
Copyright © 2009 Tech Science Press CMES, vol.39, no.2, pp.155-177, 2009

Axisymmetric longitudinal wave propagation in a finite
pre-strained compound circular cylinder made from

compressible materials

Surkay D. Akbarov1,2,3 and Mugan S. Guliev4

Abstract: The axisymmetric longitudinal wave propagation in a finite pre-strained
compound (composite) cylinder is investigated within the scope of a piecewise ho-
mogeneous body model utilizing three-dimensional linearized theory wave propa-
gation in an initially stressed body. The materials of the inner and outer cylinder are
assumed to be compressible. The elasticity relations for those are given through the
harmonic potential. The algorithm for constructing of the computer programmes
and obtaining numerical results is discussed. The numerical results regarding the
influences of the initial strains in the inner and outer cylinders on the wave disper-
sion are presented and analysed. These results are obtained for the case where the
material of the inner solid cylinder is stiffer than that of the outer hollow cylinder.
In particular, it is established that the initial stretching of the cylinders causes the
wave propagation velocity to increase.

Keywords: Compound cylinder, finite initial strain, wave dispersion, compress-
ible material

1 Introduction

Elastodynamic problems are continuously arising in almost all areas of natural sci-
ences and engineering. As time goes by, these problems have increasingly attracted
the attention of various fundamental and applied areas of science. In the case dis-
cussed herein, the intensive development of some fields of the dynamics of the
deformed bodies was stimulated by the engineering requirements of certain key
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industries. Accordingly, in the second half of the 20th century, the study of the
nonlinear elastodynamic problems became urgent.

An interesting and urgent problem, which also applies to the nonlinear dynamical
effects in the elastic medium, is the elastodynamic problems for initially stressed
bodies. Initial stresses occur in structural elements during their manufacture and
assembly, in the Earth’s crust under the action of geostatic and geodynamic forces,
in composite materials, etc.

The initial strains (stresses) can be also classified as one of the reference particu-
larities of the body within which the various types wave propagations occur. At the
same time, there are also other types reference particularities, such as the existence
of the crack in the mentioned body which also influence significantly its dynam-
ics: see, for example Guz, Menshikov, Zozulya and Guz (2007), Guz and Zozulya
(2007).

At present, the theory of elastodynamics for initially stressed bodies is currently
meant the linearized theory of the elastodynamics for the initially stressed bod-
ies constructed using the linearization principle from the general nonlinear theory
of elasticity or its simplified modifications. Under certain conditions, linearized
equations make it possible to investigate all kinds of dynamical problems for ini-
tially stressed bodies. In this case it is necessary to distinguish the so called ap-
proximate and exact approaches. The approximate approaches are based on the
Bernoulli, Kirchoff-Love and Timoshenko hypotheses and other methods of re-
ducing three-dimensional (two-dimensional) problems to two-dimensional (one-
dimensional) ones. It is evident that the approximate approaches simplify the
mathematics involved in finding a solution. However, in many cases the results
obtained by employing these approaches may not be acceptable in the qualitative
and quantitative senses. For example, the applied theories of rods, plates and shells
describe only a few propagating waves (modes). Moreover, within the framework
of these approaches the near-surface dynamical processes for the initially stressed
bodies cannot be described. Therefore the use of the exact approach is preferable;
i.e., the so called Three-dimensional Linearized Theory of Elastic Waves in Ini-
tially Stressed Bodies (TLTEWISB) for investigations of the dynamical problems
of elastic bodies with initial stresses. The general problems of the TLTEWISB
have been elaborated in many investigations such as Biot (1965), Green, Rivlin and
Shield (1952), Eringen and Suhubi (1975a), Guz (1986a, 1986b, 2004), Truestell
(1961) and etc.

Almost all the investigations carried out by employing TLTEWISB, (except Ak-
barov (2006a, 2006b, 2006c, 2006d, 2007a), Yahnioglu (2007) and some others
listed therein) refer to the influence of the initial stresses on the speed and the
dispersion of various types of waves; see, for example, papers Hayes and Rivlin
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(1961), Chadwick and Jarvis(1979a, 1979b), Dowaik and Ogden (1991), Ogden
and Sotiropoulos (1998), Fu and Mielke (2002), Daniel (2008), Akbarov and Guz
(2004), Akbarov and Ozisik (2003, 2004), Rogerson and Sandiford (2000), Zhuk
and Guz (2007), Guz, Rushchitsky and Guz (2007), Guz, Rushchitsky and Guz
(2008) and the papers listed therein. Reviews of these investigations were consid-
ered in papers Akbarov (2007b), Guz (2002), Guz and Makhort (2000); moreover,
a systematic analysis of these investigations was given in monographs Guz (1986a,
1986b, 2004). It follows from these references that a considerable part of the inves-
tigations refer to layered composite materials. Also there are a considerable num-
ber of investigations on the wave propagation in the pre-stressed cylinders Belward
(1976), Demiray and Suhubi (1970), Green (1961), Guz, Kushnir and Makhort
(1975), Kushnir (1979) and others. However, in these investigations the subject of
research was a homogeneous circular cylinder. Consequently, up to now, investiga-
tions on the wave propagation in the pre-stressed compound (composite) cylinder
are almost completely absent. One notable exception was an investigation on the
axisymmetric longitudinal wave propagation in the compound cylinder was made
in Akbarov and Guz (2004). Yet, in this investigation it was assumed that the ma-
terials of the cylinders are moderately rigid and the initial strains in them are small;
i.e. these strains can be neglected with respect to unity in the corresponding equa-
tions and relations of the TLTEWISB. As a result of the foregoing assumptions in
paper Akbarov and Guz (2004) it was concluded that the effect of the initial stresses
(i.e. the initial uniaxial homogeneous stresses the values of which are less than the
corresponding yield stresses) on the wave propagation velocity in compound cylin-
ders is insignificant. The mentioned differences between the present and the other
(Akbarov and Guz (2004)) investigations will also be noted and detailed in the
subsequent sections.

It should be noted that within elastic deformations, a considerable effect of the ini-
tial strains or stresses on the wave propagation in the body can be attained under
finite initial strains which usually takes place in rubber-like high elastic materials.
Taking this statement into account in the present paper, the axisymmetric longitu-
dinal wave propagation in a compound cylinder with finite initial strains is studied.
It is assumed that the materials of the constituents are high elastic compressible
ones and the elasticity relations of those are given through the harmonic poten-
tial. The numerical results regarding the influence of the initial strains on the wave
dispersion are presented and analyzed.

2 Formulation of the problem

We consider the compound (composite) circular cylinder shown in Fig. 1 and as-
sume that in the natural state the radius of the inner solid cylinder is R, the thickness
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of the external hollow cylinder is h.

In the natural state we determine the position of the points of the cylinders by the
Lagrangian coordinates in the Cartesian system of coordinates Oy1y2y3 as well as
in the cylindrical system of coordinates Orθy3.

Assume that the cylinders have infinite length in the direction of the Oy3 axis and
the initial stress state in each component of the considered body is axisymmetric
with respect to this axis and homogeneous. Such a stress field may be present with
stretching of the considered body along the Oy3 axis.

 2

wave propagation in the pre-stressed cylinders Belward 
(1976), Demiray and Suhubi (1970), Green (1961), Guz, 
Kushnir and Makhort (1975), Kushnir (1979) and others. 
However, in these investigations the subject of research was a 
homogeneous circular cylinder. Consequently, up to now, 
investigations on the wave propagation in the pre-stressed 
compound (composite) cylinder are almost completely absent. 
One notable exception was an investigation on the axisym-
metric longitudinal wave propagation in the compound cylin-
der was made in Akbarov and Guz (2004). Yet, in this inves-
tigation it was assumed that the materials of the cylinders are 
moderately rigid and the initial strains in them are small; i.e. 
these strains can be neglected with respect to unity in the 
corresponding equations and relations of the TLTEWISB. As 
a result of the foregoing assumptions in paper Akbarov and 
Guz (2004) it was concluded that the effect of the initial 
stresses (i.e. the initial uniaxial homogeneous stresses the 
values of which are less than the corresponding yield stresses) 
on the wave propagation velocity in compound cylinders is 
insignificant. The mentioned differences between the present 
and the other (Akbarov and Guz (2004)) investigations will 
also be noted and detailed in the subsequent sections.    
It should be noted that within elastic deformations, a consid-
erable effect of the initial strains or stresses on the wave 
propagation in the body can be attained under finite initial 
strains which usually takes place in rubber-like high elastic 
materials. Taking this statement into account in the present 
paper, the axisymmetric longitudinal wave propagation in a 
compound cylinder with finite initial strains is studied. It is 
assumed that the materials of the constituents are high elastic 
compressible ones and the elasticity relations of those are 
given through the harmonic potential. The numerical results 
regarding the influence of the initial strains on the wave dis-
persion are presented and analyzed. 
  
2 Formulation of the problem 
  
We consider the compound (composite) circular cylinder 
shown in Fig. 1 and assume that in the natural state the radius  
of the inner solid cylinder is R , the thickness of the external 
hollow cylinder is h .  
In the natural state we determine the position of the points of 
the cylinders by the Lagrangian coordinates in the Cartesian  
system of coordinates 1 2 3Oy y y  as well as in the cylindrical 
system of coordinates 3Or yq .  
Assume that the cylinders have infinite length in the direction 
of the 3Oy  axis and the initial stress state in each component 
of the considered body is axisymmetric with respect to this 
axis and homogeneous. Such a stress field may be present 
with stretching of the considered body along the 3Oy  axis. 

The stretching may be conducted for the inner solid cyl-

inder and the external hollow cylinder separately before they 
are compounded. However, the results which will be dis-
cussed below can also be related to the case where the inner 
solid 

 
Figure 1: The geometry of the compound cylinder 

and hollow external cylinders are stretched together after the 
compounding. In this case as a result of the difference of 
Poisson’s coefficients of the inner and external cylinders’ 
materials the inhomogeneous initial stresses acting on the 
areas which are parallel to the 3Oy  axis arise. Nevertheless, 
according to the well known mechanical consideration, the 
mentioned inhomogeneous initial stresses can be neglected 
under consideration, because these stresses are less signifi-
cant than those acting on the areas which are perpendicular to 
the 3Oy  axis.     
With the initial state of the cylinders we associate the La-
grangian cylindrical system of coordinates 3' ' ' 'O r yq  and 
the Cartesian system of coordinates 1 2 3' ' ' 'O y y y . The values 
related to the inner solid cylinder and external hollow cylin-
der will be denoted by the upper indices (2) and (1), respec-
tively. Furthermore, we denote the values related to the initial 
state by an additional upper index, 0. Thus, the initial strain 
state in the inner solid cylinder and external hollow cylinder 
can be determined as follows. 
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The values related to the system of the coordinates associated 
with the initial state below, i.e. with 1 2 3' ' ' 'O y y y , will be 
denoted by upper prime.  
Within this framework, let us investigate the axisymmetric 
wave propagation along the 3' 'O y  axis in the considered 
body. We make this investigation by the use of coordinates 

'r  and 3'y  in the framework of the TLTEWISB. We will 
follow the style and notation used in the monograph Guz 
(2004).  
Thus, we write the basic relations of the TLTEWISB for the 
compressible body under an axisymmetrical state. These 
relations are satisfied within each constituent of the consid-
ered body because we use the piecewise homogeneous body 
model. 
The equations of motion are 
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Figure 1: The geometry of the compound cylinder

The stretching may be conducted for the inner solid cylinder and the external hol-
low cylinder separately before they are compounded. However, the results which
will be discussed below can also be related to the case where the inner solid and
hollow external cylinders are stretched together after the compounding. In this case
as a result of the difference of Poisson’s coefficients of the inner and external cylin-
ders’ materials the inhomogeneous initial stresses acting on the areas which are
parallel to the Oy3 axis arise. Nevertheless, according to the well known mechan-
ical consideration, the mentioned inhomogeneous initial stresses can be neglected
under consideration, because these stresses are less significant than those acting on
the areas which are perpendicular to the Oy3 axis.

With the initial state of the cylinders we associate the Lagrangian cylindrical sys-
tem of coordinates O′r′θ ′y′3 and the Cartesian system of coordinates O′y′1y′2y′3.
The values related to the inner solid cylinder and external hollow cylinder will be
denoted by the upper indices (2) and (1), respectively. Furthermore, we denote
the values related to the initial state by an additional upper index, 0. Thus, the
initial strain state in the inner solid cylinder and external hollow cylinder can be



Axisymmetric longitudinal wave propagation 159

determined as follows.

u(k),0
µ = (λ (k)

µ −1)ym, λ
(k)
1 = λ

(k)
2 6= λ

(k)
3 , λ

(k)
µ = const, m = 1,2,3; k = 1,2,

(1)

where u(k),0
µ is a displacement and λ

(k)
µ is the elongation along the Oym axis. We

introduce the following notation

y′i = λ
(k)
i yi, ρ

′ = λ
(k)
1 ρ, R′ = λ

(2)
1 R. (2)

The values related to the system of the coordinates associated with the initial state
below, i.e. with O′y′1y′2y′3, will be denoted by upper prime.

Within this framework, let us investigate the axisymmetric wave propagation along
the O′y′3 axis in the considered body. We make this investigation by the use of
coordinates ρ ′ and y′3 in the framework of the TLTEWISB. We will follow the
style and notation used in the monograph Guz (2004).

Thus, we write the basic relations of the TLTEWISB for the compressible body
under an axisymmetrical state. These relations are satisfied within each constituent
of the considered body because we use the piecewise homogeneous body model.

The equations of motion are

∂

∂ρ ′
Q′(k)

ρ ′ρ ′ +
∂

∂y′3
Q′(k)r′3 +

1
ρ ′

(
Q′(k)

ρ ′ρ ′−Q′(k)
θ ′θ ′

)
= ρ

′(k) ∂ 2

∂ t2 u′(k)r′ ,

∂

∂ρ ′
Q′(k)3ρ ′ +

∂

∂y′3
Q′(k)33 +

1
ρ ′

Q′(k)3ρ ′ = ρ
′(k) ∂ 2

∂ t2 u′(k)3 . (3)

The mechanical relations are

Q′(k)
ρ ′ρ ′ = ω

′(k)
1111

∂u′(k)
ρ ′

∂ρ ′
+ω

′(k)
1122

u′(k)
ρ ′

ρ ′
+ω

′(k)
1133

∂u′(k)3
∂y′3

,

Q′(k)
θ ′θ ′ = ω

′(k)
2211

∂u′(k)
ρ ′

∂ρ ′
+ω

′(k)
2222

u′(k)
ρ ′

ρ ′
+ω

′(k)
2233

∂u′(k)3
∂y′3

,

Q′(k)33 = ω
′(k)
3311

∂u′(k)
ρ ′

∂ρ ′
+ω

′(k)
3322

u′(k)
ρ ′

ρ ′
+ω

′(k)
3333

∂u′(k)3
∂y′3

,

Q′(k)
ρ ′3 = ω

′(k)
1313

∂u′(k)
ρ ′

∂y′3
+ω

′(k)
1331

∂u′(k)3
∂ρ ′

, Q′(k)3ρ ′ = ω
′(k)
3113

∂u′(k)
ρ ′

∂y′3
+ω

′(k)
3131

∂u′(k)3
∂ρ ′

. (4)
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In (3) and (4) through the Q′(k)
ρ ′ρ ′ , . . . , Q′(k)3ρ ′ the perturbation of the components of

Kirchoff stress tensor are denoted. The notation u′(k)
ρ ′ , u′(k)3 shows the perturbations

of the components of the displacement vector. The constants ω ′
(k)
1111, . . . , ω ′

(k)
3333

in (3), (4) are determined through the mechanical constants of the inner and outer
cylinders’ materials and through the initial stress state. ρ ′(k) is a density of the k-th
material.

As it has been noted above, in the present investigation we assume that the elastic-
ity relations of the cylinders’ materials are described by harmonic potential. This
potential is given as follows:

Φ =
1
2

λ s2
1 + µs2 (5)

where

s1 =
√

1+2ε1 +
√

1+2ε2 +
√

1+2ε3−3,

s2 =
(√

1+2ε1−1
)2

+
(√

1+2ε2−1
)2

+
(√

1+2ε3−1
)2

. (6)

In relation (6) λ , µ are material constants, εi(i = 1,2,3) are the principal values of
the Green’s strain tensor. The expressions (5) and (6) are supplied by the corre-
sponding indices under solution procedure.

For the considered axisymmetric case the components of the Green’s strain tensor
are determined through the components of the displacement vector by the following
expressions:

ερρ =
∂uρ

∂ρ
+

1
2

(
∂uρ

∂ρ

)2

+
1
2

(
∂u3

∂ρ

)2

, εθθ =
uρ

ρ
+

1
2

(
uρ

ρ

)2

,

εr3 =
1
2

(
∂u3

∂ρ
+

∂uρ

∂y3
+

∂uρ

∂ρ

∂uρ

∂y3
+

∂u3

∂ρ

∂u3

∂y3

)
,

ε33 =
∂u3

∂y3
+

1
2

(
∂u3

∂ρ

)2

+
1
2

(
∂u3

∂y3

)2

. (7)

In this case the components Si j of the Lagrange stress tensor are determined as
follows:

Sρρ =
∂Φ

∂ερρ

, Sθθ =
∂Φ

∂εθθ

, S33 =
∂Φ

∂ε33
, Sρ3 =

∂Φ

∂ερ3
, Sρ3 = S3ρ . (8)
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Note that the expressions (6)-(8) are written in the arbitrary system of cylindrical
coordinate system without any restriction related to the association of this system
to the natural or initial state of the considered compound cylinders.

For the considered case the relations between the perturbation of the Kirchoff stress
tensor and the perturbation of the components of the Lagrange stress tensor can be
written as follows:

Q′(k)
ρ ′ρ ′ = λ

(k)
1 S(k)

ρ ′ρ ′ , Q′(k)
θ ′θ ′ = λ

(k)
1 S(k)

θ ′θ ′ , Q′(k)33 =
(

λ
(k)
3

)2
S(k)

33 +λ
(k)
3 S(k),0

33
∂u(k)

3
∂y3

,

Q′(k)
ρ ′3 =

(
λ

(k)
1

)−1
S(k)

ρ ′3, Q′(k)3ρ ′ =
(

λ
(k)
1

)−1
S(k)

3ρ ′ +λ
(k)
3 S(k),0

33
∂u(k)

ρ

∂y3
. (9)

According to Guz (2004), by linearization of equation (8) and taking (9) and (1)
into account, we obtain the following expressions for the stress S(k),0

33 and for the
constants λ

(k)
2 , λ

(k)
1 , ω ′

(k)
1111, . . . , ω ′

(k)
3333 in (4) for the potential (5):

S(k),0
33 =

[
λ

(k)
(

2λ
(k)
1 +λ

(k)
3 −3

)
+2µ

(k)
(

λ
(k)
3 −1

)](
λ

(k)
3

)−1
,

λ
(k)
2 = λ

(k)
1 =

[
2− λ (k)

µ(k)

(
λ

(k)
3 −3

)][
2

(
λ (k)

µ(k) +1

)]−1

,

ω
′(k)
1111 =

(
λ

(k)
3

)−1(
λ

(k) +2µ
(k)
)

, ω
′(k)
3333 =

(
λ

(k)
3

λ
(2)
1

)2(
λ

(k) +2µ
(k)
)

,

ω
′(k)
1122 =

(
λ

(k)
3

)−1
λ

(k), ω
′(k)
1133 =

(
λ

(k)
1

)−1
λ

(k),ω ′
(k)
1221 =

(
λ

(k)
3

)−1
µ

(k),

ω
′(k)
1313 = 2µ

(k)
(

λ
(k)
1 +λ

(k)
3

)−1
,ω ′

(k)
3113 = 2µ

(k)
(

λ
(k)
1

)−2(
λ

(k)
3

)2(
λ

(k)
1 +λ

(k)
3

)−1
.

(10)

Consequently, according to the relations (10), in the present investigations the ini-
tial stress-strain state is determined within the scope of the nonlinear theory of
elasticity, but in Akbarov and Guz (2004) the initial strain state was determined
within the scope of the classical linear theory of elasticity. Namely this statement
causes the main distinguish between the results of the present and Akbarov and
Guz (2004) investigations.
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Thus, the wave propagation in the considered body will be investigated by the use
of the equations (3), (4) and (10). In this case we will assume that the following
complete contact conditions are satisfied.

Q′(1)
ρ ′ρ ′

∣∣∣
ρ ′=R′

= Q′(2)
ρ ′ρ ′

∣∣∣
ρ ′=R′

, Q′(1)
ρ ′3

∣∣∣
ρ ′=R′

= Q′(2)
ρ ′3

∣∣∣
ρ ′=R′

,

u′(1)
ρ ′

∣∣∣
ρ ′=R′

= u′(2)
ρ ′

∣∣∣
ρ ′=R′

, u′(1)
3

∣∣∣
ρ ′=R′

= u′(2)
3

∣∣∣
ρ ′=R′

. (11)

With this we exhaust the formulation of the problem. It should be noted that in the
case where λ

(k)
3 = λ

(k)
1 = 1.0, (k = 1,2) the above described formulation transforms

to the corresponding one of the classical linear theory of the elastodynamics for the
compressible body.

3 Solution procedure

Up to now, various types of numerical and semi-analytical methods have been de-
veloped to solve the dynamical problems of deformable solid body mechanics. The
present level of these methods are described, for example, in papers by Yoda and
Kodama (2006), Lu and Zhu (2007), Chen, Fu and Zhang (2007), Gato and Shie
(2008), Liu, Chen, Li and Cen (2008), Lin, Lee, Tsai, Chen, Wang and Lee (2008),
Wang and Wang (2008) and in many others. Note that all of these methods are
realized by employing modern computer modelling. However, there are also other
methods, so called analytical + numerical methods, according to which, up to a
certain stage of the solution procedure, analytical expressions are obtained for the
sought values, but after this stage procedures based on visual numerical results ar-
rived at with modern PC modelling are also employed. In the present paper, the
latest version of computer modelling is employed.

Thus, according to Guz (2004), we use the following representation for the dis-
placement:

u′(k)
ρ ′ =− ∂ 2

∂ρ ′∂y′3
X(k),

u′(k)3 =
1

ω ′
(k)
1133 +ω ′

(k)
1313

(
ω
′(k)
1111∆

′
1 +ω

′(k)
3113

∂ 2

∂y′23
− ρ

′(k) ∂ 2

∂ t2

)
X(k), (12)
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where X(k) satisfies the following equation:[(
∆
′
1 +
(

ξ
′(k)
2

)2 ∂ 2

∂y′23

)(
∆
′
1 +
(

ξ
′(k)
3

)2 ∂ 2

∂y′23

)
−ρ

′(k)

(
ω ′

(k)
1111 +ω ′

(k)
1331

ω ′
(k)
1111ω ′

(k)
1331

∆
′
1+

ω ′
(k)
3333 +ω ′

(k)
3113

ω ′
(k)
1111ω ′

(k)
1331

∂ 2

∂y′23

)
∂ 2

∂ t2

+
ρ ′(k)

ω ′
(k)
1111ω ′

(k)
1331

∂ 4

∂ t4

]
X(k) = 0. (13)

In (12) and (13) the following notation is used.

∆
′
1 =

d2

dρ ′2
+

1
ρ ′

d
dρ ′

,

(
ξ
′(k)
2,3

)2
= d(k)±

[(
d(k)
)2
−ω

′(k)
3333ω

′(k)
3113

(
ω
′(k)
1111ω

′(k)
1331

)−1
] 1

2

d(k) =
(

2ω
′(k)
1111ω

′(k)
1331

)−1 [
ω
′(k)
1111ω

′(k)
3333+ ω

′(k)
1331ω

′(k)
3113−

(
ω
′(k)
1133 +ω

′(k)
1313

)]
.

(14)

We represent the function X(m) = X(m) (ρ ′,y′3, t) as

X(m) = X(m)
1

(
ρ
′)cos

(
ky′3−ωt

)
, m = 1,2. (15)

Substituting (15) in (13) and doing some mathematical manipulations we obtain
the following equation for X(m)

1 (ρ ′):(
∆
′
1 +
(

ζ
′(m)
2

)2
)(

∆
′
1 +
(

ζ
′(m)
3

)2
)

X(m)
1 (ρ ′) = 0. (16)

The constants ζ ′
(k)
2,3 are determined from the following equation:

ω
′(m)
1111ω

′(m)
1331

(
ζ
′(m)
)4
− k2

(
ζ
′(m)
)2 [

ω
′(m)
1111

(
ρ

(m)c2−ω
′(m)
3333

)
+

ω
′(m)
1331

(
ρ

(m)c2−ω
′(m)
3113

)
+
(

ω
′(m)
1133 +ω

′(m)
1313

)2
]
+

k4
(

ρ
(m)c2−ω

′(m)
3333

)(
ρ

(m)c2−ω
′(m)
3113

)
= 0, (17)
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where c = ω/k, i.e. c is the phase velocity of the propagating wave. We determine
the following expression for X(m)

1 (ρ ′) from equations (16) and (17).

X(1)
1

(
ρ
′)= B(1)

2 E(1)
0

(
kρ
′
ζ
′(1)
2

)
+B(1)

3 E(1)
0

(
kρ
′
ζ
′(1)
3

)
,

X(2)
1

(
ρ
′)= A(2)

2 G(2)
0

(
kρ
′
ζ
′(2)
2

)
+A(2)

3 G(2)
0

(
kρ
′
ζ
′(2)
3

)
+B(2)

2 E(2)
0

(
kρ
′
ζ
′(2)
2

)
+ B(2)

3 E(2)
0

(
kρ
′
ζ
′(2)
3

)
, (18)

where

E(1)
0

(
kρ
′
ζ
′(1)
µ

)
=

J0

(
kρ ′ζ ′(1)

µ

)
i f

(
ζ

(1)
µ

)2
> 0,

I0

(
kρ ′
∣∣∣ζ ′(1)

µ

∣∣∣) i f
(

ζ
(1)
µ

)2
< 0,

(19)

G(2)
0

(
kρ
′
ζ
′(2)
µ

)
=

J0

(
kρ ′ζ ′(2)

µ

)
i f

(
ζ

(2)
µ

)2
> 0,

I0

(
kρ ′
∣∣∣ζ ′(2)

µ

∣∣∣) i f
(

ζ
(2)
µ

)2
< 0.

E(2)
0

(
kρ
′
ζ
′(2)
µ

)
=

Y0

(
kρ ′ζ ′(2)

µ

)
i f

(
ζ

(2)
µ

)2
> 0,

K0

(
kρ ′
∣∣∣ζ ′(2)

µ

∣∣∣) i f
(

ζ
(2)
µ

)2
< 0.

(20)

In (19) and (20) J0(x) and Y0(x) are Bessel functions of the first and second kind of
order zero; I0(x) and K0(x) are Bessel function of a purely imaginary argument in
order zero and Macdonald function in order zero, in turn.

Thus, using the expressions (15), (18)-(20), (12), (10), (9), (4) we obtain the dis-
persion equation

det
∥∥αi j

∥∥= 0, i; j = 1,2,3,4,5,6 (21)

from (11), where

αi j = αi j

(
c/c(2)

2 , kR, µ
(2)/µ

(1), λ
(2)/µ

(2), λ
(1)/µ

(1), λ
(2)
3 , λ

(1)
3

)
(22)

To reduce the size of the article we do not give here the explicit expressions of
αi j. Thus the dispersion equation for the considered wave propagation problem has
been derived in the form (21) and (22).
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4 Numerical results and discussions

In the present section instead of the upper indices (1) and (2) we will use the upper
indices (m) and (f) respectively. Assume that µ( f )/µ(m) = 2.0; ρ( f )/ρ(m) = 1.0,
λ ( f )/µ( f ) = λ (m)/µ(m) = 1.0, h/R = 1.0 and consider the dispersion curves c =
c(kR) and analyze the influence of the elongation parameters λ

( f )
3 and λ

(m)
3 on

these curves.

Note that under obtaining numerical results the dispersion equation (21) is solved
numerically by employing the well known “bisection” method. The corresponding
PC programmes of the algorithm are composed by the authors. For the considered
problem the solution procedure of the equation (21) is carried out in the following
manner. For each value of kR (k is a wave number, R is a radius of the inner solid
cylinder) the n (n≥ 5) subsequent roots (denoted by

(
c/c( f )0

2

)
1
< ... <

(
c/c( f )0

2

)
n

, where c( f )0
2 =

√
µ( f )/ρ( f )) of the equation (21) are found. In this case the values

of λ
( f )
3 and λ

(m)
3 are fixed. Note that for the values of kR which are very near to

zero, the first three and fifth roots are(
c

c( f )0
2

)
1

=

√
ρ( f )ω ′

(m)
3113

ρ(m)µ( f )

<

(
c

c( f )0
2

)
2

=

√
ρ( f )ω ′

(m)
3333

ρ(m)µ( f )

<

(
c

c( f )0
2

)
3

=

√
ω ′

( f )
3113

µ( f )

<

(
c

c( f )0
2

)
5

=

√
ω ′

( f )
3333

µ( f )

 (23)

These roots caused by the expression of the equation (17) and determine the nondis-
persive wave speeds. For kR→ 0, the fourth root regards the first dispersive mode.
Moreover, the roots which are between the roots (23) and the roots which are
smaller than

(
c/c( f )0

2

)
1

or are greater than
(

c/c( f )0
2

)
5

determine the dispersive
wave speeds and form the dispersion curves.

According to the relations given in equation (10), the roots (23) depend on the
parameter λ

( f )
3 and λ

(m)
3 , i.e. on the initial strains. For denoting this dependence

we introduce the following notation

c(m)0
k

c( f )0
2

=

(
c(m)

k

c( f )0
2

)∣∣∣∣∣
λ

(m)
3 =1.0

,
c(m)α

k

c( f )0
2

=

(
c(m)

k

c( f )0
2

)∣∣∣∣∣
λ

(m)
3 =α 6=1.0

,

c( f )0
k

c( f )0
2

=

(
c( f )

k

c( f )0
2

)∣∣∣∣∣
λ

( f )
3 =1.0

,
c( f )α

k

c( f )0
2

=

(
c( f )

k

c( f )0
2

)∣∣∣∣∣
λ

( f )
3 =α 6=1.0

, k = 1,2.
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c(m)
2 (λ (m)

3 ) =

√
ω ′

(m)
3113

ρ(m) , c( f )
2 (λ ( f )

3 ) =

√
ω ′

( f )
3113

ρ( f ) ,

c(m)
1 (λ (m)

3 ) =

√
ω ′

(m)
3333

ρ(m) , c( f )
1 (λ ( f )

3 ) =

√
ω ′

( f )
3333

ρ( f ) . (24)

For consideration the trustiness and correctness of the used algorithm and pro-
grammes, as well as for consideration of some basic particularities of the influence
of the initial strains in the components of the compound cylinder on the wave dis-
persion, first, we analyze the dispersion curves regarding the first mode, i.e. the
fundamental mode.

 5

Thus, using the expressions (15), (18)-(20), (12), (10), (9), (4) 
we obtain the dispersion equation 
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from (11), where 
 

( )(2) (2) (1) (2) (2) (1) (1) (2) (1)
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plicit expressions of ija . Thus the dispersion equation for the 
considered wave propagation problem has been derived in the 
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3113 3333
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3113 3333
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c c
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c c
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2 5
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3
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some basic particularities of the influence of the initial strains 
in the components of the compound cylinder on the wave 
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the first mode, i.e. the fundamental mode. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Dispersion curves corresponding the first mode 
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ccc  respectively. It follows from the graphs given in Fig. 2 
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Figure 2: Dispersion curves corresponding the first mode

These curves are given in Fig. 2 for various values of λ
(m)
3 and λ

( f )
3 . Note that in

Fig. 2 the dispersion curves corresponding to the wave propagation which takes
place separately in the solid and hollow cylinders are also given. In this case it
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is assumed that the materials of the hollow and solid cylinders are the same, i.e.
it is assumed that the hollow cylinder is also made from the material of the solid
cylinder.

We denote the wave propagation velocity for solid, hollow and compound cylinders
through the notation csc, chc and ccc respectively. It follows from the graphs given
in Fig. 2 that

csc→ c( f )
b

(
λ

( f )
3

)
, chc→ c( f )

b

(
λ

( f )
3

)
as kR→ 0,

csc→ c( f )
ρ

(
λ

( f )
3

)
, chc→ c( f )

ρ

(
λ

( f )
3

)
as kR→ ∞ (25)

where c( f )
b

(
λ

( f )
3

)
is a “bar” velocity, c( f )

ρ

(
λ

( f )
3

)
is a Rayleigh wave velocity in the

pre-strained cylinder material. In this case by using the corresponding asymptotic
analyses we obtain that

c( f )
b

(
λ

( f )
3

)
= λ

( f )
3 c( f )0

b ,

c( f )0
b =

√
2
(
1.+λ ( f )/

(
2
(
λ ( f ) + µ( f )

)))
µ( f )/ρ( f ) (26)

However, we cannot write such simple analytic expression for the calculation of
the values of c( f )

ρ (λ ( f )
3 ); the calculation of the values c( f )

ρ (λ ( f )
3 ) is made numeri-

cally through the corresponding equation given, for example, in monograph Guz
(2004) and elsewhere. Consequently, the results obtained for the solid and hollow
cylinders coincide with the known results Eringen and Suhubi (1975), Guz (2004)
and agree with the well-known mechanical considerations.

The analyses of the dispersion curves regarding the compound cylinder (Fig. 2)
show that the following asymptotic estimations for the wave propagation velocity
occur.

ccc

c( f )0
2

→
ccc

b (λ ( f )
3 ,λ

(m)
3 )

c( f )0
2

=


(

e( f )
(

λ
( f )
3

)2
η( f ) + e(m)

(
λ

(m)
3

)2
µ(m)η(m)/µ( f )

)
(
η( f ) +η(m)ρ(m)/ρ( f )

)


1
2

as kR→ 0 (27)

ccc

c( f )0
2

→
c(m)

ρ

(
λ

(m)
3

)
c( f )0

2

∣∣∣∣∣∣
λ

(m)
3 =1.0

as kR→∞ for the case where λ
(m)
3 = 1.0, λ

( f )
3 ≥ 1.0
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(28)

ccc

c( f )0
2

→min

1.0,
c(m)

ρ

(
λ

(m)
3

)
c( f )0

2

 as kR→ ∞ for the case where λ
(m)
3 ≥ 1.0,

λ
( f )
3 = 1.0 (29)

ccc

c( f )0
2

→
c(m)

ρ

(
λ

(m)
3

)
c( f )0

2

as kR→ ∞ for the case where λ
(m)
3 = λ

( f )
3 ≥ 1.0 (30)

In relation (27) the following notation is used.

e( f ) = 2
(

1.+λ
( f )/
(

2
(

λ
( f ) + µ

( f )
)))

, e(m) = 2
(

1.+λ
(m)/

(
2
(

λ
(m) + µ

(m)
)))

,

η
( f ) =

(
1+

h
R

)−2

, η
(m) =

(
2

h
R

+
(

h
R

)2
)(

1+
h
R

)−2

(31)

Note that the expression (27) is obtained by the following manner. First from the
dispersion relation of the axisymmetric longitudinal wave propagation in the solid
cylinder we determine the asymptotic root as kR→ 0. This root is determined by

relation (26). Taking the expression
(

λ
( f )
3

)2
e( f )µ( f ) as a “modulus of elasticity”

for the pre-stretched cylinder, we determine the effective (normalized) “modulus
of elasticity” for the compound cylinder by the use of the well-known expression[(

λ
( f )
3

)2
e( f )µ( f )η( f )+

(
λ

(m)
3

)2
e(m)µ(m)η(m)

]
. Dividing this expression into the

averaged density
(
ρ( f )η( f ) + r(m)η(m)

)
, we determine the expressions (27), (31).

In this case between the asymptotic (limit) values (27)-(30) the behaviour of the
dispersion curves related to the compound cylinder are similar to those obtained
for the solid cylinder, i.e., the values ccc/c( f )0

2 (as the values of csc/c( f )0
2 ) decrease

monotonically with kR. However, the dependence between chc/c( f )0
2 and kR is non-

monotonic. In this case the existence of an initial tensional strain in the components
of the compound cylinder causes the wave propagation velocity to increase.

Note that the aforementioned similarity of the dispersion curves attained for the
compound cylinders with those attained for the solid cylinder can be explained with
the fact that the stiffness of the inner cylinder material is greater than that for outer
hollow cylinder material, i.e. µ( f )/µ(m) > 1.0. The numerical results which are not
given here show that in the cases where µ( f )/µ(m) < 1.0 the character of the depen-
dencies between ccc/c( f )0

2 and kR is similar to that attained for the hollow cylinder.
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The analyses of the numerical results related with the case where µ( f )/µ(m) < 1.0
will be the subject of the other paper of the authors. Moreover we note that in the
qualitative sense the foregoing results agree with the results attained in Akbarov
and Guz (2004). However, in Akbarov and Guz (2004), according to the corre-
sponding problem statement, for initial strain ε

(m)0
33 , ε

( f )0
33 the values 0.004, 0.008

and 0.01 are selected. But in the present investigation, as it has been noted above,
for the considered values of λ

(m)
3 , λ

( f )
3 , i.e. for λ

(m)
3 ; λ

( f )
3 = 1.2, 1.5 and 1.9, it is

obtained from equations (1) and (7) ε
(m)0
33 ; ε

( f )0
33 = 0.220, 0.625 and 1.305. Namely

this statement allows us to disclose the significant effect of the initial strains on
the considered wave propagation velocity. At the same time, this statement forces
us to establish the analytical expressions (27) – (31) for asymptotic-limit values of
the wave propagation velocity; such expressions have not been attained in Akbarov
and Guz (2004). 7
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Figure 3: Dispersion curves corresponding the cases where λ
(m)
3 = λ

( f )
3 =

1.0(dashed lines) and λ
(m)
3 = λ

( f )
3 = 1.2(solid lines)

Now we consider the general appearance of the graphs of the dependencies be-
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Figure 4: Dispersion curves corresponding to the cases where λ
(m)
3 = λ

( f )
3 =

1.2(dashed lines) and λ
(m)
3 = λ

( f )
3 = 1.5(solid lines)

tween ccc/c( f )0
2 and kR which are formed with the first six roots of the dispersion

equation (21). These graphs are illustrated in Figs. 3, 4 and 5 in the case where
λ

(m)
3 = λ

( f )
3 = λ3. Note that in these figures the lines corresponding to the afore-

mentioned nondispersive wave velocities determined by the expressions given in
equation (23) are also drawn. Moreover, note that in each of these figures the
graphs are constructed for two selected subsequent values of λ3: in Figs. 3, 4 and
5 the graphs drawn by dashed (solid) lines correspond to the values of λ3 = 1.0,1.2
and 1.5 (λ3 = 1.2, 1.5 and 1.9). Such an illustration of the dispersion curves allows
us to demonstrate clearly the influence of the initial stretching of the components
of the compound cylinder on the wave propagation velocity in the second and sub-
sequent modes.

It follows from Figs. 3, 4 and 5 that in the considered case using the aforementioned
six roots of the equation (21) we obtain the dispersion curves for the first five, four,
three and two modes of waves the propagation velocity c(= ccc) which satisfies the
inequalities
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expressions (27) – (31) for asymptotic-limit values of the 
wave propagation velocity; such expressions have not been 
attained in Akbarov and Guz (2004). 
Now we consider the general appearance of the graphs of the 
dependencies between ( )0

2
cc fc c  and kR  which are formed 

with the first six roots of the dispersion equation (21). These 
graphs are illustrated in Figs. 3, 4 and 5 in the case where 

( ) ( )
3 3 3
m fl l l= = . Note that in these figures the lines corre-

sponding to the aforementioned nondispersive wave veloci-
ties determined by the expressions given in equation (23) are 
also drawn. Moreover, note that in each of these figures the 
graphs are constructed for two selected subsequent values of 

3l : in Figs. 3, 4 and 5 the graphs drawn by dashed (solid) 
lines correspond to the values of 3 1.0l = ,1.2 and 1.5 

( 3 1.2l = , 1.5 and 1.9). Such an illustration of the dispersion 
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initial stretching of the components of the compound cylinder 
on the wave propagation velocity in the second and subse-
quent modes. 
It follows from Figs. 3, 4 and 5 that in the considered case 
using the aforementioned six roots of the equation (21) we 
obtain the dispersion curves for the first five, four, three and 
two modes of waves the propagation velocity ( )ccc c=  
which satisfies the inequalities 
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3 = λ
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c(m)
1

(
λ

(m)
3

)
< c < c( f )

1

(
λ

( f )
3

)
(iii) and c > c( f )

1

(
λ

( f )
3

)
(iiii), respectively. Conse-

quently, the dispersion curves of the second and subsequent modes are divided into
four parts: the parts I, II, III and IV correspond to the cases (i), (ii), (iii) and (iiii),
respectively. In the figures these parts are separated from each other by the straight
lines indicating the values of c(m)

1 , c( f )
2 and c( f )

1 attained at selected values of the

parameter λ3

(
= λ

(m)
3 = λ

( f )
3

)
. In this case for each of these parts the dispersion

curve c = c(kR) and its derivative dc/d (kR) are continuous. Such a continuity oc-
curs also at the points connecting the parts I and II, as well as II and III. At the point
contacting parts III and IV the dispersion curve c = c(kR) and its first order deriva-
tive is also continuous for second mode, but at a point the mentioned continuity is
violated for the third mode.

It follows from the graphs given in Figs. 3, 4 and 5 that the second and subsequent
modes do not have a finite limit as kR→ 0. But these modes do have a finite limit
as kR→ ∞ and this limit increases with λ3. In the second mode the noted limit is
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and this limit increases with 3l . In the second mode the 
noted limit is equal to ( ) ( )0

2 2
m fc ca  under 3l a= .  

The foregoing figures show that the dispersion curves corre-
sponding to the first mode arise within the first three parts. 
Moreover these figures show that the values of kR  corre-
sponding to the relations ( )0 ( ) ( )0

2 2 2
f m fc c c ca= , 

( )0 ( ) ( )0
2 2 2
f f fc c c ca=  and ( )0 ( ) ( )0

2 1 2
f m fc c c ca=  for the first 

mode, as well as the values of kR  corresponding to the rela-
tions ( )0 ( ) ( )0

2 2 2
f f fc c c ca= , ( )0 ( ) ( )0

2 1 2
f m fc c c ca=  and 

( )0 ( ) ( )0
2 1 2
f f fc c c ca=  for the second and subsequent modes 

increase with ( )3l a= . 
At the same time, within each of the foregoing parts, the 
wave propagation velocity increases with initial stretching of 
the components of the compound cylinder. This conclusion 
holds also in cases where the initial strains occur only in one 
component of the cylinder. As an example, in Fig. 6 the dis-
persion curves corresponding to the case where ( )

3 1.0fl = , 
( )
3 1.2ml =  are given. These curves prove the noted statement. 
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Figure 6: Dispersion curves corresponding to the cases where ( ) ( )
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Figure 6: Dispersion curves corresponding to the cases where λ
(m)
3 = λ

( f )
3 =

1.0(dashed lines) and λ
(m)
3 = 1.2, λ

( f )
3 = 1.0(solid lines)

equal to c(m)α
2 /c( f )0

2 under λ3 = α .

The foregoing figures show that the dispersion curves corresponding to the first
mode arise within the first three parts. Moreover these figures show that the values
of kR corresponding to the relations c/c( f )0

2 = c(m)α
2 /c( f )0

2 , c/c( f )0
2 = c( f )α

2 /c( f )0
2 and

c/c( f )0
2 = c(m)α

1 /c( f )0
2 for the first mode, as well as the values of kR corresponding to

the relations c/c( f )0
2 = c( f )α

2 /c( f )0
2 , c/c( f )0

2 = c(m)α
1 /c( f )0

2 and c/c( f )0
2 = c( f )α

1 /c( f )0
2

for the second and subsequent modes increase with λ3 (= α).
At the same time, within each of the foregoing parts, the wave propagation velocity
increases with initial stretching of the components of the compound cylinder. This
conclusion holds also in cases where the initial strains occur only in one component
of the cylinder. As an example, in Fig. 6 the dispersion curves corresponding to
the case where λ

( f )
3 = 1.0, λ

(m)
3 = 1.2 are given. These curves prove the noted

statement.
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5 Conclusions

From the results analyzed above the following conclusions were reached:

The initial stretching of the components of the compound cylinder causes the ax-
isymmetric wave propagation velocity to increase.

As for numerical investigations the case where the material of the inner cylinder is
stiffer than that of the outer hollow cylinder material, therefore the character of the
dispersion curves attained for the compound cylinder is similar to that attained for
the solid cylinder, i.e., the values of the wave propagation velocity c/c( f )0

2 decrease
monotonically with kR.

As for numerical investigations the case where the material of the inner cylinder is
stiffer than that of the outer hollow cylinder material, therefore the character of the
dispersion curves attained for the compound cylinder is similar to that attained for
the solid cylinder, i.e., the values of the wave propagation velocity c/c( f )0

2 decrease
monotonically with kR.

In the first mode the values of ccc/c( f )0
2 have a finite limit as kR→ 0. This limit

is a “bar” velocity for the pre-strained compound cylinder and determined by the
expressions (27), (31).

According to the expression (28)-(30), the lower limit of the wave propagation ve-
locity in the first mode can be determined as min

{
c( f )α

2 /c( f )0
2 ;c(m)

ρ

(
λ

(m)
3

)
/c( f )0

2

}
where α = λ

( f )
3 .

The lower limits of all the modes increase with tensional initial elongation of the
components of the cylinder along the wave propagation direction.

The dispersion curves attained for the second and subsequent modes are divided
into four parts by the velocities determined by the expressions in equation (23).

The dispersion curves regarding the first mode arise within the foregoing first three
parts.

Under the existence of the initial tension in the components of the cylinder the
aforementioned parts “move” wholly up with increasing λ3. According to the
expressions given in equations (23) and (10), the length of the intervals corre-
sponding to these parts, i.e. the values of LI =

(
c(m)

ρ (λ (m)
3 )− c( f )α

2

)
/c( f )0

2 , LII =(
c(m)α

1 − c( f )α
2

)
/c( f )0

2 , LIII =
(

c( f )α
1 − c(m)α

1

)
/c( f )0

2 depends on the initial strains
in the components of the compound cylinder. For example, the values of LI and
LIII increase, but the values of LII decrease with λ3

(
= λ

( f )
3 = λ

(m)
3

)
.

In Akbarov and Guz (2004), according to the corresponding problem statement,
for initial strains ε

(m)0
33 , ε

( f )0
33 the values 0.004, 0.008 and 0.01 are selected. But
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in the present investigation, according to the selected values of λ
(m)
3 , λ

( f )
3 , i.e. for

λ
(m)
3 ; λ

( f )
3 = 1.2, 1.5 and 1.9, it is obtained from equations (1) and (7) that ε

(m)0
33 ;

ε
( f )0
33 = 0.220, 0.625 and 1.305. Namely this statement causes the significant effect

of the initial strains on the considered wave propagation velocity. At the same
time, this statement forces us to establish the analytical expressions (27) – (31) for
asymptotic-limit values of the wave propagation velocity; such expressions have
not been attained in Akbarov and Guz (2004).

Although the discussed numerical results are obtained for the particular selected
cases, but they have also a general meaning for the wave propagation problems for
the finite pre-strained compound cylinders made from high-elastic materials.

References

Akbarov, S. D. (2006a): The influence of the third order elastic constants on the
dynamical interface stress field in a half-space covered with a pre-strained layer.
Int. J. Non-Linear Mech., vol. 41, pp. 417–425.

Akbarov, S. D. (2006b): Dynamical (time-harmonic) axisymmetric interface stress
field in the finite pre-strained half-space covered with the finite pre-stretched layer.
Int. J. Eng. Sci., vol. 44, pp. 93–112.

Akbarov, S. D. (2006c): On the dynamical axisymmetric stress field in a finite pre-
stretched bilayered slab resting on a rigid foundation. J. Sound Vibr., vol. 294, pp.
221- 237.

Akbarov, S. D. (2006d): Frequency response of the axisymmetrically finite pre-
stretched slab from incompressible functionally graded material on a rigid founda-
tion. Int. J. Eng. Sci., vol. 44, pp. 484–500.

Akbarov, S. D. (2007a): The axisymmetric Lamb’s problem for the finite pre-
strained half-space covered with the finite pre-stretched layer. Int. Appl. Mech.,
vol. 43, pp. 351- 360.

Akbarov, S. D. (2007b): Recent investigations on the dynamical problems of the
elastic body with initial (residual) stresses (review). Int. Appl. Mech., vol. 43(12),
pp. 3–27.

Akbarov, S. D.; Guz, A. N. (2004): Axisymmetric longitudinal wave propagation
in pre-stressed compound circular cylinders. Int. J. Eng. Sci., vol. 42, pp. 769–791.

Akbarov, S. D.; Ozisik, M. (2003): The influence of the third order elastic con-
stants on the generalized Rayleigh wave dispersion in a pre-stressed stratified half-
plane. Int. J. Eng. Sci., vol. 41, pp. 2047–2061.

Akbarov, S. D.; Ozisik, M. (2004): Dynamic interaction of pre-stressed nonlinear
elastic layer and half-plane, Int. Appl. Mech., vol. 40, pp. 1056–1063.



Axisymmetric longitudinal wave propagation 175

Belward, I. A. (1976): The propagation of small amplitude waves in prestressed
incompressible elastic cylinders. Int. J. Eng. Sci., vol. 14(8), pp. 647–659.

Biot, M. A. (1965): Mechanics of Incremental Deformations , Wiley, New York,
1965. pp. 504.

Chen, H. B.; Fu, D. J., Zhang, P. Q. (2007): An Investigation of Wave Propa-
gation with High Wave Numbers via the Regularized LBIEM. CMES: Computer
Modeling in Engineering and Sciences , vol.20(2),pp. 85-96.

Gato, C.; Shie, Y. (2008): Numerical Simulations of Dynamic Fracture in Thin
Shell Structures . CMES: Computer Modeling in Engineering and Sciences , vol.33(3),
pp. 269-292.

Chadwick, P.; Jarvis, D. A. (1979a): Interfacial waves in a pre-strained neo-
Hooken body. I: biaxial states of strain, Quart. Journal of Mechanics and Applied
Mathematics, 32, pp. 387–399.

Chadwick, P.; Jarvis, D. A. (1979b): Interfacial waves in a pre-strained neo-
Hooken body. II: triaxial states of strain, Quart. Journal of Mechanics and Applied
Mathematics, 32, pp. 401 – 418.

Demiray, H.; Suhubi, E. S. (1970): Small torsional oscillation in initially twisted
circular rubber Cylinder. Int. J. Eng. Sci., vol. 8, pp. 19–30.

Dowaik, M. A. ; Ogden, R. W. (1991): Interfacial waves and deformations in pre-
stressed elastic media, Proceedings of the Royal Society of London A, 433 (1991)
313 – 328.

Ogden, R.W.,; Sotiropoulos, D.A. (1998): Reflection of plane waves from the
boundary of a pre-stressed compressible elastic half-space. IMA Journal of Applied
Mathematics, 61, pp. 61-90.

Eringen, A. C.; Suhubi, E. S. (1975a): Elastodynamics. Vol. I.Finite Motions,
Academic Press, New York, London, pp. 1–342.

Eringen, A. C.; Suhubi, E. S. (1975b): Elastodynamics. Vol. II. Linear theory.
Academic Press, New York, London, pp.343–1002.

Fu, Y. B.; Mielke, A. (2002): A new identity for the surface impedance matrix
and its application to the determination of surface-wave speeds, Proceedings of the
Royal Society of Londan, A 458, pp. 2523–2543.

Daniel, R. (2008): Stresses and displacements for some Rayleigh-type surface
acoustic waves propagating on an anisotropic half-space. The Journal of the Acous-
tical Society of America, 123(2), pp.599–601.

Gren, A. E.; Rivlin, R. S.; Shield, R. T. (1952): General theory of small elastic



176 Copyright © 2009 Tech Science Press CMES, vol.39, no.2, pp.155-177, 2009

deformations superposed on finite elastic deformations. Proceedings of the Royal
Society of Londan, A 211, pp128–154.

Green, A. E. (1961): Torsional vibration of an initially stressed circular cylinder.
In “Problems of continuum mechanics” (Muskhelishvili Anniversary Vol.) Society
for Industrial and Applied Mathematics. Philadelphia, Pennsylvania, pp. 148–154.

Green, A. E. (1963): A note on wave propagation in initially deformed bodies,
Journal of the Mechanics and Physics of Solids, 11(2), pp.119–126.

Guz, A. N. (1986a): Elastic Waves in a Body with Initial Stresses. I. General
Theory - Naukova Dumka, Kiev, (in Russian), pp. 374.

Guz, A. N. (1986b): Elastic Waves in a Body with Initial Stresses. II. Propagation
Laws - Naukova Dumka, Kiev, (in Russian), pp. 536.

Guz, A. N. (2004): Elastic Waves in Bodies with Initial (Residual) Stresses. “
A.S.K.”, Kiev, (in Russian), pp. 672.

Guz, A. N. (2002): Elastic waves in bodies with initial (residual) stresses. Int.
Appl. Mech., vol. 38, pp. 23–59.

Guz, A. N.; Kushnir, V. P.; Makhort, F. G. (1975): On the wave propagation in a
cylinder with initial Stresses. Izv. AN SSSR, Ser. Mekhan. Tverd. Tela., vol. 5, pp.
67–74 (in Russian).

Guz, A. N.; Makhort, F. G. (2000): The physical fundamentals of the ultrasonic
nondestructive stress analysis of solids. Int. Appl. Mech., vol. 36, pp. 1119–1148.

Guz, A. N.; Menshikov, O. V.; Zozulya, V. V.; Guz, I. A. (2007): Contact problem
for the flat elliptical crack under normally incident shear wave. CMES: Computer
Modeling in Engineering and Sciences, vol. 17(3), pp. 205–214.

Guz, A. N.; Rushchitsky, J. J.; Guz, I. A. (2007): Establishing fundamentals of
the mechanics of nanocomposites. Int. Appl. Mech., vol. 43(3), pp. 247–271.

Guz, A. N.; Rushchitsky, J. J.; Guz, I. A. (2008): Comparative computer mod-
eling of carbon-polimer composites with carbon or graphite microfibers or carbon
nanofibers. CMES: Computer Modeling in Engineering and Sciences, vol. 26(3),
pp. 139–156.

Guz, A. N.; Zozulya, V. V. (2007): Investigation of the effect of frictional contact
in III-Mode crack under action of the SH-wave harmonic load. CMES: Computer
Modeling in Engineering and Sciences, vol. 22(2), pp. 119-128.

Hayes, M.; Rivlin, R. S. (1961): Surface waves in deformed materials. Archive
for Rational Mechanics and Analyses. 8(5), pp. 358–380.

Kushnir, V. P. (1979): Longitudinal waves in the field of a transversally isotropic
cylinder with initial Stress. Int. Appl. Mech., vol. 15(9), pp. 884–886.



Axisymmetric longitudinal wave propagation 177

Liu, Y. H.; Chen, S. S.; Li, J.; Cen, Z. Z (2008): A Meshless Local Natural
Neighbour Interpolation Method Applied to Structural Dynamic Analysis. CMES:
Computer Modeling in Engineering and Sciences, Vol. 31(3), pp. 145-156.

Lin, S.-M.; Lee, S.-Y.; Tsai, C.-C.; Chen, C.-W; Wang, W.-R.; Lee, J.-F. (2008):
Wave modes of an elastic tube conveying blood. CMES: Computer Modeling in
Engineering and Sciences, vol. 34(1), pp. 34–54.

Lu, Y. Y.; Zhu, J. (2007): Perfectly matched layer for acoustic waveguide modeling—
benchmark calculations and perturbation analysis. CMES: Computer Modeling in
Engineering and Sciences, Vol 22 (3) , pp. 235–248.

Rogerson, G. A.; Sandiford, K. J. (2000): The effect of finite primary deforma-
tions on harmonic waves in layered elastic media. Int. J. Solid. Struct., vol. 37, pp.
2059-2087.

Truestell, C. (1961): General and exact theory of waves in finite elastic strain.
Archive for Rational Mechanics and Analyses, 8(1), pp. 263-296.

Yahnioglu, N. (2007): On the stress distribution in the pre-strained simply sup-
ported strip containing two neighbouring circular holes under forced vibration. Int.
Appl. Mech., vol. 43(10), pp. 135-140.

Yoda, T.; Kodama, N. (2006):Nonlinear Dynamic Response Analysis of Steel
Frames under Seismic Action. CMES: Computer Modeling in Engineering and
Sciences, vol. 11(1), pp. 139–156.

Wang, H. X.; Wang, S. X. (2008): Analysis of Dynamic Fracture with Cohesive
Crack Segment Method. CMES: Computer Modeling in Engineering and Sciences,
vol. 35 (3), pp. 253-274.

Zhuk, Yu. A.; Guz, I. A. (2007): Features of plane wave propagation along the
layers of a pre-strained nanocomposites. Int. Appl.Mech., vol. 43(4), pp. 361–379.




