
−
𝑈𝑈0𝑠𝑠
2𝑠𝑠0

+
𝑈𝑈02

4𝑠𝑠0
�� 

𝐴𝐴3 = −
ℎ
𝑠𝑠0

(𝑠𝑠 − 𝑠𝑠𝑎𝑎)2

2
+ �−3−

𝑠𝑠𝑎𝑎
𝑠𝑠0

+
𝑈𝑈0
2𝑠𝑠0

� (𝑠𝑠 − 𝑠𝑠𝑎𝑎) 

𝐴𝐴4 =
ℎ
𝑠𝑠0

 

𝐴𝐴5 = −
(𝑠𝑠 − 𝑠𝑠𝑎𝑎)2

𝑈𝑈0
 

Inserting Eq. (23) into Eq. (8) and integrating it along 𝑠𝑠, the lift and drag force vectors of 
the tube can be obtained finally. The impacts of downstream wake and phase change due 
to heat transfer between tubes and fluid flow are not considered, which may lead the model 
too complicated to solve. The fluid forces are expressed by the state variable of 
displacement coordinate with the time delay term in this section, then the dynamic equation 
is established in the following section. 



 
 
 
8                                                                                                 CMES, vol.121, no.1, pp.1-22, 2019 

3 Dynamic equation with time delay of tube bundles 
In the stability analysis of tube bundles, it can be considered that only fluidelastic instability 
force acts [Axisa, Antunes and Villard (1988)]. The Eq. (8) indicates that the fluidelastic 
force in the 𝑋𝑋 direction only depends on the displacement and velocity in the 𝑌𝑌 direction, 
which is considered as an external excitation force. And the stability in the 𝑋𝑋 direction of 
tube bundles only depends on the system structural damping, if the damping is negative, 
then the system is unstable. Since it is impossible that the system structural damping is 
negative in practical projects, the tube response along the 𝑋𝑋 direction is always stable. The 
stability problem of tube bundles is then simplified to one dimensional case, i.e., only the 
stability in  𝑌𝑌 direction needs to be solved. As a result, for the stability problem of tube 
vibration, it is reasonable to assume the tube bundle as an Euler-Bernoulli beam model 
vibrating in the plane, whose axis is along 𝑍𝑍 direction and normal to the plane shown in 
Fig. 1, and the simplified tube bundle control equation is written as follows:  

𝜌𝜌𝑠𝑠𝐴𝐴𝑠𝑠
𝜕𝜕2𝑦𝑦
𝜕𝜕𝑡𝑡2

+ 𝜂𝜂 𝜕𝜕𝑦𝑦
𝜕𝜕𝑡𝑡

+ 𝐸𝐸𝐸𝐸 𝜕𝜕
4𝑦𝑦
𝜕𝜕𝑧𝑧4

= 𝐹𝐹𝐿𝐿(𝑧𝑧, 𝑡𝑡)      (24) 

where 𝜌𝜌𝑠𝑠 and 𝐴𝐴𝑠𝑠 are respectively the density and lateral area of the elastic tube, 𝜂𝜂 is the 
structural damping parameter of the system, 𝐸𝐸 and 𝐸𝐸 are Young’s modulus of the beam and 
the cross-sectional moment of inertia, 𝐹𝐹𝐿𝐿(𝑧𝑧, 𝑡𝑡) is fluidelastic force in transverse direction. 
By mode superposition method, extracting preceding N modes, there is  𝑦𝑦(𝑡𝑡) =
∑ 𝜙𝜙𝑖𝑖(𝑧𝑧)𝑁𝑁
𝑖𝑖=1 𝑞𝑞𝑖𝑖(𝑡𝑡) . It is demonstrated both by theory and experiments that the critical 

velocity corresponding to the first order mode is the lowest. Hence intercept the first order 
mode by Galerkin method and integrate with 𝜙𝜙1(𝑧𝑧), then the tube partial differential 
equation is converted into the ordinary differential equation: 
𝑚𝑚1�̈�𝑞1 + 2𝑚𝑚1𝜔𝜔1𝜁𝜁1�̇�𝑞1 +𝑚𝑚1𝜔𝜔12𝑞𝑞1 = 𝑓𝑓𝐿𝐿(𝑡𝑡)     (25) 
where 𝑓𝑓𝐿𝐿(𝑡𝑡) is defined as follows, 

𝑓𝑓𝐿𝐿(𝑡𝑡) = ∫ 𝜙𝜙1(𝑧𝑧)𝑙𝑙
0 𝐹𝐹𝐿𝐿(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧     (26) 

Rearranging Eqs. (23), (25) and (26), the following simplified form is obtained: 

(𝑚𝑚1 − 𝐵𝐵5)�̈�𝑞1 + (𝑐𝑐1 − 𝐵𝐵3)�̇�𝑞1 + (𝑘𝑘1 − 𝐵𝐵1)𝑞𝑞1 = 𝐵𝐵2𝑞𝑞1(𝑡𝑡1) + 𝐵𝐵4 ∫ ��− 3𝜕𝜕0
2
− 𝜕𝜕0𝑠𝑠

2𝑠𝑠0
+𝑠𝑠𝑎𝑎

−𝑠𝑠0
𝜕𝜕02

4𝑠𝑠0
� 𝑞𝑞1(𝑡𝑡2)� 𝑑𝑑𝑠𝑠       (27) 

where 𝐵𝐵𝑖𝑖 = 𝑈𝑈0𝜌𝜌𝐴𝐴𝑖𝑖 𝐴𝐴0⁄ , (𝑠𝑠 = 1,2,3,4,5). 
Making a variable substitution ϑ = 2(𝑠𝑠 − 𝑠𝑠𝑎𝑎) 𝑈𝑈0⁄ , we obtain 

�̈�𝑞1 + (𝑐𝑐1−𝐵𝐵3)
(𝑚𝑚1−𝐵𝐵5) �̇�𝑞1 + (𝑘𝑘1−𝐵𝐵1)

(𝑚𝑚1−𝐵𝐵5) 𝑞𝑞1 = 𝐵𝐵2
(𝑚𝑚1−𝐵𝐵5) 𝑞𝑞1(𝑡𝑡 + 𝜗𝜗1) + 𝜕𝜕0𝐵𝐵4

2(𝑚𝑚1−𝐵𝐵5)∫ 𝑤𝑤(𝜗𝜗)𝑞𝑞1(𝑡𝑡 + 𝜗𝜗)𝑑𝑑𝜗𝜗0
𝜗𝜗1

 (28) 

where, 

𝜗𝜗1 =
2(−𝑠𝑠0 − 𝑠𝑠𝑎𝑎)

𝑈𝑈0
 

𝑤𝑤(𝜗𝜗) = �−
3𝑈𝑈0

2
−
𝑈𝑈0
2𝑠𝑠0

(𝑈𝑈0𝜗𝜗 + 2𝑠𝑠𝑎𝑎)
2

+
𝑈𝑈02

4𝑠𝑠0
� 

Through the above model simplification, the tube dynamic equation is derived, whose right 
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side is composed by a constant delay term and a time delay integral term and the stability 
problem is transformed to be solvable, where SDM could be applied. The equation is 
established on the assumption that the tube vibrates in small amplitude in the plane. The 
new dynamics Eq. (28) takes the first-order mode coordinate as state variable. The details 
of solving method and process for the proposed model by the SDM are presented in the 
next session. 

4 Solution of fluidelastic dynamics equation 
Autonomous ordinary differential equations (ODEs) have the general form 
�̇�𝒚(𝑡𝑡) = 𝑨𝑨(𝑡𝑡)𝒚𝒚(𝑡𝑡)      (29) 
The stability properties are determined by the roots of the characteristic polynomial: if and 
only if all the characteristic roots have negative real parts, the system is asymptotically stable.  
Opposite to the characteristic polynomial of autonomous ODEs, for the linear autonomous 
DDEs in the following form, the characteristic function has infinite number of zeros. 

�̇�𝒚(𝑡𝑡) = 𝑳𝑳(t,𝒚𝒚𝑡𝑡),𝑳𝑳(t,𝒚𝒚𝑡𝑡) = ∫ 𝑑𝑑𝜗𝜗𝜼𝜼(𝑡𝑡,𝜗𝜗)0
−𝜎𝜎 𝒚𝒚(𝑡𝑡,𝜗𝜗)       (30) 

In the DDEs, the sufficient and necessary condition for asymptotic stability is that all the 
infinite number of characteristic roots have negative real parts. For practical calculations, 
only approximations can be applied. Stability investigations are often carried out by 
numerical simulations and the SDM is composed and applied for determining stability 
criteria for second-order DDEs by Insperger et al. [Insperger and Stépán (2011)]. 
For the DDE (28), the challenge of fluidelastic instability analysis is that the time delay and 
unlimited vibration mode lead to an infinite-dimensional eigenvalue problem as the 
fundamental matrix of characteristic polynomial has no closed form, and it cannot be solved 
by traditional method. In this section, with the application of SDM, the infinite-dimensional 
eigenvalue problem is transformed into an approximate finite-dimensional one, and the 
fluidelastic instability threshold can be predicted by the eigenvalues. SDM has been widely 
used in solid finite element analysis and computational fluid dynamics, the basic idea of which 
is to discretize the partial differential equation only along the spatial coordinate without the 
change of the time coordinate [Insperger and Stépán (2002)]. In this work, the SDM is 
introduced to construct a transfer matrix, then the stability of the tube-flow coupled control 
equation with time delay can be determined by its eigenvalues. An overview of stability map 
will be provided indicating the correlation between the fluidelastic instability threshold and 
system parameters, which is efficient for predicting of fluidelastic instability. The stability of 
the dynamic equation is solved by employing SDM as follows. 
The length of time axis is divided into a series of time intervals, and the period 𝑇𝑇  is 
expressed as 𝑇𝑇 = 𝑘𝑘𝑘𝑘𝑡𝑡,𝑘𝑘 ∈ 𝑍𝑍. The relationship between 𝑘𝑘 and 𝑚𝑚 is as  

𝑘𝑘𝑡𝑡 = 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖 = 𝑇𝑇
𝑘𝑘

= 𝜗𝜗1
𝑚𝑚+12

      (31) 

Let 𝒙𝒙 = [𝑞𝑞1  �̇�𝑞1]𝑇𝑇, then Eq. (28) can be rewritten as 

�̇�𝒙(𝑡𝑡) = 𝑨𝑨𝒙𝒙(𝑡𝑡) + 𝑩𝑩𝒙𝒙(𝑡𝑡 + 𝜗𝜗1) + ∫ 𝑾𝑾(𝜗𝜗)0
𝜗𝜗1

𝒙𝒙(𝑡𝑡 + 𝜗𝜗)𝑑𝑑𝜗𝜗       (32) 

where, in this work,  
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𝑨𝑨 = �
0 1

−𝑘𝑘1−𝐵𝐵1
𝑚𝑚1

− 𝑐𝑐1−𝐵𝐵3
𝑚𝑚1

�，𝑩𝑩 = �
0 0
𝐵𝐵2
𝑚𝑚1

0�，𝑾𝑾(𝜗𝜗) = �
0 0

𝜕𝜕0
2
𝐵𝐵4𝑤𝑤(𝜗𝜗) 0� 

𝑾𝑾(ϑ) is an impulse weighting distribution matrix and it is integrable, which satisfies the 
following equation: 

∫ 𝑒𝑒−𝑣𝑣𝜗𝜗|𝑾𝑾(𝜗𝜗)|0
𝜗𝜗1

𝑑𝑑𝜗𝜗 < ∞,    𝑗𝑗,𝑘𝑘 = 1,2, . . . ,𝑠𝑠,    𝑣𝑣 > 0       (33) 

At the interval [𝑡𝑡𝑖𝑖, 𝑡𝑡𝑖𝑖+1], 𝑾𝑾(ϑ) = 𝑾𝑾𝑖𝑖(ϑ). The continuous distribution matrix 𝑾𝑾𝚤𝚤� (ϑ) can 
be expressed as a sum of a series of impulse function [Insperger and Stépán (2002)]: 

𝑾𝑾�𝑖𝑖(𝜗𝜗) = ∑ 𝛿𝛿 �𝜗𝜗 + �𝑗𝑗 − 1
2
�𝑘𝑘𝑡𝑡�𝑚𝑚

𝑗𝑗=1 𝑾𝑾i,j       (34) 

Meanwhile, at the interval [𝑡𝑡𝑖𝑖, 𝑡𝑡𝑖𝑖+1], 𝑾𝑾𝚤𝚤� (ϑ) can also be expressed as a sum of a series of 
time-dependent distribution [Insperger and Stépán (2002)], 

𝑾𝑾��𝑖𝑖(𝜗𝜗, 𝑡𝑡) = 𝑾𝑾�𝑖𝑖 �𝜗𝜗 −
1
2
𝑘𝑘𝑡𝑡 + 𝑡𝑡� = ∑ 𝛿𝛿(𝜗𝜗 + (𝑗𝑗 − 1)𝑘𝑘𝑡𝑡 + 𝑡𝑡)𝑚𝑚

𝑖𝑖=1 𝑾𝑾i,j       (35) 

With the above approximations, the following approximate form is obtained [Insperger and 
Stépán (2002)], 

∫ 𝑾𝑾(𝜗𝜗)0
𝜗𝜗1

𝒙𝒙(𝑡𝑡 + 𝜗𝜗)𝑑𝑑𝜗𝜗 ≈ ∫ 𝑾𝑾��(𝜗𝜗, 𝑡𝑡)𝒙𝒙(𝑡𝑡 + 𝜗𝜗)𝑑𝑑𝜗𝜗0
𝜗𝜗1

= ∑ 𝑾𝑾i,j
𝑚𝑚
𝑗𝑗=1 𝒙𝒙𝑖𝑖−𝑗𝑗+1        (36) 

where 
𝒙𝒙𝑖𝑖−𝑗𝑗+1 = 𝒙𝒙(𝑡𝑡𝑖𝑖 − (𝑗𝑗 − 1)𝑘𝑘𝑡𝑡),   𝑠𝑠 = 0,1, . . . ,    𝑗𝑗 = 0,1, . . . ,𝑚𝑚       (37) 
Substitution of Eq. (36) into Eq. (32) yield 
�̇�𝒙(𝑡𝑡) = 𝑨𝑨𝒙𝒙(𝑡𝑡) + ∑ 𝑾𝑾�i,j

𝑚𝑚+1
𝑗𝑗=1 𝒙𝒙𝑖𝑖−𝑗𝑗+1       (38) 

Where 

𝑾𝑾�i,j = �
𝑾𝑾i,j    𝑗𝑗 = 1,2, . . . ,𝑚𝑚
𝑩𝑩          𝑗𝑗 = 𝑚𝑚 + 1         (39) 

Assuming 𝐴𝐴 is reversible for all 𝑠𝑠, the solution of Eq. (38) is [Insperger and Stépán (2011)],  
𝒙𝒙(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝�𝑨𝑨(𝑡𝑡 − 𝑡𝑡𝑖𝑖)�𝑲𝑲𝑖𝑖 − ∑ 𝑨𝑨−1𝑾𝑾�i,j

𝑚𝑚+1
𝑗𝑗=1 𝒙𝒙𝑖𝑖−𝑗𝑗+1        (40) 

where the constant vector 𝐾𝐾𝑖𝑖 depends on the initial value of the state variable 𝒙𝒙, namely 
𝑲𝑲𝑖𝑖 = 𝒙𝒙𝑖𝑖 + ∑ 𝑨𝑨−1𝑾𝑾�i,j

𝑚𝑚
𝑗𝑗=1 𝒙𝒙𝑖𝑖−𝑗𝑗+1       (41) 

If 𝐴𝐴 is irreversible, there is also a corresponding expression, and SDM is still applicable. 
In our work, it will not be discussed in detail. 
Eq. (41) is substituted into Eq. (40) to get [Insperger and Stépán (2011)], 
  
𝒙𝒙𝑖𝑖+1 = 𝑴𝑴𝑖𝑖,0𝒙𝒙𝑖𝑖 + ∑ 𝑨𝑨−1𝑴𝑴i,j

𝑚𝑚
𝑗𝑗=1 𝒙𝒙𝑖𝑖−𝑗𝑗       (42) 

where the coefficient matrices are  
𝑴𝑴𝑖𝑖,0 = 𝑒𝑒𝑒𝑒𝑝𝑝(𝑨𝑨𝑘𝑘𝑡𝑡) + 𝑒𝑒𝑒𝑒𝑝𝑝�(𝑨𝑨𝑘𝑘𝑡𝑡) − 𝑰𝑰�𝑨𝑨𝑖𝑖−1𝑾𝑾�i,1        (43) 
𝑴𝑴𝑖𝑖,𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑝𝑝�(𝑨𝑨𝑘𝑘𝑡𝑡) − 𝑰𝑰�𝑨𝑨𝑖𝑖−1𝑾𝑾�i,j       (44) 
Eq. (42) gives the linear correlation of the system state variables 𝒙𝒙𝑖𝑖+1  at the time 𝑡𝑡 =
𝑡𝑡𝑖𝑖+1 and 𝒙𝒙𝑖𝑖 at the time 𝑡𝑡 = 𝑡𝑡𝑖𝑖. 
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Let 
𝒚𝒚𝑖𝑖 = (𝒙𝒙𝑖𝑖,𝒙𝒙𝑖𝑖−1, . . . . ,𝒙𝒙𝑖𝑖−𝑚𝑚)𝑇𝑇       (45) 
By the Eq. (42) and Eq. (45), we have 
𝒚𝒚𝑖𝑖+1 = 𝑩𝑩𝑖𝑖𝒚𝒚𝑖𝑖       (46) 
where the coefficient matrix 

𝑩𝑩𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑴𝑴𝑖𝑖,0 𝑴𝑴𝑖𝑖,1 𝑴𝑴𝑖𝑖,2 . . . 𝑴𝑴𝑖𝑖,𝑚𝑚−1 𝑴𝑴𝑖𝑖,𝑚𝑚
𝑰𝑰 𝟎𝟎 𝟎𝟎 . . . 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝑰𝑰 𝟎𝟎 . . . 𝟎𝟎 𝟎𝟎
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝟎𝟎 𝟎𝟎 𝟎𝟎 . . . 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 . . . 𝑰𝑰 𝟎𝟎 ⎦

⎥
⎥
⎥
⎥
⎤

        (47) 

Utilizing Eq. (46) we obtain 
𝒚𝒚𝑘𝑘 = 𝑩𝑩𝑘𝑘 ⋯𝑩𝑩1𝑩𝑩0𝒚𝒚0      (48) 
Then the transfer matrix over the period 𝑇𝑇 is given in the form 
𝜱𝜱 = 𝑩𝑩𝑘𝑘𝑩𝑩𝑘𝑘−1⋯𝑩𝑩1𝑩𝑩0       (49) 
By the construction of the transfer matrix 𝜙𝜙, the stability of Eq. (42) then can be assessed 
by judging whether its eigenvalues are all in the unit circle. If all the eigenvalues are in the 
unit circle [Lakshmikantham and Trigiante (2002)] , then the solution of the Eq. (32) is 
stable. Let 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 be the maximum modulus among all eigenvalues for 𝜙𝜙. If 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 > 1, then 
the system is unstable; if 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 < 1, then the system is asymptotically stable; else when 
 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 = 1, the system is marginally stable.  

5 Results and discussion 
In the view of the damping mechanism for fluidelastic instability of the tube bundle, the 
system instability occurs when the energy the tube obtained from the flow field is more 
than that it dissipated. The system damping and flow velocity are important factors 
affecting system stability. Therefore, the mass-damping parameter (MDP) is introduced as 
an important factor for fluidelastic instability. The expression of the MDP is 

𝑀𝑀𝑀𝑀𝑃𝑃 = 𝑚𝑚𝑚𝑚
𝜌𝜌𝐷𝐷2

       (50) 

where 𝑚𝑚 and 𝛿𝛿 are respectively the tube mass in per unit length and logarithmic decrement 
of structural damping, 𝑀𝑀 is the tube diameter.  
The relevant geometrical parameters and material properties in computation are listed in 
Tab. 1. Fig. 4 shows influences of MDP and reduced flow velocity 𝑈𝑈𝑟𝑟 (𝑈𝑈𝑟𝑟 = 𝑈𝑈0 𝑓𝑓𝑛𝑛⁄ 𝑀𝑀) on 
the modulus of the transfer matrix eigenvalues. The stability surface is constructed by 
computing 50 groups of MDPs respectively in 200 flow velocities and it divides the space 
into stable and unstable regions. To observe the region where 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 > 1 in (𝑎𝑎) visually, let 
 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 = 1 as in (𝑏𝑏), then the discrete points corresponding to  𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 = 1 compose a curve, 
namely, the system stability curve. Extracting mass damping parameters and reduced flow 
velocities corresponding to the curve, a fitted stability curve in the plane is figured out, 
shaped like a parabola as in Fig. 5. In Fig. 5, the system stability curve divides the plane 
into two parts, the stable region which is shaded and unstable region which is white. Then 
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for analyzing the relationship between MDP and 𝑈𝑈𝑟𝑟  quantitatively, the curve is fitted 
according to Connors’ model since there are several empirical design guidelines based on 
the Connors’ equation are developed [Hassan and Hossen (2010)]. In the engineering, the 
critical pitch flow velocity 𝑈𝑈𝑐𝑐 is always expressed as follows,  
𝜕𝜕𝑐𝑐
𝑓𝑓𝑛𝑛𝐷𝐷

= 𝐾𝐾 �𝑚𝑚𝑚𝑚
𝜌𝜌𝐷𝐷2

�
𝛾𝛾
         

where  𝜌𝜌 is the fluid density, 𝐾𝐾 and γ are empirical constants. 𝑓𝑓𝑛𝑛 is the structural natural 
frequency of tube in air circumstance and the simulations and referred experiment results 
in the paper are acquired in air flow. Over past five decades, a lot of experimental 
investigations are carried out in order to modify the constants to be suitable for different 
tube arrays. In this work, Connors’ model is chosen as a reference to fit the stability curve 
and the pitch-diameter ratio chosen is 1.5.  
As shown in Fig. 5, the corresponding critical reduced flow velocities in 50 cases of MDP 
are computed. And several typical MDP and critical reduced flow velocities are listed in 
Tab. 2. Furthermore, the curve is fitted by these points in the form of Eq. (51) and values 
of 𝐾𝐾 and γ are obtained accordingly, which are 5.428 and 0.434 respectively. The fitted 
curve indicates that the critical flow velocity increases with MDP. In the lower MDP 
condition, it increases sharply and with the MDP increasing, the slope of the critical 
velocity growth becomes gentle continuously. 

Table 1: Material properties and geometrical parameters  

Outside Diameter (mm) 16.2  
Inside Diameter (mm) 15.5  
Length (m) 1.2  
Pitch-diameter Ratio 1.5 
Modulus of Elasticity 2.1e11 
Poisson’s Ratio 0.28 
Density of Tube (kg/m3) 7890 
Density of Air Flow (kg/m3) 1.219  

 
Figure 4: Fluid elastic stable area of tube bundles 
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Figure 5: Curve fitting of mass damping parameter vs reduced flow velocity 

Table 2: Typical MDP and reduced critical flow velocity values  

MDP 5.227 10.006 15.184 19.963 25.141 29.920 35.894 39.478 
𝑈𝑈𝑐𝑐𝑟𝑟 10.491 15.039 18.735 20.440 22.146 23.567 24.988 26.125 

The Reynolds numbers depending on the mean gap flow velocity over the range of 
𝑅𝑅𝑒𝑒 = 273 to 𝑅𝑅𝑒𝑒 = 1092 are listed in Tab. 3. The dimensionless flow velocity 
(𝑈𝑈𝑟𝑟∗ = 𝑈𝑈/𝑓𝑓𝑀𝑀) and pressure distributions along the flow channel in a certain MDP under 
several flow velocities are also showed respectively in Fig. 6 and Fig. 7. As mentioned in the 
flow channel model, the locations along the fluid channel are described by one dimensional 
curvilinear coordinate 𝑠𝑠, the velocity 𝑈𝑈(𝑠𝑠, 𝑡𝑡) and pressure 𝑃𝑃(𝑠𝑠, 𝑡𝑡) are computed along the 
coordinate 𝑠𝑠 , the distributions of which in transverse direction of flow channels are not 
presented. The location index ( 𝑠𝑠∗ = 𝑠𝑠/𝑀𝑀) is introduced as shown in Fig. 6 and Fig. 7, which 
is the coordinate s scaled with the tube diameter. It respectively takes values of -1.5, 0, and 
1.5 along the channel centerline at locations responding to the centers of tubes. It is observed 
that the velocity fluctuates along the coordinate 𝑠𝑠, and it holds a peak level in the vicinity of 
the tube. And there is a general downward trend with the pressure distribution as it fluctuates 
along the coordinate 𝑠𝑠 in a certain Reynolds number. It shows that for low Reynolds numbers 
in scope of this paper where turbulence could be negligible, the velocity and pressure 
distribution respectively present similar trends along the channel coordinate while mean 
values rise with the increase of Reynolds number.  

Table 3: Reduced flow velocities and Reynolds numbers 

𝑈𝑈0 (m/s) 𝑈𝑈𝑟𝑟 Reynolds number 
0.5 8.3 273 
1 16.6 546 

1.5 24.9 819 
2 33.2 1092 
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(a) 𝑼𝑼𝒓𝒓 =8.3 

  
(b) 𝑼𝑼𝒓𝒓 =16.6 
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(c) 𝑼𝑼𝒓𝒓 =24.9 

   
(d) 𝑼𝑼𝒓𝒓 =33.2 

Figure 6: The velocity distribution along the flow channel 
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(a) 𝑼𝑼𝒓𝒓 =8.3                                                     (b) 𝑼𝑼𝒓𝒓 =16.6 

  

 
   (c) 𝑼𝑼𝒓𝒓 =24.9                                                  (d) 𝑼𝑼𝒓𝒓 =33.2 

Figure 7: The pressure distribution along the flow channel 

The computation result of our model is then compared with former reported results in Fig. 
8, which presents together the computation result in this work and the experimental data in 
previous researches as well as the simulation result of Hassan and Hayder’s model. The 
comparison indicates that the results obtained by this proposed method are consistent with 
the reported experimental and simulation results, and the curve shows better consistency 
and smoothness than the one by Hassan and Hayder. For the reason that the latter is fitted 
by limited number of points due to the large amount of calculation time cost, it is difficult 
to present a smooth curve. Moreover, in Hassan and Hayder’s model, the critical flow 
velocities are separately obtained by vibrational amplitudes of the time domain response 
in certain MDP condition. While the proposed new method could easily solve amounts of 
MDP conditions in numbers of flow velocities in one computation. In this study, 50 cases 
of MDP respectively in 200 flow velocities are used to satisfy efficiency demand. However, 
discrepancies exist between the simulation curves and the scattered experimental data in 
Fig. 8. This indicates that due to the complexity of fluid-structural interaction, it is difficult 
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to model and simulate the fluidelastic mechanism accurately by the models with much 
hypothesis and simplifications. Although the original flow channel model is progressive, 
it has deficiencies as a result of a series of assumptions and approximated parameters. The 
channel flow is assumed to be incompressible and inviscid, as well as wake phenomenon 
is ignored. Moreover, some artificial parameters such as the time lag, the position of 
separation and attachment points may also involve in errors. The fluid mechanics model is 
hence expected to be further improved in the future, which may approach the fluidelastic 
behavior more accurately. 

 
Figure 8: Comparison of mass damping parameter vs reduced critical velocity among 
results of new method and other published data for pitch-diameter ratio of 1.5 

 
Figure 9: Comparison of time cost by proposed model and Hassan & Hayder model 

The computation of proposed model for 50 MDPs respectively in 200 flow velocities 
spends 10 s in total, while it costs 2.2 hours for only one certain MDP simulation solving 
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20 flow velocities using Hassan and Hayder’s model. The comparison is shown in Fig. 9. 
It demonstrates that the computation time is significantly reduced and efficiency is 
improved dramatically. 
In the Connors’ Eq. (51), the tube instability only depends on MDP and the reduced flow 
velocity. The coupling effects between tube and fluid flow is not reflected. Now the 
impacts of fluid parameters will be discussed by the proposed method. 
In the view of damping-controlled mechanism theory, the tube-flow coupling system 
includes both structural damping and fluid drag forces. The drag force coefficient ℎ related 
to the resistance influence during the process the fluid flow passes through the tube bundles, 
which can be calculated by solving the average pressure drop based on energy principle. 
In Fig. 10, the tube stability curve at different ℎ shows that, the greater stability region area 
appears with the value of  ℎ increasing in 𝑈𝑈𝑐𝑐𝑟𝑟 − 𝑀𝑀𝑀𝑀𝑃𝑃 diagram. The reason is that higher 
ℎ value means more energy is dissipated for the coupling system, consequently the system 
has better stability in terms of energy conservation law. 

 

Figure 10: Effect of fluid resistance parameter on the stability of the tube response 

 

Figure 11: Effect of sample frequency on the parameter of fitting curve 
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On the condition that the flow velocity is constant, in the SDM, the dimension of the 
transfer matrix is determined by the sample frequency, which also has an influence on the 
computation accuracy and efficiency of stability maps. The Fig. 11 shows the effect of 
sample frequency on the fitting curve coefficient 𝐾𝐾 and γ. It indicates that the parameters 
change significantly with the sample frequency when it is below 10 kHz. And when the 
sample frequency exceeds 10 kHz, the changes of parameters are small and negligible. 
Considering that the calculation amount also increases with sample frequency, 10 kHz is 
hence chosen as the sample frequency for the stability computation. 

5 Summary 
The proposed model is developed based on flow channel model and the tube motion is set to 
be arbitrary without limitation. The time delay between flow redistribution and tube vibration 
is also considered. The SDM is introduced in this study to analyze the stability problem of the 
dynamic equation with a constant delay term and a time delay integral term. The stability map 
of tube vibration is figured out visually based on eigenvalues of the built transfer matrix by 
SDM. Account for the unlimited tube motion and predicting the instability threshold directly 
via eigenvalues based on SDM, this proposed method presents definite improvement in 
computation efficiency with comparing to Hassan and Hayder’s model.  
Numerical investigations of a single flexible tube within a rigid array subjected to cross-
flow are carried out for a typical square array. Effects of tube structural parameters and 
fluid related parameters may affect the stability are discussed. The stability depends on 
MDP mainly, which is determined by tube structural parameters. The stability is also 
influenced by fluid related parameters. When the fluid passes through tube bundles, greater 
fluid resistance may lead to more stable tube vibration than lower one. As the flow channel 
model is based on a series of assumptions and empirical parameters, in the future, a more 
elaborate fluid mechanics model is expected to be developed, which may predict the 
instability threshold with higher accuracy. 
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Appendix A. Nomenclature  
𝑋𝑋 and 𝑌𝑌 directions the tube moves along 

𝑠𝑠 one dimensional curvilinear coordinate  
𝑠𝑠0, 𝑠𝑠𝑎𝑎 , 𝑠𝑠𝑠𝑠 position of flow channel inlet, attachment point, separation point 

𝛤𝛤 fluid boundary  
𝐴𝐴,𝐴𝐴0,𝑎𝑎 flow channel area: along the fluid channel, average state, perturbation  
𝑈𝑈,𝑈𝑈0,𝑢𝑢 flow velocity: along the fluid channel, at the inlet, perturbation 
𝑃𝑃,𝑃𝑃0,𝑝𝑝 fluid pressure: along the fluid channel, at the inlet, perturbation 

𝐹𝐹𝐿𝐿(𝑡𝑡),𝐹𝐹𝐷𝐷(𝑡𝑡) lift and drag force on the moving tube  
ℎ fluid resistance coefficient 
𝜏𝜏(𝑠𝑠) time delay function 
𝜀𝜀 relative fluid length coefficient 

𝜌𝜌𝑠𝑠,𝜌𝜌 the elastic tube density, fluid density 
𝐴𝐴𝑠𝑠 lateral area of the elastic tube 
𝜂𝜂 structural damping parameter of the system 
𝐸𝐸 Young's modulus  
𝐸𝐸 cross-sectional moment of inertia 

𝑊𝑊(ϑ) Impulse weighting matrix 
Δ𝑡𝑡 time interval 
Δ𝜔𝜔 frequency interval 
𝐵𝐵 transfer matrix 
𝑚𝑚 tube bundle mass per unit length 
𝛿𝛿 logarithmic decrement 
𝑀𝑀 diameter of the tube 

[𝐶𝐶] tube damping matrix 
𝜙𝜙 transfer matrix of a cycle 

𝑈𝑈r,𝑈𝑈𝑟𝑟∗, reduced flow velocity: at the inlet, along the fluid channel 
𝑈𝑈𝑐𝑐 ,𝑈𝑈𝑐𝑐𝑟𝑟 critical flow velocity, reduced critical flow velocity 
𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 the maximum modulus of the eigenvalues of the ϕ 
𝑓𝑓𝑛𝑛 structural natural frequency 

𝐾𝐾 and γ empirical constant coefficients 
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