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Advanced array processing approaches require accurate knowledge of 

the location of individual element in a sensor array. Most array shape 

estimation methods require the directions of sources. In this paper, an 

array shape estimation method based on eigen-decomposition is 

presented. The directions of sources do not need to be considered in 

advance and optimal array shape is generated through a series of 

iterations. To further improve the accuracy of this algorithm, a 

partitioned eigenstructure method is introduced. Numerical simulations 

using non-partitioned and partitioned method are conducted to verify 

the performance of the proposed technique. 
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1 Introduction 

Nowadays, towed array has been widely used in a variety of fields 

from radar, oceanography, and seismology to radio astronomy. 

Advanced signal processing methods such as beamforming and 

matched-field processing and inversion are adopted in towed array 

applications1, 3. Most array processing approaches are based on the 

assumption that the shape of the array remains linear or unchanged. 

However, due to the towing ship’s speed, turning maneuvers or water 

currents, a towed array is hardly to maintain in linear shape4, 5. So, in 

most cases, especially for dynamic array, localization of the sensors 

is a critical issue, a procedure which is named as array element 

estimation. 

Array shape estimation methods can be broadly classified into source 

independent (methods that use positioning sensors such as heading 

sensors or depth sensors) or source dependent (methods that require 

calibrating sources)6. One direct approach of source independent 

methods, which instrument the array with depth sensors and 

compasses, would be to use the measurements of a depth sensor and 

compass located at each location to estimate its position. However, 

this is neither economically and mechanically feasible in practical 

application. Owsely7 assumed the array shape could be modelled by a 

low order polynomial and used the limited number of sensors’ 

information to determine the coefficients of this polynomial. Howard 

and Syck8 introduced a spline interpolation scheme which presents 

better numerical stability. It is apparent that those methods are 

constrained to the accuracy of the measurement devices. 

There are several source dependent methods which have been studied 

to estimate the array shape. Auxiliary sources in known locations are 

introduced in many literatures9-13 to estimate the shape of array. Lo 

and Marple13 proposed a calibration technique which requires 

calibrating sources whose directions are known. Their methods showed 

good performances in array shape estimation, although the locations of 

auxiliary sources are required. Rockah and Schultheiss14, 15 have shown 

that finding the direction of sources is possible if the location of one 

sensor and the direction to another sensor are known, providing the 

array is non-linear and the direction-of-arrival (DOAs) are distinct. 

Moreover, they presented an algorithm for self-calibration which is 

based on observing disjoint sources. However, in practice, the bearings 

of the sources relative to the array are changing or not accurate for 

moving array, especially the turning array.  

 

Therefore, it is important to find a source dependent method which 

could estimate the array shape without the locations of reference 

sources. 

This paper is specifically concerned with flexible, ocean-towed, non-

linear arrays and aims to estimate the array shape with reference 

sources in unknown locations. The array shape is perturbed by 

turning maneuvers or water currents. The outline of the paper is as 

follows. Section 2 formulates the data model for the general problem. 

Section 3 presents the eigenstructure algorithm in detail and Section 

4 describes partitioned method which could improve the accuracy of 

sensor locations. Section 5 shows numerical examples using the 

proposed algorithm. Some conclusions are drawn in Section 6.  

 

2 Problem Formulation 

Consider a hydrophone array with M sensors placed on a plane and 

numbered 1 through M. Set up a Cartesian coordinate system on the 

plane with the origin at sensor 1. The coordinates of sensor m are 

denoted by [xm, ym]. Suppose there are N narrow-band, far-field 

sources centered at frequency ω  with planar wavefronts (M>N). The 

signals received by sensor m can be described by 

1
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n

z t s t v t
=
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where m=1, 2, …, M and 1{ ( )}N

n ns t =  are the radiated signals. The 

delays mn  are given by 

/mn mnd c = −  

cos sinmn m n m nd x y = +  
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where n  is the DOA of n-th source relative to the y-axis and mnd is 

the distance from sensor 1 to sensor m in the DOA of signal n. 

Therefore, Equation (1) can also be expressed by 
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A “snapshot” taken by the sensors at time t can be described by the 

matrix equation, 

Z(t) ( ) ( ) V( )A S t t= +  (4) 

where 
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Notice that the vector ( )na   called steering vector defines the array 

manifold parameterized by the given array geometry defined by [xm, ym]. 
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The problem addressed here can be summarized as follows: Given 

the data Z(t), estimate the sensor coordinates, as well as the uncertain 

directions of arrival of signals. Before the introduction of array shape 

estimation method, we make the following assumptions: (i) The 

signals s(t) and measurement signals z(t) are assumed stationary over 

the observation interval and ergodic. (ii) The calibrating signals are 

uncorrelated with the measurement noise. (iii) The number of sources 

is known or can be estimated. 

 

3 The Eigenstructure Method  

The eigenstructure method16 is based on the eigen-decomposition of 

the sample covariance matrix of the vector of received signals. The 

information about sensor positions, which are contained in 

covariance matrix R, can be extracted through the steering vectors. 

The covariance matrix of the received signals are given by 

( )Z( ) ( )HR E t Z t=  (5) 

Assuming  and  are the eigenvalues and corresponding 

eigenvectors, the covariance matrix   can be expressed by, 

HR U U=   

where 

1 2( , ,... )Mdiag    =  and 

1 2 ... M      

1 2[ , , , ]MU u u u=  

Given the eigenvectors  and the number of sources N, we can 

construct signal subspace sU and noise subspace 

1 2[ , , , ]N N N MU u u u+ += . 

Schmit’s dissertation17 proved that each of the columns of  is 

orthogonal to the matrix NU . According to this theorem, if we 

define 

( ) ( ) ( ) ( )
2 2

1

Q
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then Q should be zero. However, due to the uncertainties of DOAs 

and the sensor coordinates, the value of Q is also unknown. To find 

the optimal sensor positions and DOAs, we propose the minimization 

of the following cost function 

( ) ( ) ( ) ( )
2 2

1

ˆˆ ˆ ˆ
N

H H

N N i

i

Q U A U a   
=

=  (6) 

The result of Q is defined by sensor coordinates [xm, ym] and DOAs. 

The search for the minimum of Q can be performed by many 

algorithms. The method proposed in the following is related to 

Gauss-Newton technique and iterates between two steps. The first 

step uses the initial sensor coordinates or the last estimated values to 

estimate the DOAs, which is the same as classical DOA estimation 

method, such as MUSIC algorithm. The second step, in turn, uses the 

DOAs provided by the first step to find the optimal sensor 

coordinates which minimize the cost function. Detail introduction 

about the method is in the following. 

 

3.1 DOAs Estimation 

In the classical DOA estimation methods, the sensor positions are 

supposed to be known. To process this step, the initial sensor 

positions or last estimated sensor coordinates are applied to MUSIC 

algorithm. MUSIC algorithm is a typical DOA estimation method. 

We evaluate the function defined by 

2

1
( )

( )H

N

P
U a




=  (7) 

In practice, one selects a fairly dense set of radiated angles over the 

field of interest and computes the values of Equation (7). Then N 

peaks are chosen from those values and their corresponding angles 

are the estimated DOAs. Comparing Equations (6) and (7), this 

method of estimating the DOAs minimizes the cost function for the 

assumed sensor coordinates. 

 

3.2 Sensor Coordinates Optimization 

This part aims to optimize the sensor coordinates which could 

minimize the cost function. Suppose the last estimated sensor 

coordinates are given by 0 0( , )m mx y , m=1, 2, …, M, while the 

sensor coordinates that minimize the cost function are given by 

0 0( , ) ( , ) ( , )m m m m m mx y x y x y= +       (8) 

If ( , )m mx y  is small enough, the matrix  can be 

expanded as follows 

( ) ( ) ( ) ( )0 1 2x yA A A A   = + +  (9) 

where ( )0A   is the matrix ( )A   computed with the nominal 

sensor coordinates 0 0( , )m mx y  and  

1 2{ , ,..., }x Mdiag x x x   

1 2{ , ,..., }y Mdiag y y y  

( ) ( )1 0 1 2{sin ,sin ,...,sin }NA jA diag
c


      
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
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Then the cost function can be rewritten as 
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where 0ia , 1ia  and 2ia  are the i-th column vectors of 

( )0A  , ( )1A  and ( )2A  respectively, and 

1 2[ , ,..., ]T

x Mv x x x= , 1 2[ , ,..., ]T

y Mv y y y=  

We construct the following vectors and matrices 

[ , ]T T T

xy x yv v v=  

( ) ( ) ( ) ( )1 2
ˆ ˆ( ) [ { }, { }]

H H

N i N iB i U diag a U diag a   = −

( ) ( )0
ˆ( )

H

N iZ i U a =  

Therefore, the cost function could be simplified as, 
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2

1
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xy
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The real xyv  that minimizes the cost function is given by 

1ˆ [Re{ }] Re{ }H H

xyv B B B Z−=  (11) 

where  

[ (1) , (2) ,..., ( ) ]T T T TB B B B N ,  

[ (1) , (2) ,..., ( ) ]T T T TZ Z Z Z N . 

 

3.3 Iteration 

The proposed procedure could be summarized as follows 

1) Calculate the covariance matrix R and get the eigenvalues, as well 

as eigenvectors. Construct noise subspace ˆ
NU . 

2) Use the initial sensor coordinates to find the DOAs of signals. 

3) Compute the cost function using Equation (6). 

4) Use the estimated DOAs and last estimated sensor coordinates to 

construct B and Z and estimate the sensor coordinates according to 

Equation (11). 

5) Use the new sensor coordinates to generate the new DOA 

estimates. 

6) Compute the value of the cost function with new sensor 

coordinates and DOA estimates and verify the decrease of the value 

Q. If Q converged, then stop; otherwise, go back to Step 4. 

 

4 The Partitioned Estimation Method 

To further improve the accuracy of this algorithm, this section 

introduces the partitioned array shape estimation method. By 

dividing the array into several sub-arrays and applying the 

eigenstructure method to each sub-array, it could reduce the effect of 

former sensor positions errors on the latter one.  

There are many different partitioning approaches and interleaved 

partitioning is applied in this paper. Interleaved partitioning divides 

an array into several disjoint interleaved subarrays. The purpose 

behind the interleaved partitioning scheme is to physically separate 

the receivers in each subarray as much as possible. By estimating the 

sensor coordinates in different subarrays, the cumulative positions 

errors on the whole array could be reduced. An example of 

interleaved partitioning is shown in Figure 1. In this paper, the whole 

array is partitioned into several segments using interleaved 

partitioning method. 

 

 

Figure 1. Interleaved partitioning array. 

 

5 Numerical Studies 

In this section we present several numerical simulations which 

illustrate the behavior of the eigenstructure method with different 

SNRs. Then the effect of interleaved partitioning is also shown by an 

example.  

Consider a uniform array with 25 sensors, separated by 1 m. Two 

equal power narrow-band (single frequency cell) far-field sources are 

at directions 
1=30 ,

2 =60 . The sound wave velocity is 1500 m/s 

and wavelength is 1 m. However, when we apply the proposed 

algorithm, the DOAs of signals are supposed to be unknown. The 

sources generate zero mean Gaussian signals. The noise is also zero 

mean, Gaussian, uncorrelated from sensor to sensor and uncorrelated 

with signals.  

In this simulation, a simple curved and smooth array shape is treated 

as the true array shape. The original array shape (nominal shape) is 

very different with true array shape, which could not be used to do 

signal processing. The given data are the signals received by the 

array elements in the true array and original array element locations. 

The proposed method in this paper is applied to find the best array 

shape that is closest to the true array. To verify the stability of this 

method, noisy (disturbance) signals are also added to the original 

signals.  

Figures 2 and 3 depict the estimated array shape, nominal array shape 

as well as the true shape with different SNRs (30 dB and 50 dB 

respectively). It can be seen that this method gives good results 

which are very close to true shape, although the nominal array shape 

has very big derivations with true shape. The details about the 

derivations are listed in Table 1. 

 

Table 1. Sensor positions derivations using eigenstructure method. 

 

Maximum  

Derivation (m) 

Average  

Derivation (m) 

X 

direction 

Y 

direction 

X 

direction 

Y  

direction 

Nominal shape 1.2280 1.9981 0.7429 1.2108 

Estimated 

shape 

30 dB 0.2990 0.7852 0.2624 0.3773 

50 dB 0.4581 0.5633 0.1222 0.0680 

 

The derivations between nominal shapes and the true array are bigger 

than the sensor interval. The data in Table 1 indicate that the 

proposed algorithm significantly reduces both the maximum and 

average derivations in X and Y directions. In fact, most of the array 

elements in estimated shapes are very close to the locations of true 

array elements.  
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Figure 2. Array shapes (SNR=30 dB). 
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Figure 3. Array shapes (SNR=50 dB). 
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Figure 4. partitioned array shapes. 

Figure 2 also implies that the derivations would increase with the 

increase of the index of sensor. So partitioning method is conducted 

to improve the accuracy of sensor locations. Figure 4 shows several 

figures about the estimated segmented shapes using partitioned 

eigenstructure method. These plots indicate that the partitioned 

method could provide very accurate results in the different parts of 

whole array. The detailed information is presented in Table 2. The 

partitioned eigenstructure method could prevent the cumulative error 

so every segment could be estimated precisely. The overall 

derivations are also significantly reduced.  

Table 2. Sensor positions derivations using partitioned method. 

Maximum  

Derivation (m) 

Average 

Derivation (m) 

X  

direction 

Y 

direction 

X  

direction 

Y 

direction 

Nominal shape 1.2280 1.9981 0.7429 1.2108 

Estimated shape 

(30 dB) 

0.0799 0.2922 0.0444 0.1528 

6 Conclusion 

The paper has presented an array shape estimation method with 

sources in uncertain localizations. Based on the eigen-decomposition 

method and the iteration process, the proposed algorithm leads to an 

optimal result for the array shape. The partitioned eigenstructure 

method has been subsequently introduced to reduce the derivations 

and get a better array shape. Numerical simulations have 

demonstrated that a significant improvement can be made using 

partitioned method. Further work would focus on the number of 

sources and the optimization partitioning method. Experiments are 

underway to verify this proposed algorithm for practical applications. 
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