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Abstract   Renewable energy sources are considered much in energy fields because of 

the contemporary energy calamities. Among the important alternatives being considered, 

wind energy is a durable competitor because of its dependability due to the development 

of the innovations, comparative cost effectiveness and great framework. To yield wind 

energy more proficiently, the structure of wind turbines has turned out to be substantially 

bigger, creating conservation and renovation works troublesome. Due to various 

ecological conditions, wind turbine blades are subjected to vibration and it leads to failure. 

If the failure is not diagnosed early, it will lead to catastrophic damage to the framework. 

In order to increase safety observations, to reduce down time, to bring down the 

recurrence of unexpected breakdowns and related enormous maintenance, logistic 

expenditures and to contribute steady power generation, the wind turbine blade must be 

monitored now and then to assure that they are in good condition. In this paper, a three 

bladed wind turbine was preferred and using vibration source, the condition of a wind 

turbine blade is examined. The faults like blade crack, erosion, hub-blade loose 

connection, pitch angle twist and blade bend faults were considered and these faults are 

classified using Bayes Net (BN), Discriminative Multinomial Naïve Bayes (DMNB), 

Naïve Bayes (NB), Simple Naïve Bayes (SNB), and Updateable Naïve Bayes (UNB) 

classifiers. These classifiers are compared and better classifier is suggested for condition 

monitoring of wind turbine blades. 
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1 Introduction 

The blades of present day wind turbines are very complex, innovative structure, and their 

expenditure makes a massive share of the entire wind turbine cost. While working, the 

blades are dynamically stacked and exposed to different climatic conditions, 

predominantly off-shore wind turbines. Due to severe vibration, the blade leads to 

damage. “If the damage to the blades grows to a critical level, it might leads to 

catastrophic consequences. This can be predicted initially using condition monitoring 

techniques which automatically detect the fault which caused on the blade [Liu et al., 

(2015)]. The condition monitoring technique is highly effective in damage prediction. It 

can able to predict the fault caused in blade while the turbine is in operating condition 

using vibration signals. This technique can be improved much effectively by using 

machine learning approach where the defects are categorized with respect to the faults 

which occurred on blade. These can prevent the loss of structural integrity and can reduce 

the downtime of the turbine which leads to more wind energy generation by the wind 

turbine [Chehouri et al., (2015)]. 

Many studies had been carried out on the condition analysis of wind turbine blade, to 

name a few, Jeffries et al., (1998) had conducted an experiment with bicoherence of 

electrical power for condition monitoring of wind turbine blades using vibration data. 

This study was carried out by creating flap wise bending to the blade and simulated using 

MATLAB. This study considered only the blade bend as a parameter. Godwin and Peter 

(2013) have done classification and detection of wind turbine pitch faults through 

SCADA data analysis and RIPPER algorithm. This algorithm yielded about 87.05% of 

classification accuracy in pitch angle fault where other faults were not considered which 

occurs on wind turbine. 

Andrew Kusiak and Anoop Verma (2011) carried out a work on data-driven approach for 

monitoring blade pitch faults in wind turbines using SCADA data.  This study considered 

two blade pitch faults namely, blade angle asymmetry and blade angle implausibility and 

determine the associations between them. The study was carried out using bagging, 

artificial neural network (ANN), pruning rule-based classification tree (PART), K-nearest 

neighbor (K-NN) and genetic programming (GP) algorithms. The accuracy was obtained 

to be of GP-74.7%, Bagging-72.5%, PART-75.5%, ANN-76.2%, K-NN-73.5%. This 

study considered only pitch fault and other faults was not considered.  

Abouhnik and Albarbar (2012) have carried out a work on wind turbine blades condition 

assessment based on vibration measurements and the level of an empirically decomposed 

feature intensity level (EDFIL). The crack was simulated and the location prediction of 

the crack fault was considered in this study. The main drawback in this study is it did not 

considered other fault parameters apart from crack. A study on integrating structural 
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health management with contingency control for wind turbines using nonlinear high 

fidelity simulation was carried out by Frost et al., (2013). This study is about the 

structural health of blade, the speed of the turbine and decision making using prognostic 

information and achieved 90% accuracy in their work. Apart from bend fault, other faults 

were not considered.  

Liu et al., (2015) carried out a study on the influence of alternating loads on nonlinear 

vibration characteristics of cracked blade in rotor system using FEM analysis. The 

experiment is for different alternating loads for the identification of the crack fault and 

other faults not taken into consideration. A vibration induced aerodynamic loads on large 

horizontal axis wind turbine blades was done by Xiong Liu et al., (2016). Aerodynamic 

load analysis of a 5MW wind turbine was performed and the impact of blade vibration on 

the lifetime aerodynamic fatigue loads was analysed in this study. 

Numerical investigation on aerodynamic performance of a novel vertical axis wind 

turbine with adaptive blades was studied by Wang et al., (2016). This study makes a 

novel Darrieus vertical axis wind turbine design whose blade can be deformed into a 

desired geometry and they achieved a better aerodynamic performance. In this study, 

performance was analysed for vertical axis wind turbine (Darrieus) blade. Vučina et al., 

(2016) has done a numerical models for robust shape optimization of wind turbine blades 

using 3D geometric modeller. A computational framework for the shape optimization of 

wind turbine blades is developed for variable operating conditions specified by local 

wind speed distributions. This study considered the blade design using simulation process 

and didn‟t focused on the faults which affects the performance of the wind turbine. 

Numerous works were carried out using simulation analysis; however, only a very few in 

the experimental analysis for wind turbine blade condition monitoring. Machine learning 

technique was considered for wind turbine blade fault diagnosis; however, the usage was 

limited in the literature. A very limited set of defects were considered for analysis. This is 

especially true in the case of fault diagnosis of wind turbine blade. Hence, there is a 

strong need to design a fault diagnosis system which can handle multiple faults in wind 

turbine blades using machine learning approach [Joshuva and Sugumaran (2016)]. This 

study makes a novel attempt to find different blade faults applying machine learning 

approach and statistical analysis. Figure 1 shows the methodology of the work done.”  
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Figure 1: Methodology 

The rest of the paper is organized as follows. Section 2 presents the experimental setup 

and experimental procedure. In section 3, feature extraction is explained, followed by 

feature selection in section 4. The classifiers used in this study are explained in section 5. 

The classification accuracy of the models was discussed and the suggestion of the better 

model is proposed in section 6. Conclusions are presented in the final section (section 7). 

2 Experimental Studies 

The main aim of this study is to classify whether the blades are in good condition or in a 

defective state. If it is defective, then the objective is to identify the type of fault. The 

experimental setup and experimental procedure are described in the following 

subsections [Joshuva and Sugumaran (2017)]. 
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2.1  Experimental Setup 

The experiment was carried out on a 50W, 12V variable speed wind turbine (MX-

POWER, model: FP-50W-12V). The technical parameters of a wind turbine are given in 

Table 1.  

Table 1: Technical parameters of wind turbine 

Model FP-50W-12V 

Rated Power 50W 

Rated Voltage 12V 

Rated Current 8A 

Rated Rotating Rate 850 rpm 

Max Power 150W 

Start-up Wind Velocity 2.5 m/s 

Cut-in Wind Velocity 3.5 m/s 

Cut-out Wind Velocity 15 m/s 

Security Wind Velocity 40 m/s 

Rated Wind Velocity 12.5 m/s 

Engine Three-phase permanent magnet generator 

Rotor Diameter 1050mm 

Blade Material Carbon fiber reinforced plastics 

The wind turbine was mounted on a fixed steel stand in-front of the open circuit wind 

tunnel outlet. The wind tunnel speed ranges from 5m/s to 15 m/s and act as a wind source 

to start the wind turbine. The wind speed was varied continuously in order to simulate the 

environmental wind condition. Experimental setup is shown in Figure 2. Piezoelectric 

type accelerometer was used as transducer for acquiring vibration signals. It has high-

frequency sensitivity for detecting faults. Hence accelerometers are widely used in 

condition monitoring. In this case, a uniaxial accelerometer of 500g range, 100 mV/g 

sensitivity, and resonant frequency around 40 Hz was used. The piezoelectric 

accelerometer (DYTRAN 3055B1) was mounted on the nacelle near to the wind turbine 

hub to record the vibration signals using an adhesive mounting technique. It was 

connected to the DAQ system through a cable. The data acquisition system (DAQ) used 
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was NI USB 4432 model. The card has five analog input channels with a sampling rate of 

102.4 kilo samples per second with 24-bit resolution. The accelerometer is coupled to a 

signal conditioning unit which consists of an inbuilt charge amplifier and an analogue-to 

digital converter (ADC). From the ADC, the vibration signal was taken. These vibration 

signals were used to extract features through feature extraction technique. One end of the 

cable is plugged to the accelerometer and the other end to the AIO port of DAQ system. 

NI – LabVIEW was used to interface the transducer signal and the system (PC). 

 

Figure 2. Wind turbine setup 

2.2  Experimental procedure 

In the present study, three-blade variable horizontal axis wind turbine (HAWT) was used. 

Initially, the wind turbine was considered to be in good condition (free from defects, new 

setup) and the signals were recorded using an accelerometer. These signals were recorded 

with the following specifications: 

1. Sample length: The sample length was chosen long enough to ensure data 

consistency; and also the following points were considered. Statistical measures are 

more meaningful, when the number of samples is sufficiently large. On the other 

hand, as the number of samples increases the computation time increases. To strike a 

balance, sample length of 10000 was chosen. 
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2. Sampling Frequency: The sampling frequency should be at least twice the highest 

frequency contained in the signal as per Nyquist sampling theorem. By using this 

theorem sampling frequency was calculated as 12 kHz (12000Hz). 

3. Number of samples: Minimum of 100 (hundred) samples were taken for each 

condition of the wind turbine blade and the vibration signals were stored in data files. 

  

Good condition blade Blade with crack 

  
Blade with pitch angle twist Blade with erosion 

  

Hub-blade loose connection  Blade with bend (Top View) 

Figure 3: Different blade fault conditions (Considered) 

a b 

f e 

d c 
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 Figure 4.1: Good condition signal plot   

 

Figure 4.2: Bend fault condition signal plot 
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Figure 4.3: Crack fault condition signal plot  

 

Figure 4.4: Erosion fault condition signal plot  
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Figure 4.5: Hub-blade loose fault condition signal plot  

 

Figure 4.6: Pitch angle twist fault condition signal plot  

The following faults were simulated one at a time while all other components remain in 

good condition and the corresponding vibration signals were acquired. Figure 3 shows 

the different blade fault conditions which are simulated on the blade. 

a) Blade bend: This fault occurs due to the high-speed wind and complex forces 

caused by the wind. The blade was made to flap wise bend with 10
0 
angles. 



 

A Comparative Study of Bayes Classifiers                                                                        79 

 

b) Blade crack: This occurs due to foreign object damage on blade while it is in 

operating condition. On blade, 15mm crack was made. 

c) Blade erosion: This fault is due to the erosion of the top layer of the blade by the 

high-speed wind. The smooth surface of the blade was eroded using emery sheet 

(320Cw) to provide an erosion effect on the blade. 

d) Hub-blade loose contact: This fault generally occurs on a wind turbine blade due to 

an excessive runtime or usage time. The bolt connecting the hub and blade was 

made loose to obtain this fault.  

e) Blade pitch angle twist: This fault occurs due to the stress on the blade caused by 

high-speed wind. This makes the pitch get twisted, creating a heavy vibration to 

the framework.  To attain this fault, blade pitch was twisted about 12
0 
with respect 

to the normal blade condition.” 

Figure 4.1 to Figure 4.6 shows the time domain signals which were taken from different 

conditions of the wind turbine blade. They show the vibration signal plot (amplitude vs 

time of the vibration) for good condition blade, blade bend, blade erosion, hub-blade 

loose connection, blade crack and pitch angle twist respectively [Joshuva and Sugumaran 

(2017)]. 

3 Statistical analysis for feature extraction 

The vibration signals were obtained for good and other faulty conditions of the blades. If 

the time domain sampled signals are given directly as inputs to a classifier, then the 

number of samples should be constant. “The numbers of samples obtained are the 

function of rotation of the blade speed. Hence, it cannot be used directly as the input to 

the classifier. However, a few features must be extracted before the classification process. 

Descriptive statistical parameters [Amarnath et al., (2013)] such as sum, mean, median, 

mode, minimum, maximum, range, skewness, kurtosis, standard error, standard deviation 

and sample variance were computed to serve as features in the feature extraction process. 

Statistical analysis allows researchers to quantify a huge range of phenomena, allowing 

them to study topics as diverse as fault classification from an objective perspective. It has 

the tendency to produce excessively simple answers to complex questions. The statistical 

methods are classified with different parameters which provide the best analysis for the 

problem and we can able to predict how much the error or deviation has occurred for the 

particular problem. 

 Sum: It is the sum of all feature values for each sample. 

 Skewness: Skewness illustrates the degree of irregularity of a distribution around its 

mean. The following formula was used for calculation of skewness. 
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                                                                        (1) 

 Kurtosis: Kurtosis point toward the flatness or the spikiness of the signal. Its value is 

very low for normal condition of the blade and high for the faulty condition of the 

blade due to the spiky nature of the signal and „s‟ is the sample standard deviation 

                                       (2) 

 Standard error: Standard error is a measure of the amount of error in the prediction of 

y for an individual x in the regression, where x and y are the sample means and „n‟ is 

the sample size. 

                           (3) 

 Standard deviation: This is a measure of the actual energy or power content of the 

vibration signal. The following formula was used for calculation of standard 

deviation. 

                                                         (4) 

 Sample variance: It is the variance of the signal points and the following formula was 

used for calculation of sample variance. 

                                                                         (5) 

 Mean: The arithmetic average of a set of values or distribution. 

 Median: Middle value sorting out the greater and lesser splits of a data set. 

 Mode: Most frequent value available in the data set. 

 Minimum value: It refers to the least signal point value in a given signal. 

 Maximum value: It refers to the extreme signal point value in a given signal. 

 Range: Difference in extreme and least signal point values for a given signal. 

When the statistical feature extraction was completed, the features were taken and the 

feature selection method was carried out. The statistical features form the input to the 

feature selection method. With the selected features, the further classification was carried 

out respectively [Joshuva and Sugumaran (2016)].” 
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4 J48 decision tree algorithm for feature selection 

J48 decision tree algorithm is adapted from the C4.5 algorithm in WEKA [Sugumaran et 

al., (2007)]. It consists of a number of branches, one root, a number of nodes, and a 

number of leaves. One branch is a chain of nodes from the root to a leaf, and each node 

involves one attribute. The occurrence of an attribute in a tree provides information about 

the importance of the associated attribute. A decision tree is a tree based knowledge 

representation methodology used to represent classification rules. J48 decision tree 

algorithm is a widely used one to construct decision trees. The procedure of forming the 

decision tree and exploiting the same for feature selection is characterized by the 

following: 

1. The set of features available at hand forms the input to the algorithm; the output is 

the decision tree.  

2. The decision tree has leaf nodes, which represent class labels, and other nodes 

associated with the classes being classified.  

3. The branches of the tree represent each possible value of the feature node from which 

they originate.  

4. The decision tree can be used to classify feature vectors by starting at the root of the 

tree and moving through it until a leaf node, which provides a classification of the 

instance, is identified.  

5. At each decision node in the decision tree, one can select the most useful feature for 

classification using appropriate estimation criteria. The criterion used to identify the 

best feature invokes the concepts of entropy reduction and information gain. 

Information gain measures how well a given attribute separates the training examples 

according to their target classification. The measure is used to select the candidate 

features at each step while growing the tree. Information gain is the expected reduction in 

entropy caused by portioning the samples according to this feature.  

Information gain (S, A) of a feature A relative to a collection of examples S, is defined as: 

                               (6) 

where Value (A) is the set of all possible values for attribute A, and Sv is the subset of S 

for which feature A has value v. Note the first term in the equation for gain is just the 

entropy of the original collection S and the second term is the expected value of the 

entropy after S is partitioned using feature A. The expected entropy described by the 

second term is simply the sum of the entropies of each subset Sv, weighted by the fraction 

of samples |Sv|/|S| that belong to Sv. Gain (S, A) is, therefore, the expected reduction in 
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entropy caused by knowing the value of feature A. Entropy is a measure of homogeneity 

of the set of examples and it is given by 

                                                                                  (7) 

where, c is the number of classes, Pi is the proportion of S belonging to class „i’.   

The J48 decision tree algorithm has been applied to the problem of feature selection. The 

input to the algorithm is the set of statistical features described above and output of the 

decision tree shown in Figure 5. It is clearly shown that the top node is the best node for 

classification [Joshuva and Sugumaran (2016)]. The other features in the nodes of 

decision tree perform in descending order of significance. It is to be mentioned here that 

only features that contribute to the classification appear in the decision tree and other 

features do not contribute much. The features which have the less discriminating 

capability can be consciously discarded by deciding on the threshold. This concept is 

made use for selecting good features. The algorithm identifies the good features for the 

purpose of classification of the given training data set, and thus reduces the domain 

knowledge required to select good features for pattern classification problem. Referring 

from Figure 5, one can identify the most dominating feature to represent the blade 

conditions are the sum, range, standard deviation, and kurtosis. 

 

Figure 5: J48 Tree classification for feature selection 
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5 Feature classification 

After the feature selection, the fault classification was carried out using Naïve Bayes 

(NB), Discriminative Multinomial Naïve Bayes (DMNB), Simple Naïve Bayes (SNB), 

Updateable Naïve Bayes (UNB) and Bayes Net (BN), classifiers. “The Naïve Bayes 

classifier [Muralidharan et al., (2012)] is an classification algorithm based on Bayes rule, 

that assumes the features X1, . . ., Xn are all uncertainly independent of each other, given Y. 

The value of this statement is that it theatrically simplifies the illustration of P(X/Y), and 

the problem of approximating it from the training data. Consider, for example, the case 

where X = (X1, X2). In this circumstance 

    (8) 

More commonly, when X contains n features which are tentatively independent of one 

another given Y 

                                                                                   (9) 

When Y and the Xi are Boolean variables, only 2
n
 parameters are required to explain P(Xi 

= Xik|Y = yj) or the required i, j, k. This is a theatrical reduction compared to the 2(2n −1) 

parameters required to describe P(X/Y) if no conditional independence hypothesis is 

made. Assuming in overall that Y is any discrete valued variable, and the features X1, . . ., 

Xn are any discrete or real valued features. The objective is to train a classifier that will 

yield the likelihood distribution over probable values of Y, for each new example X that 

needs to be classified. The expression for the likelihood that Y will take on its k
th
 

conceivable value, according to Bayes rule, is  

                                                    (10) 

Where the sum is taken over all conceivable values yj of Y. Now, assuming the Xi are 

conditionally independent given Y, one can use the equation to rewrite this as 

                                                     (11) 

This is the major equation for the Naïve Bayes classifier. Given a new illustration Xnew = 

(1, . . ., Xn), this equation shows how to compute the probability that Y will take on any 

given value, given the witnessed feature values of Xnew and given the distributions P(Y) 

and P(Xi/Y) and estimated from the training data. If most probable value of Y is to be 

found, then the Naïve Bayes classification rule is given by: 
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                                                                         (12) 

Which make simpler to the following (because the denominator does not depend on yk). 

                                                            (13) 

5.1 Bayes net 

Bayesian network [Sakthivel et al., (2011)] consists of a set of variables, V = {A1, A2, . . ., 

AN} and a group of directed edge, E, between variables, which form a directed acyclic 

graph (DAG) G = (V, E) where a combined distribution of variables is denoted by the 

product of conditional distributions of each variable given its parents. Each node, Ai ∈ V 

denotes a random variable and a directed edge from Ai to Aj, (Ai, Aj) ∈ V denotes the 

conditional dependency between Ai and Aj. In a Bayesian networks, each variable is 

independent on its non-descendants, given a value of its parents in G. This independence 

encoded in G reduces the number of parameters which is essential to illustrate a joint 

distribution, so that following distribution can be efficiently contingent. In a Bayesian 

network over V = {A1, A2, . . ., AN}, the joint distribution P(V) is the product of all 

conditional distributions stated in the Bayesian network such as 

                                                                                (14) 

Where P(Ai/Pai) is the conditional distribution of Ai, given Pai which represents the 

parent set of Ai. A conditional distribution for each variable has a parametric form that 

can be learned by the maximum probability estimation.” 

6 Results and discussion 

The vibration signals were noted for good condition and faulty blade conditions using 

DAQ. “Totally 600 samples were collected; out of which 100 samples were from good 

condition blade. For different faults such as like blade bend, erosion, blade crack, hub-

blade loose connection, pitch angle twist, 100 samples from every condition were noted. 

J48 decision tree algorithm was used to select the best contributing statistical features 

from twelve features which can have a say in discriminating fault conditions specifically 

sum, mean, median, mode, minimum, maximum, range, skewness, kurtosis, standard 

error, standard deviation and sample variance [Joshuva and Sugumaran (2016)]. 

From Figure 5, the selected features (sum, range, standard deviation, and kurtosis) are 

given as the input to the classifier to determine the classification accuracy with respect to 
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faults created on the wind turbine blade. The classification accuracy of different 

classifiers is shown in Table 2. The accuracy was obtained for the Bayes Net (BN), 

Discriminative Multinomial Naïve Bayes (DMNB), Naïve Bayes (NB), Simple Naïve 

Bayes (SNB), and Updateable Naïve Bayes (UNB). 

These results are compared for forecasting the better classifier which suits for the 

problem. From Figure 6, the Bayes Net (BN) provides the maximum classification 

accuracy of 85.67% when compared to other classifiers. In the Bayes Net classifier, the 

simple estimator is chosen with alpha value 0.5 and simulated annealing was assigned to 

the classifier. Simple Estimator is used for estimating the conditional probability tables of 

a Bayes network once the structure has been learned.  

Table 2: Classification accuracy of the classifiers 

Classifier 
Classification Accuracy 

(%) 

Bayes Net (BN) 85.67 

Discriminative Multinomial Naïve Bayes (DMNB) 78.17 

Naïve Bayes (NB) 84.83 

Simple Naïve Bayes (SNB) 85.17 

Updateable Naïve Bayes (UNB) 84.83 

This Bayes Network learning algorithm uses the general purpose search method of 

simulated annealing to find a well scoring network structure. The confusion matrix of the 

Bayes Net is shown in Table 3. In confusion matrix, the diagonal element represents the 

correctly classified instance and the others are misclassified [Joshuva et al., (2016)]. 

From Bayes Net, the kappa statistics was found to be 0.828. It is used to measures the 

arrangement of likelihood with the true class.  The mean absolute error was found to be 

0.0716. It is a measure used to measure how close forecasts or prediction are to the 

ultimate result. The root mean square error was found to be 0.1891. It is a quadratic 

scoring rule which processes the average size of the error. The detailed class-wise 

accuracy is shown in Table 4. From confusion matrix (Table 3), the good signal shows 23 

faulty signals are classified as loose condition [Joshuva and Sugumaran (2016)]. This 

does not have much impact when compare to the loose condition being classified as good 

signals (13 signals). From 600 samples, 514 samples are correctly classified (85.67%) 

and remaining 86 are misclassified (14.33%). The time taken to build the model is about 

0.56 seconds; hence, this can use in real time for the condition monitoring of the wind 

turbine [Joshuva and Sugumaran (2017)] . 
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Figure 6: Overall classification accuracy of the classifiers 

Table 3: Confusion matrix for Bayes Net 

Blade 

conditions 
Good Bend Crack Loose Pitch twist Erosion 

Good 75 1 1 23 0 0 

Bend 1 93 2 0 0 4 

Crack 0 8 85 6 1 0 

Loose 13 1 6 80 0 0 

Pitch 

twist 
0 0 0 0 95 5 

Erosion 0 4 1 0 9 86 

Table 4: Class-wise accuracy of Bayes Net 

Class TP Rate FP Rate Precision Recall F-Measure ROC area 

Good 0.75 0.028 0.843 0.75 0.794 0.971 

Bend 0.93 0.028 0.869 0.93 0.899 0.991 

Crack 0.85 0.02 0.895 0.85 0.872 0.989 

Loose 0.80 0.058 0.734 0.80 0.766 0.953 

Pitch 

twist 
0.95 0.02 0.905 0.95 0.927 0.991 

Erosion 0.86 0.018 0.905 0.86 0.882 0.987 

TP is also called as sensitivity which used to predict the ratio of positives which are 

correctly classified as faults. FP is commonly described as a false alarm in which the 

result that shows a given fault condition has been achieved when it really has not been 
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achieved.  The true positive (TP) rate should be close to 1 and the false positive (FP) rate 

should be close to 0 to propose the classifier is a better classifier for the problem 

classification.  In the Bayes Net, it shows that the TP near to 1 and FP close to 0, then one 

can predict that the classifier we build for the particular problem is very much effective 

for the fault diagnosis problem [Joshuva and Sugumaran (2017)].  

Precision is the ratio of correctly classified instances for those instances that have been 

classified as positive. The recall is merely equal to sensitivity in which the information 

retrieval is the fraction of the faults that are relevant to the query that are successfully 

retrieved. F-measure is defined as the equivalent resistance formed by sensitivity and 

precision positioned in parallel phase. ROC is a graphical representation that 

demonstrates the performance of a classifier as its discrimination threshold is varied. The 

classifier error chart is shown in Figure 7. Here the squared dots represent the 

misclassification and the „x‟ denotes the correct classification. 

 

Figure 7: Classifier errors (classification vs misclassification) 

7 Conclusions 

The wind turbine is very important in using wind energy. “This paper displayed an 

algorithm based classification of vibration signals for the evaluation of the wind turbine 

blade conditions. From the acquired vibration data, five models were developed using 

data modelling techniques. Bayes Net (BN), Discriminative Multinomial Naïve Bayes 

(DMNB), Naïve Bayes (NB), Simple Naïve Bayes (SNB), and Updateable Naïve Bayes 

(UNB) classifiers were used to learn and classify the different fault conditions of the 
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blade. The model was tested in 10-fold cross validation. All the classifiers were 

compared with respect to their types and maximum correctly classified instances were 

found to be 85.67% for Bayes Net (BN) classifier. The error rate is relatively less and 

may be considered for the blade fault diagnosis. Hence, the Bayes Net can be practically 

used for the condition monitoring of wind turbine blade to reduce the downtime and to 

maximize the usage of wind energy. The methodology and algorithm suggested in this 

paper can be potentially used for any kind of wind turbine blade to diagnosis the blade 

fault with minimal modification.” 
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