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Abstract: The energy of a spring with a well-distributed mass ms is theoretically 
studied in this paper. The solution of the wave equation is derived in detail, and 
then the kinetic energy and potential energy of the spring are studied with the wave 
equation, as well as the kinetic energy of the oscillating mass M. The kinetic 
energy and potential energy of the spring, and total energy are numerically 
simulated for different ratios ms/M with considering the spring’s mass, which 
makes the property of energy of the oscillating system understood easily. 
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1 Introduction 
Conventional textbook such as college physics, the mass of a spring ms is usually ignored in the 

study of the oscillation, which leads to an ideal model for describing the spring oscillator. For the 
practical considerations, however, the spring has mass, which is not negligible with respect to the mass M 
suspended at its end. The topics on an oscillating period and total energy of oscillating system have been 
studied for many years [1-5]. Worsnop et al have suggested that ms/3 of the spring mass should be added 
to the mass M to calculate the oscillation period [6]. Galloni et al have reported that one may suppose the 
spring mass is null in which case a mass equal to ms/3 must be added at its end to get the same energy 
[7,8]. However, the kinetic energy and potential energy of a spring in an oscillation system have not been 
investigated so far when the mass of a spring is taken into account. The aim of this paper is to analyze the 
influence of the mass of the spring on the simple harmonic motion of the spring mass system. Specifically, 
we derive a theoretical description of the kinetic and potential energies, and gain an insight into it with 
different spring-object mass ratios ms/M. 

The rest part of this paper is organized as follows. In the section II, we briefly describe the solution 
of the wave equation. The energy of an oscillation system is studied in detail in the Section III. 
Conclusions are given in the Section IV. 

2 The Wave Equation and Dynamic Solution 
As illustrated in Fig. 1, we consider a spring-object model, which consists of a spring with a well-

distributed mass ms and an object with the mass M at the right end of a spring. The length of the spring is L 
and the elastic constant is k. The object attached to at the right end of the spring is released from its 
equilibrium position. According to the Hooke’s law and Newton’s second law; we can get a wave equation.  
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where 
sm

k
=2

0ω . L0ω  is the speed of a longitudinal wave. More details about derivation of the wave 

equation can be found in [1-3,8-11]. 
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Figure 1: The schematic structure of oscillating system with a spring mass ms and mass M 

 
In order to get the solution of Eq. (1), the boundary and initial conditions of the wave equation 

should be considered. First, at the left end of the spring (x = 0), the spring is fixed, thus 0),0( =tu . 
Second, both law Hooke’s law and Newton’s second are applied at the right end of the spring (x = L). 
Then we can obtain an equation ),(),( tLMutLkLu ttx =− , where the minus sign denotes leftward 
direction of the elastic force. Substituting Eq. (1) into it, we can obtain the other 

expression ),(),( xx tLu
m
MLtLu

s
x −= . Third, as the system is stationary when t=0, in other words, the 

velocity of spring is equal to zero when t=0, therefore 0)0,( =xut . In addition, the spring is stretched and 
the deformation of the spring is 0l  when t=0, thus the deformation of the spring at x from the left fixed 

end of the spring can be expressed as 0)0,( l
L
xxu = . 

Based on the above information, the boundary and initial conditions of the wave Eq. (1) are 
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The wave Eq. (1) can be solved using the method of separation of variables. We define 
)()(),( tTxXtxu = , and then substitute it into the wave Eq. (1), we can obtain the following equations 
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where 2ω  is the separation constant. Taking the linear combination of them, the general solution of Eq. 
(2) can be written as 
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where 0A , 0B , 0C , 0D , nA , nB , nC  and nD  are the constants and depend on the boundary and initial 
conditions, n is the order number of harmonics. 

Both 0),0( =tu  and 0)0,( =xux  are substituted into Eq. (4), the wave Eq. (4) now reduces to 
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By substituting boundary condition ),(),( tLu
m
MLtLu xx

s
x −=  into Eq. (5), we get a transcendental 

equation 
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Fig. 2 gives the graphical solution of a transcendental equation, the solution of the transcendental 

equation is the intersection point of the curves )cot(
0

1 ω
ωny =  with the straight line 

0
2 ω

ωn

sm
My ⋅= , which 

is shown in Fig. 2. Tab. 1 gives the solutions of the transcendental equation with different ratios
M
ms  for 

the fundamental oscillating order n=1. Tab. 1 shows that the solution of the transcendental equation 
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Figure 2: Graphical solution of the transcendental equation 
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Table 1: Transcendental equation’s solution with different ratios (
M
ms ) 

=
M
ms     0.01           0.10        0.20         0.50          1.00         1.50        2.00      3.00   ….  ∞  

=
0

1

ω
ω

  0.099834  0.31105   0.43284   0.65327   0.86033   0.98824   1.0769  1.1925 …   
2
π

 

 
Now let us determine the coefficient nA  of Eq. (5). The coefficient nA  of Eq. (5) depends on 

boundary condition with Fourier series. The function of )sin(
0 L
xn

ω
ω

 is not an orthogonal function 
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 is an orthogonal function but is non-normalized. 
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By using the orthogonality between the Fourier series of them, the coefficients nA  of Eq. (5) can be 

determined. To accomplish it, the initial condition 0)0,( l
L
xxu =  is differentiated to x and substituted into 

Eq. (5), and then we get the following equation: 
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 is the orthogonal function but is non-normalized, both sides of Eq. (9) are multiplied 

by )cos(
0 L

xm

ω
ω

, and then is integrated with respect to dx  in the domain Lx ≤≤0 . Thus we can get 

the equation 
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Transcendental Eq. (6) [
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)cot(
ω
ω

ω
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s
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⋅= ] is used in Eq. (11). 

Initial condition 0)0,( l
L
xxu =  and Eq. (11) are substituted into Eq. (5), then set t=0 and x=L, we 

can get 
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Thus we can reach an important conclusion based on Eq. (12). 
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3 The Energy of an Oscillating System 
Now we study the energy of an oscillating system, including kinetic energy and elastic potential 

energy of a spring, as well as the kinetic energy of an oscillating mass M [12]. For the kinetic energy of a 

spring Ekm, each element x∆  with mass x
L

ms ∆  and velocity ),( txut  has energy xtxu
L

m
t

s ∆),(
2
1 2 . Take 

it for example, when ab xxx −=∆ , the kinetic energy of the element x∆  in the range ba xxx ≤≤  can 
be expressed as 
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In order to show the each element of kinetic energy of a spring (Ekm) clearly, we set the elastic 
constant k = 3.0 N/m (which is measured in our experiment lab) and the mass of a spring ms = 0.03 kg, 

Lx 1.0=∆ . The kinetic energy of each element x∆  with different ratios ms/M (ms/M = 0.1, ms/M = 0.5, 
ms/M = 1.0, ms/M = 3.0) and different times (t = 0, t = T/8, t = 2T/8, t=3T/8 and t = 4T/8) are given in 

Fig. 3, where the oscillating period is 
k
mM

T s 3/
2

+
= π  [5,6]. Fig. 3 shows that Ekm enhances 

gradually from t = 0 to t = 2T/8 and reduces from t = 2T/8 to t = 4T/8. This can be explained as the 
oscillating system reaches its position of equilibrium when t = 2T/8. In addition, Ekm is much stronger at 
the position x = L than any other position, and Ekm is stronger with increasing the spring mass ms when 

Mms ≤ . It is interesting to find that the biggest energy of Ekm is at about x = 0.4L when ms/M = 3.0, in 
other words, the biggest energy appears in the other position when Mms >  or ms is bigger enough. 
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Figure 3: The kinetic energy of a spring Ekm with different ratios ms/M. A. ms/M = 0.1, B. ms/M = 0.5, C. 
ms/M = 1.0, D. ms/M = 3.0 

In addition, potential energy of a spring of each element x∆  is also studied, each element x∆  has a 
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Fig. 4 shows the potential energy of each element x∆  with different ratios ms/M (ms/M = 0.1, ms/M 
= 0.5, ms/M = 1.0, ms/M = 3.0) and times (t = 0, t = T/8, t = 2T/8, t = 3T/8 and t = 4T/8), where 

Lxxx ab 1.0=−=∆ . Compared with the kinetic energy of each element shown in Fig. 3, potential 
energy Ep of Fig. 4 exhibits the opposite property to kinetic energy Ekm. Specifically, Ep gradually reduces 
from t = 0 to t = 2T/8 and enhances from t = 2T/8 to t = 4T/8. t = 2T/8 indicates the oscillating system at 
the equilibrium position, and the potential energy of a spring Ep = 0 [13]. In addition, Ep is bigger than Ekm 
when Mms ≤ , in other words, the potential energy Ep plays more dominant role in total energy than 
kinetic energy Ekm. However, kinetic energy Ekm is equal to potential energy Ep when ms is big enough, for 
example 0.3/ =Mms . 
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Figure 4: The potential energy of a spring Ep with different ratios ms/M. A. ms/M = 0.1, B. ms/M = 0.5, C. 
ms/M = 1.0, D. ms/M = 3.0 

Now let us consider the total kinetic energy of a spring, each element dx  with mass dx
L

ms  and 

velocity ),( txut  has an energy dxtxu
L

m
t

s ),(
2
1 2 , and then the total kinetic energy of a spring Ekm is 

integrated with respect to dx  in the range Lx ≤≤0 . 
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Eq. (16) means that the total kinetic energy of a spring Ekm is varied with the time, which can be seen 
in Fig. 5. 

As for total potential energy of a spring, each element dx  has an energy 
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Eq. (17) shows that the total potential energy of a spring Ep is related with the time, seen in Fig. 5. 
The kinetic energy of mass M, EkM is  
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And then the total energy of an oscillating system is 
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Eq. (19) means the total energy of an oscillating system is constant.   
In order to understand the energy of oscillating system fully, the kinetic energy of a spring (Ekm) and 

potential energy of a spring Ep, kinetic energy of mass M (EkM) and the total kinetic energy (E) are plotted 
with time for different ratios ms/M in Fig. 5. The parameters of the elastic constant k and spring’s mass ms 
are the same as the above model, i.e., the elastic constant is k = 3.0 N/m and the mass of a spring is ms = 
0.03 kg. Fig. 5(A) shows that the kinetic energy of the oscillator EkM and the elastic potential energy Ep 
versus time without considering the mass of the spring (ms = 0) [13]. We can find that kinetic energy EkM 
and potential energy Ep can transform each other, whereas the total energy of the system E is conserved. 
That is, the elastic potential energy of the spring Ep becomes zero while the kinetic energy of mass EkM 
reaches its maximum value. Fig. 5(B) shows the energy distribution of the spring system with the mass M 
= 0.3 kg. When the elastic potential of the spring Ep reaches its maximum and equals to the total energy E, 
the kinetic energy of the oscillator EkM and the spring Ekm are both at their minimum, i.e., zero. In addition, 
the time-varying characteristic of the spring’s kinetic energy Ekm is the same as that of the oscillator EkM. 
That is, they reach their maxima/minima at the same time. Although the kinetic energy of the spring Ekm 
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is much smaller than the kinetic energy of the oscillator EkM, the total energy of the system E is still 
conserved. The elastic potential energy Ep changes in Figs. 5(C) and 5(D) are the same as that of Figs. 
5(A) and 5(B). The kinetic energies of the spring Ekm and the oscillator EkM reach their minimum at the 
same time. However, the kinetic energy of the oscillator EkM gets its maximum before the spring Ekm. 
From Figs. 5(E) and 5(F), we can find that the kinetic energies of the oscillator EkM and the spring Ekm 
increase periodically as the mass of the oscillator M decreases (or increases the ratio ms/M), and the 
maximum of the spring kinetic energy Ekm is greater than that of the oscillator EkM, whereas the total 
energy of the system E is still conserved.   
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Figure 5: The total energy of a spring E with different ratios ms/M. A. ms/M = 0.1, B. ms/M = 0.5, C. 
ms/M = 1.0, D. ms/M 3.0 
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4 Conclusions 
In conclusion, this study theoretically investigates the kinetic energy and potential energy of a spring, 

and kinetic energy mass M with different ratios ms/M. The kinetic energy and potential energy of a spring, 
and the kinetic energy mass M are numerically simulated. The kinetic energy and potential energy can 
transform each other, whereas the total energy of the system is conserved. The change behaviors of the 
spring’s kinetic energy are the same as that of the oscillator energy with small ratio ms/M, while kinetic 
energy of the oscillator gets its maximum before the spring kinetic energy for big ratio ms/M. Moreover, the 
maximum of the spring kinetic energy is greater than that of the oscillator when the ratio ms/M is big enough.  
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