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Normal cardiac function is accomplished through a 
continuous energy supply provided by mitochondria, 
which produce 95% of total cellular ATP by oxidative 
phosphorylation. Mitochondria play a central role in 
various biological processes providing the cell with both the 
energy and the signals involved in the genetic expression 
and metabolic regulation (Darley-Usmar, 2004). Indeed, 
heart mitochondria are the major source of reactive oxygen 
and nitrogen species. These species are mainly derived from 
two primary free radicals: superoxide anion (O2

-) and nitric 
oxide (NO). Superoxide anion is the precursor of hydrogen 
peroxide (H2O2) and is generated within mitochondria 
through the autoxidation of the intermediate semiquinones 
(UQH• and FMNH•) of the redox pairs ubiquinol/ubiquinone 

at complex III, and FMNH2/FMN component of the NADH 
dehydrogenase (Boveris and Cadenas, 2000). 

In addition, mitochondria produce NO in a reaction 
catalyzed by mitochondrial nitric oxide synthase (mtNOS) 
(Zaobornyj and Ghafourifar, 2012). This isoform is located 
in the inner mitochondrial membrane and it was identified 
as the α-nNOS variant with post-translational modifications 
(Elfering et al., 2002). Central roles have been postulated 
for mtNOS in chronic hypoxia, ischemia-reperfusion, cell 
signaling, aging, dystrophin deficiency, inflammation, and 
cancer. The mtNOS activity has been found up-regulated 
in cold acclimation (Peralta et al., 2003). Treatment with 
enalapril produced an increase in the production of NO 
by heart mitochondrial membranes (Boveris et al., 2003). 
Lately, a receptor for angiotensin was found located in inner 
mitochondrial membrane and it was suggested that the 
renine-angiotensin system directly regulates mitochondrial 
NO production (Abadir et al., 2011). In addition, heart 
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mtNOS activity was shown to be increased in experimental 
endotoxemia (Alvarez and Boveris, 2004). Therefore, a 
variety of physiological, pathological, and pharmacological 
situations can cause changes in heart mtNOS activity or 
expression.

Such a spatially restricted localization of NO production 
in mitochondria elicits a regulation of NOS activity by the 
local environment within these organelles, established 
by the concentration of O2, Ca2+, L-arginine, membrane 
potential or redox state (reduced glutathione (GSH)/oxidized 
glutathione (GSGG) balance). Interestingly, mitochondrial 
NO production is influenced by metabolic state (Valdez et 
al., 2006). During the transition from resting (state 4) to 
active (state 3) respiration, heart mitochondrial NO release 
decreases about 60%. In addition, heart mitochondrial NO 
production shows a strong and exponential dependence 
on the mitochondrial transmembrane potential (Δψ). This 
dependence is more pronounced in the physiological range 
of Δψ where small changes in the Δψ produce noticeable 
variations of mitochondrial NO release. To date, several 
studies have shown that abolishing Δψ inhibits mtNOS 
activity, indicating a tight regulatory interplay between 
mitochondrial NO production and Δψ (Dedkova and 
Blatter, 2009; Kanai et al., 2001). 

Some authors have reported a structural and functional 
interaction among complexes I, IV and mtNOS (Franco et 
al., 2006; Persichini et al., 2005). A physical proximity of 
mtNOS with the C-terminal peptide of the Va subunit of 
cytochrome c oxidase has been shown by electron microscopic 
immunolocalization and co-immunoprecipitation studies. 
Other report showed that not only complex IV but also 
complex I proteins immunoprecipitate with nNOS, which 
indicated a direct molecular interaction between mtNOS 
and complexes I and IV. This association might be one of 
the mechanisms involved in the regulation of mitochondrial 
NO production. In our laboratory, heart submitochondrial 
particles (SMP) produced about 1.0 nmol NO.min-1.mg 
protein-1, in conditions of reverse electron flow and without 
the addition of the classical NOS electron donor NADPH. 
This observation suggested that NO production can be 
supported by electrons derived from the low isopotential 
components of the respiratory chain. Moreover, the complex 
I inhibitor rotenone totally inhibited NO production 
supported by reverse electron transfer but did not reduce the 
activity of recombinant nNOS, indicating that the effect of 
rotenone on NO production by SMP is due to an electron 
flow blockage and not to a direct action on NOS structure. 

The presence of NOS in cardiac mitochondria provides 
a mechanism for the fine regulation of the respiratory 
complexes and of the enzymes of the citric acid cycle. It is well 
known that NO activates soluble guanylate cyclase (sGC) 
and that this activation leads to the production of 3’,5’-cyclic 

guanosine monophosphate (cGMP), which in turn acts as 
a second messenger (Layland et al., 2002). Nevertheless, 
certain key functions of NO are exerted through cGMP-
independent pathways. At physiological sub-micromolar 
concentrations, most distinct effects of NO on mitochondria 
are conveyed to the respiratory chain and thereby on 
energy metabolism (Moncada and Erusalimsky, 2002).  

First, NO exerts a high affinity, reversible and 
physiological inhibition of cytochrome c oxidase activity 
(Brown and Cooper, 1994; Cleeter et al., 1994). It is worth 
noting that this effect occurs through a direct competition 
between NO and O2 for the two-electron-reduced CuB/heme 
a3 center of the enzyme. Antunes and co-workers explained 
the reversible inhibition of COX by NO using a mathematical 
model based in experimental data and described different 
effects of NO in the mitochondrial metabolic states (2004; 
2007). A second important effect of NO on mitochondrial 
respiratory chain is accomplished through a recently 
described interaction of NO with the respiratory complex 
III, ubiquinol-cytochrome c oxidoreductase (Iglesias et 
al., 2015). The inhibition of the respiratory chain between 
cytochromes b and c by NO was assessed using SMP and two 
different NO donors: S-nitrosoglutathione and spermine-
NONOate. The activity of succinate-cytochrome c reductase 
(complex II-III) was inhibited by about 50% in the presence 
of the NO donors, at ~1.25 μM NO, whereas the activity 
of succinate-Q reductase (complex II) resulted unaffected. 
These data indicated that NO specifically inhibits complex 
III. Interestingly, complex II-III activity was also decreased 
(36%) when SMP were incubated with mtNOS substrates and 
cofactors, suggesting that the inhibition is also produced by 
endogenous NO. In addition, this study showed hyperbolic 
increases in O2

- and H2O2 production rates with a maximal 
effect at 500 μM GSNO. Moreover, H2O2 production by 
heart coupled mitochondria was increased by 75% when 
mitochondria were exposed to the NO donors. Finally, an 
EPR signal al g=1.99 that would denote the formation of a 
stable semiquinone (UQH•), was detected when SMP were 
incubated in the presence of succinate. This EPR signal 
was increased not only by the classic complex III inhibitor 
antimycin but also by GSNO and SPER-NO. These results 
indicate that NO interacts with ubiquinone-cytochrome b 
area producing antimycin-like effects. 

The ability of mtNOS to regulate mitochondrial O2 
uptake and H2O2 production, through the interaction of 
NO with the respiratory chain, has been named mtNOS 
functional activity (Valdez et al., 2005). This activity is 
determined by the difference in the rates of O2 uptake 
or H2O2 production in isolated mitochondria in two 
conditions. Under the condition when NO steady state levels 
are the highest, i.e. in the presence of sufficient L-arginine 
and SOD, active O2 consumption is impaired and H2O2 
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production is enhanced. On the contrary, when NO 
steady state levels are the lowest, active O2 consumption is 
increased and H2O2 production is decreased. Such situation 
is achieved in the absence of NOS substrates or cofactors, 
or in the presence of a NOS inhibitor or a NOS scavenger, 
e.g. oxyhemoglobin. Thus, changes in mtNOS functional 
activity reveal modifications of NO production by mtNOS. 

Other effects of NO in cell signaling are conveyed via 
nitrosation of proteins (Stamler et al., 2001). Importantly, 
complex I is a target for reversible inhibition by S-nitrosation 
of critical thiol residues and this reaction appears to be 
crucial in cardioprotective procedures such as ischemic 
preconditioning (Burwell et al., 2006). Nitric oxide also 
reacts with O2

- that is formed by the mitochondrial 
respiratory chain during normal or pathological metabolism 
(Koppenol et al., 1992). The product is peroxynitrite (ONOO-
), a non-radical species capable of oxidizing and nitrating 
biomolecules and damaging irreversibly those targets 
(Radi et al., 2002). Peroxynitrite may hinder mitochondrial 
functions and cause cell death. Diverse factors participate in 
the switch from reversible inhibition of cellular respiration 
by NO to the pathological inhibition of mitochondrial 
function by ONOO-. Through its interactions with 
components of the electron transfer chain, NO functions 
not only as a physiological inhibitor of cell respiration 
and ATP production, but it also prevents or activates 
mitochondrial permeability transition opening, participates 
in Ca2+ homeostasis (Dedkova and Blatter, 2009), enhances 
the generation of reactive species (Iglesias et al., 2015), and 
thereby triggers various mechanisms underlying cellular 
survival or death (Moncada and Erusalimsky, 2002).

In conclusion, NO is a central molecule involved in 
the modulation of heart function, and in key processes of 

cardiac metabolism. Fig. 1 depicts the reciprocal regulation 
of mtNOS activity and mitochondrial function. The effect 
of Δψ on mtNOS activity allows the enzyme to respond to 
changes in cardiomyocyte energy homeostasis. Furthermore, 
heart mtNOS is regulated by a variety of physiological, 
pathological, and pharmacological situations. At the same 
time, NO generated within mitochondria has focused 
effects on mitochondrial function. Together, heart mtNOS 
allows NO to optimize the balance between cardiac energy 
production and utilization, and to regulate processes such 
as oxygen and nitrogen free radical production and cell 
survival.
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