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Abstract: This paper presents a theoretical analysis of vibration control 
technology of wind turbine blades made of piezoelectric intelligent structures. 
The design of the blade structure, which is made from piezoelectric material, is 
approximately equivalent to a flat shell structure. The differential equations of 
piezoelectric shallow shells for vibration control are derived based on 
piezoelectric laminated shell theory. On this basis, wind turbine blades are 
simplified as elastic piezoelectric laminated shells. We establish the electro-
mechanical coupling system dynamic model of intelligent structures and the 
dynamic equation of composite piezoelectric flat shell structures by analyzing 
simulations of active vibration control. Simulation results show that, under wind 
load, blade vibration is reduced upon applying the control voltage. 
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1 Introduction 
Large-scale wind turbines can reduce power generation cost and increase efficiency by exploiting the 

following relationship between power and swept area A [1]: 
3 2 3

p p
1 1 π
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P C AV C R Vρ ρ∞ ∞= = ,                                                                                     (1) 

where PC  is the power coefficient, R is the wind wheel radius, ρ  is the air density, A is the swept area of 
a rotor, and ∞V is the velocity of wind flow. The air volume and the leaf quality increase with blade length. 
Long blades also capture more wind energy, but the leaves become vulnerable to dynamic loads and 
random wind. A lag time exists between the blade vibration control device reaction and the load on the 
blade, thereby preventing the blade load from being reduced in real time [2-5]. Two types of blade 
vibration control are possible, namely, passive control and active control. In the early 1990s, active 
control of blade pitch and yaw was introduced in the United States [6,7]. Synchronous variable pitch of 
wind turbine blades can be used to vary the pitch torque, avoid stall, and achieve a low wind load on the 
blade when the wind speed exceeds the rated speed [8]. However, for high wind speed, the blade pitch 
cannot be adjusted sufficiently fast; thus, wind turbines with synchronous variable pitch are also damaged 
under a damage load. To deal with this situation, independent variable pitch was introduced, whereby the 
pitch angle of each blade is controlled independently to alleviate load on the blade. Independent variable 
pitch control is currently the most advanced load control mechanism for wind turbine blades [7]. With the 
development of offshore wind power, which dispenses with restrictions such as bridge height for blade 
transport, wind turbine blades become increasingly large and the load on the blades increases 
concomitantly. Local control of the aerodynamic load distributed over a blade can be achieved by using a 
built-in intelligent device [8], which is the concept of the “smart wind wheel.” One technology for 
unloading force on the blade is active aerodynamic load control [9].  
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The National Renewable Energy Laboratory at the Technical University of Denmark studied this 
topic [10,11] by analyzing the potential flow and using a geometry model of cable elasticity and a 
damping variable airfoil [12] to test the trailing-edge drop airfoil at low and normal force fluctuations. 
Results show that the vibration direction of the blade can be controlled by the displacement and velocity 
of the airfoil, and the standard deviation can be reduced to 85%. The standard deviation of the normal 
force is reduced by detecting the angle of attack. For the FAST (Fatigue, Aerodynamics, Structures, and 
Turbulence) system, a three-dimensional simulation shows that the harmful load can be reduced by up to 
64% [13]. In Holland, the Delft University of Technology Wind Energy Institute studied several smart-
wind-wheel control methods [14]. In addition, numerous studies on folding wings (microtabs or microjets) 
were conducted at the University of California at Davis [15]. Piezoelectric materials with unique 
properties that allow in situ sensing and control are the leading smart materials [16-18].  

2 Design and Modeling of Piezoelectric Shell Blade 
At present, large wind turbine blades are made of glass fiber-reinforced resin and consist of a skin 

and a main girder. The piezoelectric materials, as sensing and driving materials, are applied and laid 
between the upper and lower layers of the glass and steel materials. Along the airfoil, the blade is 
equivalent to two shallow shell structures, as shown in Fig. 1. The airfoil is composed of a bottom surface 
for shallow shells, which are designed by using rectangular hyperbolic approximation. The wind turbine 
blade is approximately equivalent to double curved shallow shells. 
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Figure 1: Rectangular flat shell [19] 

 
The piezoelectric layer laminated on the shell is a piezoelectric adaptive structure made of a composite 

matrix layer fixed to a piezoelectric element. In addition to the traditional structural function of bearing, the 
piezoelectric layer executes the functions of self-perception and self-adjustment by exploiting the 
electromechanical coupling effect. The differential equation of the piezoelectric laminated shell with a 
distributed piezoelectric layer is derived from the structural energy function by using first-order shear theory 
(i.e., The Mindlin-Reissner theory of plates), which considers shear deformation and rotational inertia. 

We investigate the dynamic balancing of a composite shell under the action of an external force and 
pressure power. The goal is for the applied mechanical force (or load) and the control force created by a 
voltage applied to the piezoelectric shell to offset each other. The piezoelectric force is produced by the 
converse piezoelectric effect. Fig. 2 shows the piezoelectric shell. 
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Figure 2: Laminated piezoelectric shell [19] 
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3 Finite Element Discrete Model of Piezoelectric Material Shell 
3.1 Modeling Curved Shell Unit Geometry 

Flat shell theory can be used to establish the surface shell element, which is adopted to solve the 
difficulty in the selection of displacement mode. The thin shell element of the surface can be obtained by 
mapping the mother element through the following: 

i iix ,y iy ,z i ix = N = N = N z∑ ∑ ∑                                                                                   (2) 

The intersection point between the normal and the top surface and the bottom is called the opposite 
point of the node, and the coordinates of the point of the I node in the entire coordinate system are 
recorded as 

T T
i,1 i i i ξ=1 i,-1 i i i ξ=-1x = (x y z ) , x = (x y z )                                                                           (3) 

The overall coordinate value of the middle surface node i is as follows: 

T
i,0 i i i ξ=0 i,1 i,-1

1x = (x y z ) = (x + x )
2

                                                                                   (4) 

Eq. (4) indicates that the length of the normal line between the top and the bottom of i at the middle 
point of the middle surface can be obtained, that is, the thickness of the shell at i point, as follows: 

T 1/2 T 1/2
i i,1 i,-1 i,1 i,-1 i ih = [(x - x ) (x - x )] = [Δx Δx ]                                                                   (5) 

In the following form: 
T

i i,1 i,-1 i i iΔx = x - x = (Δx Δy Δz )                                                                                     (6) 

Thus, the normal vector ( )iiξ of i at the middle plane is 

ξ i i i i
i

1(i ) = [Δx i Δy i Δz i ]
h

                                                                                                (7) 

This analysis suggests that the overall coordinate value of any point , ,i i iξ η ζ( ) on the normal line at 
i of the middle plane are 

i T T
ζ i i i i i i i,0 i

ζ ζi = (x y z ) + (Δx Δy Δz ) = x + Δx
2 2

                                                          (8) 

The coordinates of any point on the middle surface of the element can be obtained by using the shape 
function of the plane isoparametric element at the eight points on the normal line at each node, as follows: 

8 8
T i

i i i ξ i 3 ζ i i,0 i
i=1 i=1

ζx = (x y z ) = N (ξ,η)I x = N (ξ,η)(x + Δx )
2∑ ∑                                      (9) 

The analysis results show that the shape of the determination unit of the superposition approximation 
of the infinite “layer” between the upper and lower surfaces of the unit is derived from Eqs. (4), (6), and 
(9). The upper and lower surface layers could be identified when 1ζ = ± , and the shape of the middle 
surface when 0ζ = . The side of the unit can be made up of the middle surface normal (or the 
approximate middle surface normal) to describe the element shape of the curved shell element. The 
discrete model of the shell element is shown in Fig. 3. 
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Figure 3: Element model of wind turbine blade shell 

 
3.2 Modeling Displacement Mode of Curved Shell 

For a curved shell, the normal line of the surface varies with the point because the middle surface of 
the shell is a curved surface. Thus, the two orthogonal axes around the normal line before the deformation 
vary with the point. Thus, to establish the displacement mode, we must first determine the two orthogonal 
rotation axes around the one point of the middle plane when the normal deformation takes place. 

The unit vectors of the two rotation axes are set at the i node with ( )iiξ and ( )iiη , but they cannot be 
uniquely determined only from the normal planes, that is, they should be perpendicular to the i point. 
Thus, the following is assumed: 

i i i
ξ i 2 2 1/2 2 2 1/2

i i i ii

i (i ) Δz Δy(i ) = = - j+ k
(Δy +Δz ) (Δy +Δz )i (i )

ξ

ξ

×

×
                                               (10) 

If ( )iiξ  is parallel to the x axis, then the hypothesis should be changed into 

( ) ( ) / ( )i i ii j i j iξ ζ ζ= × × , whereas the other unit vector of ( )iiη  is calculated by the following formula: 

2 2 1/2
i i i i i i

η i ζ i ξ i 2 2 1/2 2 2 1/2
i i i i i i

(Δy +Δz ) Δx Δy Δx Δz(i ) = (i ) (i ) = i - j - k
h (Δy +Δz ) h (Δy +Δz )

×              (11) 

If the middle surface normal vector ζ i(i ) and the rotation angle of the two axes of ξ i(i ) and η i(i ) at 

the node i are recorded as iβ and iα , then the rotation vector can be written as 

( ) ( )i i i i ii iξ ηω β α= +                                                                                                     (12) 

If the displacement matrix of node i iu or displacement vector iu  is recorded, then, 
T

i i i i i i i iu = (u v w ) ,u = u i + v j + w k                                                                            (13) 

The displacement of the i node andζ along the normal line can be composed of the following two 
parts: the translational part of the node i and the rotational part caused by the rotation vector, according to 
which the kinematics can be obtained 

( ) [ ( ) ( ) ] ( )
2 2

[ ( ) ( ) ] (( ) ( ) )
2 2 2

i i i
i i i i i i i i i

ii i i
i i i i i i i i

i

h hu u w i = u i i i

h h hu i i u i i

ζ ζ ζ η ζ

η ξ ξ η

ζ ζα

αζ ζ ζα

= + × + + ×

 
= + − + = + −  

 

β

β
β

                          (14) 

or represented as the following matrix form: 
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In where
2 2 1/2( )

η
∆ + ∆

= −i i i

i

y zl
h

， 2 2 1/2( )ξ
∆

= −
∆ + ∆

i i

i i

zm
y z

， 2 2 1/2( )η
∆ ∆

=
∆ + ∆

i i i

i i i
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，

2 2 1/2( )ξ
∆

=
∆ + ∆

i i

i i i

yn
h y z

， 2 2 1/2( )η
∆ ∆

=
∆ + ∆

i i i

i i i

x zn
h y z

                                                           (16) 

The displacement expression (12) and formula (16) of the i node normal distance nodeξ (16) are 
similar to the geometric shape description (9), which can be interpolated by the shape function to the 
displacement matrix of any point in the unit. 

( )
8

3
1

8

1

u v w ( , )

( , ) ( )

ζ

ξ η

ξ η

α
ξ η ζ φ φ

β

=

=

= =

  
= +  

  

∑

∑

T i
i

i

ii i
i i

i i

u N I u

N u
                                                                        (17a) 

where  0
2 2

i ih hm nξ ξ ξ
 =  
 

i i iφ ， ( )2
ih l m nη η η η=i i i iφ                                          (17b) 

If the node displacement matrix of unit node i is taken as ( )i i i i iu v ω α β= T
iδ , then the 

unit node displacement matrix is  

( )1 2 8= 

TT T T
eδ δ δ δ                                                                                           (18) 

The element form function matrix is 

( )1 2 8= 

TN N N N ,                                                                                      (19a) 

where 

( )3 ( 1, 2, ,8)N N Nξ ηξ ξ= = 

Ti i
i i i iN I iφ φ                          (19b) 

The displacement modes of such units can be written as follows: 

eu = Nδ                                                                                                                        (20) 

 
3.3 Element Stiffness Matrix of Curved Shell  

The analysis results show that the element stiffness matrix ek can be obtained by using the potential 
energy principle. 

( )
8 8

= T e
e ijV

dV
×

=∫k B DB k                                                                                           (21a) 

where  
1 1 1

1 1 1
= dete T T

ij i j i jV
dV d d dξ ζ η

− − −
=∫ ∫ ∫ ∫k B DB B DB J                         (21b) 
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Table 1: Properties of composite materials with elasticity. “GFRP” stands for “glass-fiber reinforced resin” 

Material E1 
[GPa] 

E2 

[GPa] 
G13 

[GPa] 
G23 

[GPa] 
G12 

[GPa] 
ν12 ρ 

[Kg m-3] 

GFRP 53.78 17.93 8.96 3.45 8.96 0.25 1900 
 

4 Finite Element Discrete Model of Piezoelectric Material Shell 
In the finite element analysis of laminated shells, the following command flow is used to simulate 

the ANSYS software using the parameters in Tab. 1:  
/PREP7 In the ANSYS software. 
1) Import the blade model yp.x_t. 
2) Define the type of piezoelectric element and set the piezoelectric parameters: 
ET,1,SOLID226,0  !Define the type of solid226 unit 
KEYOPT,1,1,1001 !Select the piezo option in the solid226 option 
MPTEMP,,,,,,,, 
MPTEMP,1,0 
DENS,1,7600 !Define the density of piezoceramic  
TB,ANEL,1,1,21,0 !Define the stiffness coefficient of piezoelectric ceramics 
TBTEMP,0 
TBDATA,,1.32e11,7.1e10,7.3e10,,, 
TBDATA,,1.32e11,7.3e10,,,,1.15e11 
TBDATA,,,,,3.0e10,, 
TBDATA,,2.6e10,,2.6e10,,, 
MPTEMP,,,,,,,, !Define the dielectric constant of piezoelectric ceramics 
MPTEMP,1,0 
MPDATA,PERX,1,,7.124e-9 
MPDATA,PERY,1,,7.124e-9 
MPDATA,PERZ,1,,5.841e-9 
TB,PIEZ,1,,,0 !Define the piezoelectric coefficient of piezoelectric ceramics 
TBMODIF,1,1, 
TBMODIF,1,2, 
TBMODIF,1,3,-4.1 
TBMODIF,2,1, 
TBMODIF,2,2, 
TBMODIF,2,3,-4.1 
TBMODIF,3,1, 
TBMODIF,3,2, 
TBMODIF,3,3,14.1 
TBMODIF,4,1, 
TBMODIF,4,2, 
TBMODIF,4,3, 
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TBMODIF,5,1, 
TBMODIF,5,2,10.5 
TBMODIF,5,3, 
TBMODIF,6,1,10.5 
TBMODIF,6,2, 
TBMODIF,6,3, 
3) After the grid is divided, the upper surface node is selected, and the voltage of the coupling node 

is as follows: 
CP, 2, volt, all! Add the coupling voltage to the upper surface 
*get, n_top, node, 0, num, min! Define the electrode nodes on the upper surface. 
4) Select again. Select the lower surface node and the coupling voltage, and set the following voltage: 
CP, 1, volt, all! Add the coupling voltage to the lower surface 
*get, n_bot, node, 0, num, min! Define the electrode nodes on the lower surface. 
Nsel, all! Select all nodes 
D, n_bot, volt, 0! Lower surface plus 0 volt voltage 
D, n_top, volt, 400! Top surface plus 400 volt voltage 
5) Static and modal processing 
First, the processing state is selected as a static state, and its static capacitance is obtained in this 

state. The code and annotations are as follows: 
/SOL! Enter the processing link 
ANTYPE, 0! Choose static processing 
/STATUS, SOLU 
SOLVE! Solution 
*get, CS, node, n_top, RF, CHRG! Obtain the upper electrode value 
Fini! End of processing 
*SET, CS, ABS (CS) /5! Obtain static capacitance 
Modality treatment 
/SOLU! Enter the processing link 
ANTYPE, 2! Select mode processing 
MODOPT, LANB, 20! Define the processing method and the number of substeps 
EQSLV, SPAR! Select the processor 
MXPAND, 20,, 1! Number of substeps to be displayed 
LUMPM, 0 
PSTRES, 0 
MODOPT, LANB, 20,02000000, OFF! Define the frequency range 
D, n_bot, volt, 0! Short on the upper surface 
Nsel, all! Select all nodes 
/STATUS, SOLU 
SOLVE! Solution 
/POST1 
*SET, nmodes, 20! Define nmodes=20 
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*dim, C, array, nmodes! Define an array of capacitors 
*dim, L, array, nmodes! Define an array of inductors 
*SET, PI2, 2*3.14159! Define PI2=2*3.14159 
Set, first! Set the first substep 
/com, 
*do, I, 7, nmodes! Define a loop from 1 to 20 steps 
*get, Fi, mode, I, freq! Obtain the frequency of this step 
*get, Qi, node, n_top, RF, CHRG! Obtain the power value of the step 
*SET, Omi, Pi2*Fi! Convert line speed to angular velocity 
*SET, C (I), (Qi/Omi) **2! Calculate related dynamic capacitance 
*SET, L (I), 1/ (Omi**2*C (I))! Calculate related dynamic inductors 
/com, Mode%i%! Show the next step in the output window 
/com, Resonant frequency F =%Fi% Hz! Display the frequency value in the output window 
/com, Dynamic capacitance C =%C (I)% F! Display the dynamic capacitance value in the output 

window 
/com, Dynamic inductance L =%L (I)% H! Display the dynamic inductance value in the output 

window 
/com, charge Q =%Qi% C! Display the power value in the output window 
/com, 
Set, next! Proceed to the next step 
*enddo! The end of the loop 
FINISH 
6) Fig. 4 shows the transient stress (direct integration), an analysis of the parameters of the 200 step, 

a step of 0.025 s, and gust load curve according to the load on the blade’s surface and the model of the 
wind. The displacement curves under the action of the blade are shown in Fig. 5, and the stress and strain 
versus time are shown in Fig. 6 and Fig. 7, respectively. 

 

 
Figure 4: Applied load curve 
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Figure 5: Curve of displacement in the x-axis 

 

 
Figure 6: Curve of displacement in the y-axis 

 

   

 Figure 7: Curve of strain in blade root  
 

Results show that before and after the applied potential, the displacement changes are evident. In Fig. 
5, x is the displacement components, that is, the control before the maximum vibration amplitude of 0.8 
mm, the voltage (400 V) applied to the amplitude is controlled at less than 0.1 mm at last. Fig.  6 shows 
the same y displacement component of the vibration amplitude before the control at 0.3 mm, after 
controlling the vibration amplitude within 0.1 mm and rapidly decaying. Fig. 7 shows the strain in blade 
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root after applying the voltage of 400 V. By contrast, the control voltage is applied to the front with a low 
external load and slow vibration damping. When a control voltage is applied, the vibration can rapidly 
decay the vibration amplitude values in the ANSYS command stream, thereby reducing the blade 
vibration displacement. Thus, the accuracy of the construction of kinetic equations and the engineering 
value of blade active vibration control using piezoelectric materials is confirmed. 

5 Conclusion 
We discuss the piezoelectric composite blade design for wind turbines and analyze the structural 

characteristics of piezoelectric laminated shells. We analyze the completely laminated piezoelectric 
cantilever vibration control and deduce the differential equations for vibration control of piezoelectric 
laminated shells at the base of wind turbine blades. The system is simplified to a flexible piezoelectric 
laminated shell to study the use of adaptive inverse control of a piezoelectric ceramic laminated shell 
structure. Simulation results show the effectiveness of the method. 
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