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The mitochondrial oxidative phosphorylation system 
utilizes the energy derived from the oxidation of metabolic 
substrates to drive the synthesis of ATP. Electron transfer 
through mitochondrial respiratory complexes is coupled 
to proton translocation across the mitochondrial inner 
membrane, generating a protonmotive force (Δp) consisting 
of a membrane potential and a pH gradient that leads 
the synthesis of ATP by the ATP synthase (Nicholls and 
Ferguson, 2002). Complex III (cytochrome bc1 complex or 
ubiquinol:cytochrome c oxidoreductase) plays a central role in 
the mitochondrial respiratory chain. Its reaction mechanism, 
known as protonmotive Q cycle (Mitchell, 1975), leads to the 
transfer of electrons from ubiquinol to cytochrome c with the 
concomitant pumping of protons from the mitochondrial 
matrix to the intermembrane space, contributing to Δp. In 

the catalytic Qo site of cytochrome bc1 complex, ubiquinol 
(UQH2) is oxidized by a bifurcated electron transfer reaction 
that steers the two electrons down divergent paths: the first 
electron to the Rieske cluster (high-potential chain) and the 
second electron to the heme bL (low potential chain). The 
net translocation of 4H+/2e- is achieved by a directed uptake 
and release of protons at topologically separated ubiquinol-
oxidation site (P center or Qo) and ubiquinone-reduction site 
(N center or Qi), located at opposite membrane sides, and 
by the vectorial transfer of electrons through cytochrome 
b towards the negative membrane side (Iwata et al., 1998; 
Nicholls and Ferguson, 2002). As a consequence of the 
Q-cycle turnover, intermediate ubisemiquinone radicals 
(UQH•) are formed at both Qo and Qi sites. The UQH• 
generated in the Qo site has been postulated as the reductant 
for O2, converting it to superoxide anion (O2•-) (Boveris et al., 
1976; Turrens et al., 1985; Murphy, 2009).
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ABSTRACT: Complex III plays a central role in the mitochondrial respiratory chain transferring electrons from 
ubiquinol to cytochrome c and pumping protons to the intermembrane space, contributing to the protonmotive 
force. Furthermore, complex III can act as a source of O2•- in the presence of ubiquinol and antimycin, an 
expermiental condition in which the oxidation of the cytochrome b hemes is blocked. The O2•- dismutation 
catalyzed by superoxide dismutase produces H2O2, a known second messenger in redox signalling. Results from 
our laboratory have shown that NO, released from GSNO or from SPER -NO or generated by mtNOS, inhibits 
electron transfer at ubiquinone-cytochrome b area producing antimycin-like effects. Thus, both antimycin- and 
NO-inhibited complex III showed a high content of cytochromes b in the reduced state (79 and 71%, respectively) 
and an enhancement in the ubisemiquinone EPR signal at g=1.99 (42 and 35%, respectively). As consequence, 
O2•- and H2O2 productions were increased, being the O2•-/H2O2 ratio equal to 1.98 in accordance with the 
stoichiometry of the O2•- disproportionation. The interruption of the oxidation of cytochromes b by NO leads to 
an enhancement of the steady-state concentration of UQH•, allowing cytochrome bc1 complex to act as a source 
of reactive oxygen species in physiological conditions.
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Reactive oxygen species, such as O2•- or hydrogen per-
oxide (H2O2), are critical mediators in a broad range of cel-
lular signalling processes. The mitochondrial respiratory 
chain is a major cellular source of reactive oxygen species 
and complex III has long been regarded as a source of O2•-:  
when mitochondria are supplied with UQH2 and when Qi 
site is inhibited by antimycin, blocking the oxidation of the 
cytochrome b hemes in the low potential chain, complex III 
produces large amounts of O2•- (3-5 nmol O2•-/ min . mg pro-
tein) (Boveris and Cadenas, 1975; Turrens et al., 1985; Quin-
lan et al., 2011). The backup of electrons on the cytochrome 
b hemes limits the oxidation of semiquinone in the Qo site 
and allows it sufficient time to interact with and reduce mo-
lecular O2 to generate O2•- (Boveris et al., 1976; Turrens et al., 
1985; Bleier and Drose, 2013; Guillaud et al., 2014). Super-
oxide dismutase (SOD) catalyzes the O2•- disproportionation 
producing stoichiometrically H2O2. This latter species easily 
diffuses to the cytosol acting as second messenger (Boveris 
and Cadenas, 2000; Sies, 2014; Yin et al., 2014; Bleier and 
Drose, 2013; Bleier et al., 2015). 

In 1996, Poderoso et al. showed that nitric oxide (NO) 
inhibits electron transfer at ubiquinone-cytochrome b area, 
increasing O2•- production in rat heart submitochondrial 
particles. This effect of NO on mitochondrial respiration 
was added to the NO inhibitory interaction with cytochrome 
oxidase (Cleeter et al., 1994; Brown and Cooper, 1994; 
Antunes et al., 2004). In mammalian cells, NO is synthesized 
from L-arginine, NADPH, and O2 in a reaction catalyzed by 
nitric oxide synthases (NOS). The mitochondrial isoform 
(mtNOS) is located in the inner mitochondrial membrane 
and it was identified as the α-nNOS with post-translational 
modifications (Ghafourifar and Richter, 1997; Giulivi et 
al., 1998; Elfering et al., 2002). Recently, results from our 
laboratory have shown that NO interacts with complex 
III producing antimycin-like effects. Accordingly, Fig. 1A 
shows that NO, released from GSNO or from SPER-NO 
or generated by mtNOS, inhibits succinate-cytochrome c 
reductase activity (complex II-III) and does not modify 
succinate-Q reductase activity (complex II), indicating 
that NO produces the inhibition of electron transfer at 
the ubiquinone-cytochrome b area with effects centred 
at complex III. These effects imply the interruption of the 
oxidation of cytochromes b and the enhancement of [UQH•]
ss which, in turn, leads to an increase in O2•- and H2O2 
mitochondrial production rates (Iglesias et al., 2015).  

It is known that the inhibition of complex III increas-
es O2•- production as a result of the autoxidation of UQH•. 
Quinlan et al. (2011) have predicted that at subsaturating 
substrate concentration, detection of semiquinone by EPR 
may be possible even in the presence of oxygen. In our ex-
perimental conditions, bovine heart submitochondrial par-
ticles (SMP) added with succinate showed an EPR signal at 

g=1.99, attributable to UQH• implicated in the Q cycle. Anti-
mycin addition enhanced by 42% this ubisemiquinone EPR 
signal. Similarly, SMP incubated in the presence of GSNO 
or SPER-NO as NO sources, showed an EPR signal higher 
(~35%) than in the presence of succinate. Thus, not only an-
timycin but also NO produced an increase in the steady-state 
concentration of UQH• (Iglesias et al., 2015).

The intermediate UQH• can be formed in two ways: as 
a part of the forward reaction toward one electron oxida-
tion of ubiquinol at the Qo site by the oxidized [Fe2S2] center 
(semiforward mechanism) or as a part of the reverse reaction 
toward one electron reduction of quinone bound at Qo site 
by the reduced heme bL (semireverse mechanism) (Sarewicz 
et al., 2010; Guillaud et al, 2014). Sarewicz et al. (2010) have 
shown that O2•- production by cytochrome bc1 complex can 
be consequence of the combination of both semiforward and 
semireverse mechanisms. However, experimental evidence 
combined with modelling revealed that semireverse mecha-
nism dominates the steady state of UQH•. Consequently, O2•- 
production depends on the reduction state of the bL heme in 
the superoxide-generating Qo site, with the highest rates at 
70-80% reduction of bL (Sarewicz et al., 2010; Guillaud et al, 
2014; Quinlan et al., 2011). This observation agrees with the 
content of cytochromes b in the reduced state registered by 
us in both antimycin- and NO-inhibited complex III (~71-
79%) (Iglesias et al., 2015).

Moreover, our results show that the inhibition of 
electron transfer at ubiquinol-cytochrome b area by NO 
correlates with the generation of O2•- by SMP: about 0.25 µM 
NO (100 µM GSNO) produces a half maximal inhibition 
of succinate-cytochrome c activity and also a half maximal 
increase in O2•- production rate. Superoxide anion is the 
stoichiometric precursor of H2O2, in accordance with the 
reaction 2 O2•- + 2 H+ → H2O2 + O2, which involves the 
activity of the mitochondrial SOD.

In this way, SMP pre-incubated with GSNO showed a 
concentration dependent and hyperbolic increase not only 
in O2•- but also in H2O2 production rates. Considering that 
the equation Y = c + aX/(b + X) fitted to the experimental 
data of enhancement of both O2•- and H2O2 productions (Y) 
as a function of [GSNO] (X), a confidence region analysis, to 
determine the relationship between the estimated parame-
ters, was performed. When the adjusted parameters related 
to the maximal H2O2 production (aH) and the basal H2O2  
production (cH) rates are multiplied by 2 (the stoichiomet-
ric coefficient of the dismutation reaction), the calculated 
confidence regions matched to the ones of the parameters 
that explain the O2•- hyperbolic increase (aS and cS). Thus, 
2 aH = aS and 2 cH = cS considering their confidence areas. 
Furthermore, a linear correlation between both production 
rates (r2= 0.993) was observed, with a slope of 1.98 (Iglesias 
et al., 2015). These observations are in accordance with the 
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stoichiometry of O2•- disproportionation, which governs the 
physiological H2O2 production by complex III (Cadenas et 
al., 1977; Bleier and Drose, 2013; Sies, 2014).

The enhancement of H2O2 production (72-74%) was 
also observed when heart coupled mitochondria were 
incubated in the presence of 500 μM GSNO or 30 μM SPER-
NO (~1.25 μM NO) (Iglesias et al., 2015). In physiological 

conditions, the mtNOS-produced NO is involved in the 
generation and metabolism of reactive oxygen species 
(Valdez et al., 2005). Accordingly, the difference in H2O2 
production rate between the experimental conditions of 
maximal (L-arginine addition) and minimal (NOS inhibitor 
addition) NO generation is known as “the functional 
activity of mtNOS on the regulation of mitochondrial H2O2 
production”, and it is explained by the intramitochondrial 
[NO]ss and by the NO inhibition of ubiquinol-cytochrome c 
reductase activity (Valdez et al., 2005).

To conclude, the NO-inhibited complex III, as well as 
antimycin-inhibited complex III, is able to produce O2•- and, 
as consequence, H2O2. The interruption of the oxidation of 
cytochromes b by NO leads to an enhancement of [UQH•] Ss 
llowing cytochrome bc1 complex to act as a source of reactive 
oxygen species in physiological conditions (Fig. 1B). Further 
characterization of this effect is crucial for the understanding 
of the regulatory mechanisms of NO on the respiratory chain, 
its impact on O2•- and H2O2 mitochondrial metabolism, and 
the signalling processes involved.
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